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Abstract

We consider the Fréchet distance between two curves which are given
as a sequence of m + n curved pieces. If these pieces are sufficiently well-
behaved, we can compute the Fréchet distance in O(mn log(mn)) time. The
decision version of the problem can be solved in O(mn) time. The results
are based on an analysis of the possible intersection patterns between circles
and arcs of bounded curvature.

1 Introduction

The Fréchet distance is a distance measure between curves.

Definition 1 (Fréchet distance).
Let f : I = [lI , rI ] → R2 and g : J = [lJ , rJ ] → R2 be two planar curves, and let
‖ · ‖ denote the Euclidean norm. Then the Fréchet distance δF (f, g) is defined as

δF (f, g) := inf
α : [0,1]→I

β : [0,1]→J

max
t∈[0,1]

‖f(α(t)) − g(β(t))‖.

where α and β range over continuous and non-decreasing reparameterizations
with α(0) = lI , α(1) = rI , β(0) = lJ , β(1) = rJ .

In other words, we are looking for a common parameterization of f and g such
that the maximum distance at any time t is as small as possible. In contrast to
other common distance measures like the Hausdorff distance, the Fréchet distance
respects the one-dimensional structure of the curves and doesn’t just treat them
as a point set.

∗Freie Universität Berlin, Institut für Informatik, Takustraße 9, 14195 Berlin, Germany.
rote@inf.fu-berlin.de.
Partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open) Project
under Contract No IST-2000-26473 (ECG - Effective Computational Geometry for Curves and
Surfaces).

1



The study of the Fréchet distance from a computational point of view has
been initiated by Alt and Godau [2]. The decision problem is the problem to
decide, for a given ε, whether the Fréchet distance between two curves is at most
ε. The optimization problem is the problem to find the optimal ε, i. e., to compute
the Fréchet distance.

Alt and Godau [2] treated the case of two polygonal curves. For two curves
of m and n pieces, respectively, they showed how to solve the decision problem
in O(mn) time and the optimization problem in O(mn log(mn)) time. Some
related problems have also been considered, like minimizing the Fréchet distance
under translations [3], or a generalized Fréchet distance between a curve and a
graph [1]. In all cases, however, the objects are piecewise linear.

In this paper, we explore the Fréchet distance between more general curves.
We assume that each input curve is given as a sequence of smooth curve pieces
that are “sufficiently well-behaved”, such as circular arcs, parabolic arcs, or some
class of spline curves. (We will be more precise later.) Our algorithm will per-
form certain operations on these curves, like intersecting them with a circle, or
constructing offset curves.

We will show that the combinatorial complexity, i. e., the number of steps,
for solving the decision problem is not larger than for polygonal paths, O(mn).
The complexity of the individual operations (the algebraic complexity) depends
of course on the nature of the curves. Under the stronger assumption that the
curves consist of algebraic pieces whose degree is bounded by a constant, we
can solve the optimization problem in O(mn log(mn)) time, thus matching the
running time for the polygonal case. The elementary operations, however, are
algebraic operations of higher degree.

2 Assumptions

We assume that each curve is given as a sequence of pieces which are connected
at their endpoints. Every piece is a smooth curve of class C2, i. e., the curvature
is defined everywhere and varies continuously within a piece. Usually a piece
will be given in some convenient way, as an instance of some particular class
of curves (for example, circular arcs) with certain parameters, by an equation,
as a cubic spline, or in explicit parametric form. However, we will not make
any assumptions about how the curves are given; it is only important that the
necessary geometric operations can be carried out. Only in Section 8, for solving
the optimization problem, we will assume that each piece is a smooth piece of an
algebraic curve whose degree is bounded by a fixed constant. (We refer to this
as the case of algebraic curves of “bounded degree”.)

We can only work with curve pieces that do not “turn too much”. Let f be
a continuously differentiable curve. The direction of all tangent vectors of the
curve sweep out a connected interval of the unit circle. If this angular range
does not cover the whole circle, its length is called the turning angle of f . If f is
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convex, then the turning angle is the difference of directions between the initial
and the final tangent direction, with appropriate sign.

