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Abstract
We solve the general case of the bridge-crossing puzzle.

1 The Puzzle

Four people begin on the same side of a bridge. You must help them across to
the other side. It is night. There is one flashlight. A maximum of two people
can cross at a time. Any party who crosses, either one or two people, must have
the flashlight to see. The flashlight must be walked back and forth, it cannot
be thrown, etc. Each person walks at a different speed. A pair must walk
together at the rate of the slower person’s pace, based on this information:
Person 1 takes t1 = 1 minutes to cross, and the other persons take t2 = 2
minutes, t3 = 5 minutes, and t4 = 10 minutes to cross, respectively.

The most obvious solution is to let the fastest person (person 1) accompany each other
person over the bridge and return alone with the flashlight. We write this schedule as

+ {1, 2} − 1 + {1, 3} − 1 + {1, 4},
denoting forward and backward movement by + and −, respectively. The total duration
of this solution is t2 + t1 + t3 + t1 + t4 = 2t1 + t2 + t3 + t4 = 19 minutes.

The interesting twist of the puzzle is that the obvious solution is not optimal. A
second thought reveals that it might pay off to let the two slow persons (3 and 4) cross
the bridge together, to avoid having both terms t3 and t4 in the total time. However,
starting with

+ {3, 4} − 3 + · · · or + {3, 4} − 4 + · · ·
incurs the penalty of having person 3 or person 4 cross at least three times in total. The
correct solution in this case is to let persons 3 and 4 cross in the middle:

+ {1, 2} − 1 + {3, 4} − 2 + {1, 2},
with a total time of t2 + t1 + t4 + t2 + t2 = t1 + 3t2 + t4 = 17.
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I will present the solution for an arbitrary number N ≥ 2 of people and arbitrary
crossing times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tN .

Theorem 1. The minimum time to cross the bridge is

min{C0, C1, . . . , CbN/2c−1},
with

Ck = (N − 2 − k)t1 + (2k + 1)t2 +
N∑

i=3

ti −
k∑

i=1

tN+1−2i. (1)

For example, when N = 6, this amounts to

min{4t1 + t2 + t3 + t4 + t5 + t6, 3t1 + 3t2 + t3 + t4 + t6, 2t1 + 4t2 + t4 + t6}.
The difference between Ck−1 and Ck is 2t2 − t1 − tN−2k+1. Thus, the optimal value of k
can be determined easily by locating the value 2t2 − t1 in the sorted list of ti’s.

2 Previous Results

This problem has been around in many incarnations and with various anecdotes attached
to it. On the World-Wide Web one can find dozens of versions under names like the
Bridge-Crossing Puzzle, the Bridge Puzzle, the Four Men Puzzle, the Flashlight Puzzle,
or the Bridge and Torch Problem.

Torsten Sillke1 has explored the history of the problem and collected his findings
and references on his web page [7]. The oldest reference is apparently a puzzle book by
Levmore and Cook from 1981 [6].

Moshe Sniedovich has used the problem in order to illustrate the dynamic program-
ming paradigm for his students. He deals also with the case when more than two persons
at a time can cross the bridge. His web page2 [8] discusses the problem from the view-
point of operations research. It includes an on-line interactive module programmed in
JavaScript for visualizing solutions and computing the best solution by dynamic pro-
gramming over the set of all 2N possible “states” of the problem. A state is characterized
by the subset of people that are still on the original shore.

Calude and Calude [1] have recently treated the problem, but their claimed solution
(for N ≥ 4) is min{C0, C1}, in the notation of Theorem 1. I leave it to the eager reader
to find the error in [1], or rather, to look for the proof.

3 The Optimal Solution

Let us first state the formal requirements of a solution which is presented as an “alter-
nating sum of sets”

+ A1 − A2 + A3 − · · · + Ak.

1http://www.mathematik.uni-bielefeld.de/~sillke/
2http://www.tutor.ms.unimelb.edu.au/bridge/
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Such a sequence represents a feasible schedule if and only if the following conditions hold.

• Each Ai is a nonempty subset of {1, . . . , n}.
• For each person a = 1, . . . , n, the occurrences of a in the sequence are alternatingly

in a set prefixed by + and a set prefixed by −, beginning and ending with +.

• The capacity constraint: |Ai| ≤ 2, for all i.

For simplicity, we will assume that all times are distinct and positive:

0 < t1 < t2 < · · · < tN

This will simplify the phrasing of our statements because we can argue about the optimal
solution and the sorted sequence of persons. The proof can be carried over to non-distinct
times by a continuity argument.

Lemma 1. In an optimal solution, two persons will alway cross the bridge in the forward
direction, and single persons will return. Thus, a solution consists of N−1 forward moves
and N − 2 backward moves.

Proof. This lemma is very intuitive and I encourage the reader to skip the proof, which
works by an easy exchange argument. Sniedovich [8] has proved (in a more general setting)
the stronger statement that one can choose the fastest person on the other shore as the
person returning the flashlight to the origin.

Consider the first instant where the solution deviates from the pattern + {x, x}−x+
{x, x} − x + {x, x} − · · · .

Case 1. The deviation is of the form +a. This cannot occur in first step, because
otherwise the solution would have to begin with + a − a + · · · , and these two steps are
clearly redundant.