Lemmas 2 and 3 below, which are crucial for our algorithm, hold for curves
whose turning angle is bounded by π. Curves of larger bounding angle must
be subdivided, for example by cutting them at every point of vertical tangency.
If the pieces are algebraic of bounded degree, then each piece is cut into O(1)
subpieces. Thus, from now on we assume that the turning angle of each piece is
at most π. Some further cuts will be necessary in Section 4 when we solve the
decision problem.

3 Preliminaries

3.1 The free space diagram

The main tool of the algorithm is the free space diagram which was introduced
in [2]. It is a two-dimensional representation of all pairs of points on the two
curves, together with the identification of those pairs which are closer than ε.

Definition 2. Let f : I → R2, g : J → R2 be two curves, I, J ⊆ R. The set

Fε(f, g) := { (s, t) ∈ I × J : ‖f(s) − g(t)‖ ≤ ε }
denotes the free space of f and g. the partition of I × J into the free space and
its complement is called the free space diagram.

ε

f

g

Figure 1: Two polygonal curves and their free space diagram. The scale of the
free space diagram is reduced by 50% with respect to the curves.

Points in Fε are called feasible or free, and they are usually drawn in white.
The other points are called forbidden points. See Figure 1 for an illustration. We
also view the regions of forbidden points as obstacles. The obstacle boundaries
are formed by parameter values (s, t) for which ‖f(s)− g(t)‖ = ε. The following
simple observation from [2] is crucial.
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Lemma 1. Let f : I = [lI , rI ] → R2, g : J = [lJ , rJ ] → R2 be two curves. Then
δF (f, g) ≤ ε if and only if there exists a curve within Fε(f, g) from (lI , lJ) to
(rI , rJ) which is monotone in both coordinates.

As f and g consist of several pieces, the free space diagram decomposes
naturally into a grid of rectangular cells. There is one cell for each pair of pieces
from f and g.

3.2 Auxiliary results

The following elementary lemma connects minimum and maximum curvature
with some global properties of a curve [6], see Figure 2 for an illustration.

(a) (b) (c)

c f

α
c

f

α

x

y

f

c

Figure 2: (a,b) Illustration of Lemma 2. (c) The bound of π on the turning angle
in Lemma 2a is necessary.

Lemma 2. Let f be a twice differentiable curve of turning angle at most π. Let
c be a circle of radius r which is tangent to f at one of its endpoints.

(a) If f is convex and the curvature of f is at least 1/r everywhere, and f and
c bend in the same direction at their initial point of tangency, the curve
cannot enter the exterior of c.

(b) If the curvature of f is at most 1/r everywhere, the curve cannot enter the
interior of c.

Proof. (a) Let us assume without loss of generality that c is the unit circle (r = 1)
and f starts at the rightmost point (1, 0) of c in the upward direction. When we
choose the arc length s as a parameter for f , the unit tangent vector of f can be
written in the form

ḟ(s) =
(− sinα(s)

cos α(s)

)
,

where the function α increases monotonically from α(0) = 0 to a maximum αmax

of at most π. The curvature is given by the derivative of α, and by assumption
we have α̇(s) ≥ 1. We may choose α as a parameter, and we get

f(s) = f(0) +
∫ (− sinα(s)

cos α(s)

)
ds = f(0) +

∫ αmax

α=0

(− sinα

cos α

)
ds

dα
dα,

4



Suppose that we want to find a point f(s) on the curve which is extreme in the
direction β, 0 ≤ β ≤ 2π, i. e., we want to maximize

(
cos β
sin β

) · f(s). This can be
written as follows(

cos β

sinβ

)
· f(s) =

(
cos β

sinβ

)
·
(

f(0) +
∫ αmax

α=0

(− sinα

cos α

)
ds

dα
dα

)

= cos β +
∫ αmax

α=0
sin(β − α)

ds

dα
dα

We try to maximize this expression under the constraints 0 ≤ ds/dα ≤ 1 and
0 ≤ αmax ≤ π. The maximum is obtained if we choose ds/dα = 1 whenever
sin(β − α) ≥ 0 and ds/dα = 0 otherwise. That is, for 0 ≤ β ≤ π, we choose
ds/dα = 1 for 0 ≤ α ≤ β and obtain

(
cos β

sin β

)
· f(s) ≤ cos β +

∫ β

α=0
sin(β − α) dα = 1.

For π ≤ β ≤ 2π, we choose ds/dα = 1 for β − π ≤ α ≤ π and obtain again
(

cos β

sinβ

)
· f(s) ≤ cos β +

∫ π

α=β−π
sin(β − α) dα = 1.

Thus, for any direction β we have
(
cos β
sin β

) · f(s) ≤ 1. The intersection of the

half-planes
(
cos β
sin β

) · x ≤ 1 is the unit circle c. This means that f cannot leave c.
(b) Let us assume without loss of generality that c is the unit circle and f

starts at the lowest point (0,−1) of c towards the right. Again, we choose the
arc length s as a parameter. We denote the angle of the tangent by α(s), and as
above, we obtain

f(s) =
(

x(s)
y(s)

)
and ḟ(s) =

(
ẋ(s)
ẏ(s)

)
=

(
cos α(s)
sinα(s)

)
.

By assumption the derivative α̇ := α̇(s) := dα/ds of α is bounded: |α̇| ≤ 1.
We first prove the lemma under the restriction that 0 ≤ α(s) ≤ π. This

means that the curve cannot move down: ẏ = cos α ≥ 0, and we have y(s) ≥ −1
throughout. We have

ẏ = sinα ≥ sinα · α̇.

Integration gives
y ≥ − cos α. (1)

If y lies in the range −1 < y < 1, this can be written as arccos(−y) ≥ α. The
cotangent function cotu is continuous and decreasing in the interval 0 < u < π,
and therefore we obtain cot arccos(−y) ≤ cot α, or

−y√
1 − y2

≤ cos α

sinα
.
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Assuming 0 < α < π and −1 < y < 1, we obtain

ẋ = cos α ≥ −y · sinα√
1 − y2

=
−y · ẏ√
1 − y2

. (2)

This inequality also holds without the explicit restriction 0 < α < π, because
α = π is excluded by the condition y < 1 and (1), and the case α = 0 can
be checked directly. The function y(s) has the property that there exists some
threshold A ≥ 0 such that y(s) = −1 (and consequently α(s) = 0 and ẋ = 1) for
0 ≤ s ≤ A, and y(s) > −1 for s > A. Thus, by integrating (2), we obtain, for
s ≥ A:

x(s) ≥
√

1 − y(s)2 + A,

as long as −1 < y < 1. It follows that f cannot enter the circle x2 + y2 < 1.

`1

`2

c′

f

A

c

Figure 3: The general case of Lemma 2b.

Now we relax the initial assumption that 0 ≤ α(s) ≤ π. Let us assume that
f terminates as soon as it intersects c and is about to enter the interior of c.
Thus, the initial point (possible followed by a piece where f runs along c) and
the endpoint of f are the only intersection points with c. Let A be a point on
f where α(s) achieves its minimum value, see Figure 3. Let c′ be the unit circle
touching f at A from the left. Let `1 be the tangent at A, and let `2 be other
tangent of c which is parallel to `1. By the definition of A, the starting point of
f must lie on the side of `1 opposite to c′, and hence c and c′ lie on the same side
of `2. We can apply the above proof to the piece of f after A and conclude that
f cannot enter c′; thus, in order to reach c again, it must wind around c′ and
intersect `2 twice. This is not possible without creating a turning angle larger
than π.

Without the bound of π on the turning angle, Lemma 2 would not hold, see
for example Figure 2c for the case of part (a).

For solving the decision problem with parameter ε, we will cut the curve into
pieces at all points where the curvature is 1/ε. The following lemma, whose proof
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Figure 4: Illustration of Lemma 3. An arc of small curvature and two arcs of
large curvature.

is based on Lemma 2, is then crucial for getting a grip on the complexity of the
free space diagram, see Figure 4.

Lemma 3. Let f be a smooth curve of turning angle at most π, and let c by a
circle of radius r.

(a) If the curvature of f is at most 1/r everywhere, the curve can intersect c
at most twice. If it intersects c twice, then its endpoints lie outside c or on
the boundary, and the middle piece between the two intersections lies inside
c.