So let us consider the move immediately before the offending move: · · · − b + a · · · .
The case a = b can be excluded. The last previous step in which a or b was moved is of
the form +{b, c} or −a. In either case, we can transform the solution to a faster solution
as follows:

· · · + {b, c} − · · · − b + a · · · =⇒ · · ·+ {a, c} − · · · ∅ ∅ · · · ,
· · · − a + · · · − b + a · · · =⇒ · · · − b + · · · ∅ ∅ · · · ,

with ∅ ∅ indicating the two moves − b + a that were canceled.
Case 2. If the deviation is of the form −{a, b}, consider the last previous step in

which a was moved. W. l. o. g., let this be a move +{a, x} (where x = b is permitted).
We can that cancel a from both moves without increasing the total time:

· · ·+ {a, x} − · · · − {a, b} + · · · =⇒ · · ·+ x − · · · − b + · · · ,

but the latter solution cannot be optimal, by the analysis of Case 1.
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I will now model the problem as problem on a graph with the persons V = {1, . . . , n}
as vertices. For each pair +{i, j} that crosses the bridge in the forward direction, we
create an edge {i, j} with a cost of max{ti, tj}. Thus, a solution is represented as a
multigraph G = (V, E). Since each person must move forward at least once, the edge set
must cover all vertices:

The degree di of every vertex i is at least 1. (2)

Lemma 1 gives the following condition:

The number of edges is N − 1. (3)

The degree di of a vertex is the number of times person i moves forward. Thus, it
must move backwards di − 1 times, causing a cost of (di − 1)ti. Thus, the overall cost is

N∑

i=1

(di − 1)ti +
∑

ij∈E

max{ti, tj}. (4)

In the summation
∑

ij∈E, edge weights must of course be taken according to multiplicity.

If we add the constant
∑N

i=1 ti, we can, instead of minimizing (4), minimize the expression

N∑

i=1

diti +
∑

ij∈E

max{ti, tj}.

Each edge ij contributes 1 to the degrees of i and j, Thus we can redistribute the “degree
costs”

∑N
i=1 diti to the edges, and the problem can therefore be written as follows:

Minimize
∑

ij∈E

cij

with
cij := ti + tj + max{ti, tj},

subject to constraints (2–3).
This problem is a special kind of weighted degree-constrained subgraph problem, aug-

mented by a cardinality constraint (3). By standard techniques, it can be reduced to a
weighted perfect matching problem on an auxiliary graph of O(N2) vertices and therefore
be solved in polynomial time. (There are also more direct methods for degree-constrained
subgraph problems, see [5, Section 11], [4], or [3, Section 5.5].) Due to the special structure
of the cost coefficients cij, it is however possible to solve the problem explicitly.

Every solution of the crossing problem gives rise to an edge set E, but it is not obvious
that every multigraph that satisfies (2–3) can be realized by a schedule. This is indeed
the case, but we will first work out the optimal graph E, and for this graph, we will
construct the schedule for the crossing problem.
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Lemma 2. An optimal solution E has the following properties:

(i) (Non-crossing property of disjoint edges.) If two edges of E are incident to four
vertices i < j < k < l, then these edges must be {i, j} and {k, l}.

(ii) If two edges of E share a single vertex, then this vertex must be vertex 1.

(iii) If two edges share two vertices, they are {1, 2}.
Proof. Property (i) follows by comparing the three possible ways of matching i, j, k, l by
two disjoint edges. In (ii) and (iii), any single edge incident to a vertex i 6= 1 with degree
di ≥ 2 can be rerouted to 1 or 2 instead of i, unless the edge is {1, 2}.

From this lemma we can deduce the structure of the optimal solution: The only
multiple edge can be {1, 2}. When we disregard the multiplicity of this edge and look at
the resulting simple graph, all vertices must have degree one except for vertex 1. Thus
the graph consists of a star with center 1 and additional edges which form a matching.
By property (i), these matching edges must come after all vertices adjacent to 1, and each
of them connects two neighbors in the sequence 1, . . . , N . Let us summarize this:

Theorem 2. An optimal graph subject to the constraints (2–3) consist of the following
edges, for some k, 0 ≤ k ≤ N/2 − 1.

• k “matching edges” {N, N − 1}, {N − 2, N − 3}, . . . , {N − 2k + 2, N − 2k + 1},
• k + 1 copies of the edge {1, 2},
• and N − 2k − 2 edges {1, 3}, {1, 4}, . . . , {1, N − 2k}.

A typical solution with k = 3 and N = 10 is shown in the following figure.

1 2 3 4 5 6 7 8 9 10

Lemma 3. The graphs described in Theorem 2 can be realized by a feasible schedule.

Proof. We proceed by induction on N . The base cases N = 2 and N = 3 can be checked
directly. For N ≥ 4, we distinguish two cases.

Case I. k ≥ 1, and the edge {N, N − 1} is present. We start the schedule with

+ {1, 2} − 1 + {N, N − 1} − 2.

This reduces the graph to a solution for N − 2 persons with k − 1 matching edges.

Case II. k = 0, and the edges {N, 1} and {N − 1, 1} are present. We start with

+ {1, N} − 1 + {1, N − 1} − 1.

The graph is again reduced to a graph for N−2 persons (with k = 0 matching edges).
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One easily checks that the cost of the solution in Theorem 2 according to (4) is given
by Ck in (1). This concludes the proof of Theorem 1.

Cases I and II both reduce the problem from N persons to N − 2 persons by bringing
persons N and N − 1 to the other shore. This suggests an easy greedy-like algorithm for
constructing the optimal solution:

For N ≥ 4, select the better solution of Case I and Case II for starting (i. e.,
compare t1 + 2t2 + tN with 2t1 + tN−1 + tN), and then solve the problem for
the remaining N − 2 persons recursively.

For N = 2 and N = 3, the solutions are +{1, 2} and + {1, 3} − 1 + {1, 2},
respectively.

Sillke [7] has proposed this as a conjectured optimal solution, but he does not claim
it exclusively for himself, as he has seen it (without proof) in various newsgroups, and
“almost anybody who thinks about the n-person generalization will arrive at this result.”3
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