(b) If f is convex and the curvature of f is at least 1/r everywhere, the curve
can intersect c at most twice.

Proof. If f is tangent to c at some point, the statement follows immediately
from Lemma 2, applied to each piece starting from the tangent point in either
direction. Thus, we can assume that each intersection point is a proper crossing
where f crosses from inside to outside c or vice versa.

(a) For an intersection point A, let us look at the piece f ′ of f that continues
outside c. It follows from Lemma 2b that f ′ cannot enter the interior of any of
the two circles c′ and c′′ tangent to f at A, see Figure 5. Therefore, f cannot meet
c again without making a turning angle larger than π. The statement follows.

(b) Consider three consecutive intersection points A, B, C along the curve.
By reversing the orientation of f if necessary, we can assume that f crosses from
outside c to inside at A, to outside at B, and back to inside at C, see Figure 6.
By Lemma 2a, f is confined within some circle c′ which is equal to c and tangent
to f at A. Then it is easy to see that the tangent direction of f must sweep an
angle larger than π between A and C, a contradiction.

4 Preprocessing the input

In addition to the bound of π on the turning angle, for solving the decision
problem with parameter ε, we need that in each piece of the curve, the curvature
is either uniformly bigger than 1/ε or uniformly smaller than 1/ε. To ensure this,
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Figure 5: Proof of Lemma 3a

A

B
C

γ

α

α γ

fc

c′

Figure 6: Proof of Lemma 3b

we subdivide the curve at all points where the curvature is 1/ε. For convenience,
we assume at this point that the curve does not contain a circular arc of radius ε.
This is a technical assumption for simplifying the discussion. We will discuss
later in Section 7.4 how to treat circular arcs as well.

If the pieces are algebraic curves of bounded degree, then the number of
subpieces of each piece is bounded by a constant. From now on till the end of
Section 7, m and n will denote the total number of resulting pieces of the two
curves.

5 Critical points

We regard as critical points on the boundary of Fε those points which are local
extrema in the horizontal or vertical direction. A horizontal or vertical segment
as part of the boundary of Fε is excluded by assumption: it would mean that
all points along some piece of f have distance ε from some fixed point of g (or
vice versa). Thus f or g would contain a circular arc of radius ε. There are eight
classes of critical points, shown in Figure 7.

In terms of the curves f and g, these points correspond to situations where
a circle c of radius ε around a point of one curve is tangent to the other curve,
see Figure 8. For example, a critical point of type W+ occurs in the following
situation: Let a point x move forward on f . The parts of g which lie within a
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W+

N+

S+

E+

N−

E−

S−

W−

Figure 7: The eight types of critical points. N , S, E, W refers to the direction
in which the point is extreme, and the superscript tells whether the area in this
direction is feasible (+) or forbidden (−).

radius ε of x are the free points on the vertical line in the free space diagram. As
this line sweeps forward to the right, an interval of forbidden points appears at
the critical point W+. This means that g touches c from inside. As x proceeds
further away from g, a portion of g begins to stick out from c.

f

g

ε ε

g

x

c

x

c

f f

g

ε

x

c

(a) (b) (c)

Figure 8: (a) How a critical point of type W+ arises. (b,c) Critical points of
type W−.

A critical point of type E+ corresponds to the opposite movement of x: The
point x starts far away from g and moves closer as x proceeds along f . Critical
points of type W− and E− occur when the curve g touches the circle c from
outside, either because the curvature of g is bigger than 1/ε (Figure 8b) or
because g curves away from c (Figure 8c). The critical points of type N and S
correspond to the case when the roles of f and g are exchanged.

We can view these situations differently. Consider again the situation for
W+. At the critical point x has distance ε from g, and x moves away from g
along f . In other words, f crosses the border which runs at fixed distance ε from
g, the offset curve of g, see Figure 9.

The offset curves of a given curve g at distance ε are obtained as the locus of
points which lie on the normal to g at any point y of g, ε away from y on both
sides of g [5, 7]. If r is the radius of curvature at y, the radius of curvature at
the corresponding point of the offset curve is |r ± ε|. For r > ε, the offset curves
move in the same direction as y (Figure 9b), whereas for r < ε, one of the curves
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ε

g
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(a) (b)

Figure 9: (a) Intersections with an offset curve. The curvature is larger than 1/ε.
(b) An offset curve when the curvature is smaller than 1/ε.

moves in the opposite direction (Figure 9a). For r = ε, there is a criticality.
However, since we consider pieces with r ≥ ε and with r ≤ ε separately, we need
not worry about this case.

6 The structure of a single cell

The free space may be arbitrarily complicated even inside a cell. For example,
if ε is very small, Fε will contain isolated islands of free space for all intersec-
tions between f and g. However, we will show that the reachable points can be
computed in a constant number of elementary geometric operations.

We have subdivided the curves, and consequently, the parameter intervals I
and J into pieces. We denote by m and n the number of pieces. Correspondingly,
we cut the rectangle I × J into mn cells. On the boundaries of these cells, we
compute all points which are reachable from the lower left corner (lI , lJ) of the
rectangle by a path in free space which is monotone in both directions. We do
this incrementally, starting with the lower left cell and ending in the uppermost
right cell, for example in row-major order. For each cell, we assume that we know
the reachable points on its left edge and on the lower edge and we transfer this
information to the right edge and to the top edge.

A vertical line in the free-space diagram corresponds to a fixed point f(s)
on f . The points in Fε on this line correspond to the points of g which lie
inside a circle c of radius ε around f(s). The boundary of Fε corresponds to the
intersections of c with g, and hence we can apply Lemma 3.

Lemma 4. (a) Inside a cell, a vertical or horizontal line intersects the bound-
ary of Fε at most twice.

A vertical tangent line trough a critical point of type E or W or a horizon-
tal tangent line trough a critical point of type N or S does not cross the
boundary of Fε in any other point.
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(b) Moreover, if the curvature of g is smaller than 1/ε, there can only be one
interval of feasible points on a vertical line, and there are no critical points
of type E+ and W+. Analogously, if the curvature of f is smaller than 1/ε,
there can only be one interval of feasible points on a horizontal line, and
there are no critical points of type N+ and S+.

Proof. The first statement follows directly from Lemma 3. A vertical line trough
a critical point can be perturbed so that it intersects the boundary twice in
the vicinity of this point, and thus any further intersection is excluded. (Note
that the statement of Lemma 3 would permit the vertical tangent to touch the
boundary of Fε in another point. This is not counted as a crossing.) Part (b)
follows from Lemma 3a and the same perturbation argument as in Part (a).

Lemma 5. A curve forming a component of the boundary of the free space inside
a cell can contain at most four critical points. There are the following possibili-
ties.

1. A closed circular loop with critical points N−, E−, S−, W− enclosing a
component of free space;

2. a closed circular loop with critical points N+, E+, S+, W+ enclosing a
component of forbidden points;

3. a subsequence of the above cyclic sequences containing between zero and
three critical points, connecting two boundary points of the rectangle;

4. an “s-shaped” path between between the left edge and the right edge of the
rectangle, containing two critical points S+ and N− or S− and N+;

5. an “s-shaped” path between between the bottom edge and the top edge of the
rectangle, containing two critical points E+ and W− or E− and W+.

Proof. If the curve always bends in the same direction (to the left or to the right)
at successive critical points, it must fit one of the first three cases. Consider the
“s-shaped” case of two successive critical points where the curve bends in opposite
directions, as in Figure 10a. We have, say, N followed by S. (It does not matter
whether it is N+ followed by S− or N− followed by S+.) One can see that
there can be no further critical points after S: After another N , one can find a
horizontal line with three intersections. After an E, one is also stuck: The curve
cannot continue to the boundary without any further critical points, and critical
points of type N or W are also not possible.

When a component of the boundary of the free space is not a simple curve,
as in Figure 10b, this can be resolved by a small perturbation of ε, giving rise to
simple curves, and then the lemma can be applied.
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Figure 10: (a) Proof of Lemma 5. The dotted vertical and horizontal lines
intersect the curve three times. (b) Eliminating degenerate situations.

7 Processing a cell

We are given the reachable points on the left and bottom edge, and we compute
the points on the right edge and on the top edge which are reachable from there.

On each edge of the rectangle there are at most two intervals of free points,
by Lemma 4. Inside each interval of free points, there is only a single interval of
reachable points because from every free point, everything which is to the right
or to the top in the same free interval is reachable directly.

Thus, in each free interval on the left and right edge, we just need to know
the lowest reachable point, and in each free interval on the bottom and top edge,
we need the leftmost reachable point. On the left and bottom edge, these data
are given, and on the right and top edge they have to be computed.

We split the task into subproblems as follows: For each pair of a free “source”
interval X on the left or bottom edge and a free “target” interval Y on the right
or top edge, we compute the left-most or bottom-most point U in Y reachable
from the given left-most or bottom-most reachable point B in X.

Without loss of generality, we discuss only the case where X is a free interval
on the left edge. We are given the lowest reachable point B in it. There are two
cases for Y : it can lie on the top edge or on the right edge.

We will describe our procedure in terms of geometric operations in the free
space diagram, like finding the right-most point in a component of forbidden
points. We will later discuss what these operations mean in terms of the curves
f and g.

7.1 Reaching a free interval on the top edge

The upper end of X may be the upper left corner of the rectangle, or it may be a
forbidden point which belongs to a component O of forbidden points. Similarly,
the left endpoint F of Y may be part of a component of forbidden points, which
we denote by O2. (O and O2 are not necessarily different, see Figure 11a.)
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Lemma 6. The leftmost point U in Y reachable from X depends only on the
presence and the relative locations of O and O2 and the horizontal line through
B.

Proof. We have to show that any other “obstacles” of forbidden points do not play
any role in this question. We show this by giving an algorithm for constructing
U in all cases.

If the horizontal line through B intersects O or O2, it is clear that one cannot
reach Y , see for example the interval X1 in Figure 11a or the interval X2 in
connection with Y2 in Figure 11b. Otherwise, we claim that the desired point U
lies directly above the rightmost point of O or of O2, whichever is further to the
right. (If O or O2 extend to the right edge of the rectangle, then again, no point
of Y can be reached.)

It is clear that the monotone path from X to Y has to pass to the right of
O and O2. Thus, no point in Y left of U is reachable from X. To see that U is
reachable, consider first the case that O exists, see the example of the interval
X1 in Figure 11b. Let A be the rightmost point of O. A can lie on the upper
edge, or it can be a critical point of type E+.

Assume first that A is a critical point of type E+. The vertical line a through
A lies completely in the free space, by Lemma 4, and O is the only obstacle left
of a. By assumption, the horizontal line b from the lowest reachable point B in
X does not intersect O before reaching a, and there are no other obstacles in this
range. Thus, A is reachable from B, and the upper end A′ of a is the leftmost
reachable point on the top edge. If it lies in Y , we can take it as our point U ,
and we are done. (This is the case for the intervals X1 and Y1 in Figure 11b.) If
Y lies left of a, we are done as well, as no points in Y are reachable from X. So
let us deal with the only remaining case that Y lies to the right of a, and a is
separated from Y by the obstacle O2.

The lowest point D of O2 must lie above O, and the horizontal line through
D intersects a, which is reachable. Therefore D is reachable. From D we can
reach the rightmost point C of O2, which is either a critical point of type E+ or
the point F . In either case, we can indeed reach the point C ′ vertically above C
as the leftmost point U .

The argument in the last paragraph also works in the case that O does not
exist, because by assumption, the horizontal line through D intersects the left
edge above B.

We are left with the case that the rightmost point A of O lies on the upper
edge. In that case it must coincide with the left end F of Y , and the obstacles
O and O2 are the same, as in Figure 11a. Either the boundary of O is monotone
and the lowest point of O lies on the left edge, or the lowest point D of O = O2

is a critical point of type S+, then we can argue similarly as above, using the
horizontal line through D to show that F is reachable.
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Figure 11: Determining the reachable points on the top edge

7.2 Reaching a free interval on the right edge

Again, we denote by O the component of forbidden points incident to the upper
end of X. We denote by O2 the component of forbidden points incident to the
lower end of Y , if such a component exists. And we denote by O1 the first
(leftmost) component which is hit by the horizontal line through B, if it exists,
see Figure 12a.

Lemma 7. The lowest point U in Y reachable from X depends only on the
presence and the relative locations of O, O1 and O2 and the horizontal line b
through B.

Proof. As in Lemma 6, it may happen that b hits O, and nothing is reachable.
Otherwise, let A be the highest point of O1. As in Lemma 6, one can argue that
A is reachable from B, and that the lowest reachable point in Y is as high as
A or the highest point C of O2, whichever is higher. The cases when O1 or O2

don’t exist are similar.

B

O2

b
A

A′

C ′C

O1

O

Y1

Y2

X

Figure 12: Determining the reachable points on the right edge
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7.3 The primitive operations

We will now show how to carry out the operations that have been described
above in terms of the free space diagram.

The easy operation is finding the free points on a given horizontal or vertical
line, or finding the first intersection of such a line with an obstacle of forbidden
points. This simply amounts to intersecting f with a circle of radius ε around a
given point of g, or vice versa.

The other task is to find the rightmost, bottom-most, etc., point on the
boundary of an obstacle. This is either a critical point or a point where the
obstacle hits the cell boundary. These cases can be distinguished by a conceptual
sweep over the free-space diagram.

The points where an obstacle boundary hits a cell boundary can be deter-
mined beforehand. There are at most eight of these points. For each boundary
point, we can also find out the quadrant into which the obstacle boundary moves.
For example, consider the point F on the upper edge in Figure 11a. The free
space is on the right side of F . As the portion directly below F on the vertical
line through F lies also in the free space, we can conclude that the boundary of
O moves away to the left from F .

To show how an extreme point of an obstacle is identified, consider for exam-
ple the obstacle O of forbidden points which touches the left edge in Figure 11.
We want to know the rightmost point of O. As we sweep a vertical line over
the cell, starting at the left edge, we keep track of the obstacle boundaries. The
number of obstacle boundaries changes only when we pass a boundary point on
the top or bottom edge (and in this case we know whether an obstacle bound-
ary starts or ends there) or at a critical point A of type E, where two obstacle
boundaries merge and disappear, or at a critical point of type W , where two
obstacle boundaries appear. If the obstacle O has not already ended (like in the
rightmost point F in Figure 11a), the point A is the desired rightmost point of
O. We can stop the sweep as soon as the rightmost point is reached. Then, the
sweep line cannot hit another obstacle of forbidden points, by Lemma 4, (and a
critical point of type W is in fact impossible in this case).

We summarize the above arguments in the following theorem.

Theorem 1. Given the reachable points on the bottom edge and the left edge of
a cell, the reachable points on the top edge and the right edge of the cell can be
computed in a constant number of the following operations:

• Intersecting a circle of radius ε with one of the curves

• Finding the first intersection of one curve with an offset curve of the other
curve at distance ε.

In both cases, we must be able to find the parameter values on the respective
curves, corresponding to the points that we have computed.
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If the curves are algebraic curves whose degree is bounded by a constant, then
these primitive are algebraic operations, whose degree is bounded by another
(higher) constant. If we make no such assumptions on the curves, then there is
no bound on the number of intersections between one curve and the offset curve
of the other curve. Therefore it is important to say that we compute the first
intersection (or the first intersection that comes after some specified parameter
value) in the statement of the theorem.

We state another consequence of our considerations in the following lemma

Lemma 8. Let X be a free interval on a horizontal line through the free space
diagram. Then the leftmost reachable point in X is either the left endpoint of X
or it lies vertically above the rightmost point of some obstacle of forbidden points.

Similarly, let Y be a free interval on a vertical line through the free space
diagram. Then the lowest reachable point in Y is either the lower endpoint of Y
or it lies at the same height as the topmost point of some obstacle of forbidden
points.

Proof. This easily follows by induction, using the way how the leftmost or lowest
reachable point is constructed according to Lemma 6 and Lemma 7.

7.4 Circular arcs

Circular arcs as part of the curve f and g require some special care but are not
difficult to handle. In Lemma 3, if f shares a circular arc with c, this must be
counted as a single intersection. If f contains a circular arc of radius ε and g
passes through the center of this arc, then the boundary of Fε may contain a
horizontal segment. The question whether the boundary moves away towards
the top or towards the bottom must be decided on the end of the circular arc,
where the curvature starts to be different from 1/ε. (If g does not pass through
the center or the radius is different from 1/ε, the circular arc requires no special
treatment at all.)

7.5 Solving the decision problem

The following theorem summarizes the result that we have proved.

Theorem 2. Given a parameter ε and two curves consisting of m and n pieces,
respectively, where each piece has a turning angle at most π and curvature ≥ 1/ε
or ≤ 1/ε throughout, we can decide O(m + n) space and in O(mn) primitive
operations of the type described in Theorem 1 whether their Fréchet distance is
at most ε.

In order to bring the input into the form required by the theorem, we may
have to use additional primitive operations: Cutting a curve at all points of a
given tangent direction, and at all points of curvature 1/ε.
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8 The Minimization Problem

We now solve the minimization problem of computing the Fréchet distance. How-
ever, we will make some stronger assumptions on the curves: We assume that
all pieces of the curve are algebraic of degree bounded by a constant. This is
needed in the analysis of the algorithm to ensure that only a limited number of
obstacles can appear in a cell.

We apply Megiddo’s parametric search technique [8]. We will closely follow
the approach of [2] for polygonal curves, except that the technical details are a
little bit more involved.

By Theorem 2, we know that we can solve the decision problem for a given
threshold ε it we know all obstacles and their extreme points in all four directions
in every cell, as well as the endpoints of the free intervals on the cell boundaries.
There is a slight technical problem in applying parametric search, since obstacles
may appear and merge together as we vary ε. Also, the cell boundaries when we
cut the curves at the points of curvature 1/ε are not stationary.

We solve these problems in a preprocessing phase. We first ensure that each
piece of the curve has turning angle at most π. As mentioned above, this multi-
plies the number of pieces at most by a constant. Then we consider the partition
of each piece into subpieces at the points of curvature 1/ε, for varying ε. At
certain critical values of ε, the combinatorial structure of this partition changes:
These values are the curvatures at the endpoints of the piece and the local max-
ima and minima of the curvature along the curve. This gives an initial set of
O(m + n) critical values for all pieces of f and g. Within one interval between
two such critical values of ε, we consider the partition of a cell of the free space
diagram into subcells by the points of curvature 1/ε. The number of subcells
is fixed, but the boundaries move. By applying Lemmas 6 and 7 inductively to
these subcells, we know that we can compute the reachable points on the upper
and right edge of the cell if we know the reachable points on the lower and left
edge of the cell and the extreme points of all obstacles in all subcells, and where
they intersect the subcell boundaries. At some values of ε, the combinatorial
structure of the partition into free space and obstacles changes: A new obstacle
may appear in the middle of a cell or at a cell boundary, two obstacles may grow
and merge into one, of an obstacle may become tangent to the cell boundary.
There is only a constant number of these critical events per subcell.

Thus, by a binary search among O(mn) critical values of ε, we can narrow
down the interval of possible values of the Fréchet distance ε∗ so that we know
the precise number of obstacles in each subcell, and whether and where they
touch the subcell boundary.

Each binary search is a run of the decision algorithm, for a total time of
O(mn log(mn)).

By Lemmas 6, 7 and 8, we know that we can solve the decision problem
if we know the sorted order of all extreme points and boundary points of all
obstacles in all four directions. We apply parametric search, using a parallel
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sorting algorithm for the coordinates of these critical points. This narrows down
the interval the interval of possible values for ε∗ such that in the whole interval,
no two critical points switch positions in the x- or y-order; So we know that the
lower endpoint of this interval must be the Fréchet distance ε. By utilizing Cole’s
variant of parametric search [4] we obtain a running time of O(mn log(mn)).

Theorem 3. Given two curves consisting of m and n pieces, respectively, of
smooth algebraic curves of fixed maximum degree we can compute their Fréchet
distance in O(nm) space and in O(mn log(mn)) algebraic operations of bounded
degree.

Here, an algebraic operation refers to a comparison between two real solutions
of algebraic equations.
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