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Abstract. An algorithm for approximating a given open polygonal curve
with a minimum number of circular arcs is introduced. In computer-aided
manufacturing environments, the paths of cutting tools are usually de-
scribed with circular arcs and straight line segments. Greedy algorithms
for approximating a polygonal curve with curves of higher order can be
found in the literature. Without theoretical bounds it is difficult to prove
anything about the quality of these algorithms. We present an algorithm
which allows us to build a directed graph of all possible arcs and look for
the shortest path from the start point to the end point of the polygonal
curve. We can prove a runtime of O(n2 log n) for an original polygonal
chain with n vertices. Using the same approach, we can prove a run-
time of O(n2 log2 n), for computing a tangent-continuous approximation
with the minimum number of biarcs, for a sequence of points with given
tangent directions.

1 Introduction

In computer-aided manufacturing environments, tool paths are usually made
of line segments and circular arcs [3–5]. Approximating the data by curves of
higher order [1–8] has been investigated extensively in the past. In contrast
to approximation by polygonal curves, the theoretical bounds of these problem
are not so well studied. In the first part of this paper we will introduce the
basic ideas and the algorithm for approximation of a polygonal curve with the
minimum number of circular arcs. Building on this we later present an algorithm
for tangent-continuous approximation of an open polygonal curve with minimum
number of biarcs.

Results and Techniques. We assume that the problem is given in the form of a
tolerance region around the given curve, which is split into subregions by gates
through the given points, see Figure 1. The precise formulation is given below.

The main idea for the optimal approximation by circular arcs (Sections 2–5)
is the use of a Voronoi diagram of the tolerance boundary. We have to incre-
mentally maintain one cell in this Voronoi diagram of line segments. Geometric
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Fig. 1. Polygonal tolerance region R with gates

considerations (Lemma 7) make the location step in the update easy, leading to
constant amortized time per insertion. In total, the algorithm takes O(n2 log n)
time.

We also obtain an optimal tangent-continuous approximation with biarcs,
pieces consisting of pairs of circular arcs, with given tangent directions in O(n2 log2 n)
time (Section 6). Here, the core of the algorithm is a reduction to circular ray
shooting in simple polygons.

Problem Setting. We wish to approximate a polygonal chain P = (p1, . . . , pn)
by a series of circular arcs (which could include straight line segments, as circles
of infinite radius). The endpoints of the arcs are vertices of P . We want our
approximating curve to have distance at most ε from P . As a first approximation
to this problem, one can look at a region formed from strips of width ε centered
at the polygon edges. However, in the vicinity of sharp corners, this does not
guarantee that the curve remains close to the given points. Figure 1 shows a
circular piece of a hypothetic curve that can shortcut the bend at p4 if it is
only required to remain in the strips. (Also, it might overshoot the bend, as
indicated in the vicinity of p6, although this looks like a theoretical possibility
only.) To avoid this, we introduce a gate at every vertex. The approximating
curve is required to pass through all gates in succession, and the curves are not
allowed to pass through a gate twice. This will guarantee that any curve into a
point pi can be joined with any curve out of pi without danger of an intersection
other than at pi.

For our problem, we assume that we are given a polygonal “tolerance region”
R and a sequence of gates g1, g2, . . . , gn, which are segments through the points
pi. We will refer to endpoints of gates lying to the left of P as we walk from p1

to pn as left endpoints and the other endpoints as right endpoints. We require
that the gates do not cross. We require that the input satisfies the following
assumptions:

(A) R is a simple polygon passing through all gate endpoints;
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(B) R does not intersect the interior of gates or cross the segments connecting
corresponding endpoints of successive gates.

(C) No line through two points on successive gates gi and gi+1 crosses the portion
of R connecting gi with gi+1.

(Assumption (B) is actually a consequence of (C).) Ideally, the gate gi at vertex
pi is a line segment of length 2ε centered at pi that bisects the angle pi−1pipi+1.
For a convolved curve with sharp bends close together, we might have to shorten
the gates and to reduce the ε-strip around the edges, as shown in the right part
of Figure 1.

Modeling the curve approximation problem by an appropriate tolerance re-
gion with gates is a problem of its own, which we do not discuss here. Eibl and
Held [1, 2] have methods that can be adapted to produce such gates and toler-
ance regions. In Figure 1, we have chosen to approximate the “ideal” circular
boundary at the outer angle of each vertex by a single edge of P . One can use
more edges to get a finer approximation, or one could also choose to approximate
the circular arc from inside, to get a guaranteed upper distance bound of ε. Our
time bounds assume that R has constant complexity between successive gates
and thus the total size of R is proportional to n.

Definition 1 (proper gate stabbing). A circular arc stabs gates gi, . . . , gj

properly, if:
1. the curve passes through gate gm ∈ {gi, . . . , gj} from the side of pm−1pm to

the side of pmpm+1

2. the circle on which the arc lies intersects each gate only once.

Condition 2 of this definition is stronger than what would be strictly necessary:
an arc from pi to pj might intersect each intermediate gate only once, but the
continuation of the arc beyond pj might bend back and intersect, say, gj and gj−1

a second time. This would be a sensible arc, but it is excluded by our definition.
But such a situation can only happen if the gates are very close together (relative
to their length).

Definition 2 (valid circular arc). A circular arc aij with starting point pi

and endpoint pj is a valid arc if:
– the arc stabs the gates gi+1, . . . , gj−1 properly,
– the arc does not cross the boundary of the tolerance region R .
– the arc reaches pi from the correct side of gi and reaches pj from the correct

side of gj.

Note that because R passes through the gate endpoints, any arc that goes
through a series of gates without crossing the tolerance boundary must go
through them in the correct order, so we do not need to test this separately.

We can split the problem of determining if a valid circular arc connects pi

with pj into three parts. First, we compute the set of all arcs between pi and
pj that stab all intermediate gates properly (Sect. 2). Second, we compute all
arcs that start at pi and end at pj , reaching both from the correct side (Sect. 3).
Third, we compute all arcs between pi and pj that do not intersect with the
tolerance boundary (Sect. 4). A valid circular arc has to be member of all three
result sets.
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2 Stabbing through the Gates

Definition 3 (point/gate bisectors). Given a point p and a gate g, let bl be
the bisector of p and g’s left endpoint and br be the bisector of p and g’s right
endpoint.

Lemma 1. The centers of all circles passing through a vertex p and intersecting
a gate g exactly once lie in a double-wedge whose boundary is bl and br. The
sections we want are the ones where one half plane includes p and the other
excludes it. (Figure 2 illustrates this.) In the degenerate case where bl is parallel
to br one wedge is the strip between the bisectors and the other wedge is empty.

Proof. Consider the intersection of the half plane bounded by bl that includes p
and the half plane bounded by br that excludes p. Points in the interior of this
region are closer to p than the right endpoint of the gate and are also closer to
the left endpoint than to p. Disks centered in this region which have p on their
boundary include the left endpoint and exclude the right endpoint of the gate.
Therefore all circles centered in the wedge intersect the gate exactly once. The
case for the second wedge is symmetric. This argument works for the degenerate
case, also, but in this case all circles will include the nearer gate endpoint and
exclude the further one. Thus one wedge must be empty.

Centers of circles that are located in the same region as p outside of the
double-wedge are always closer to p then to the endpoints of the gate. Therefore
these circles exclude the endpoints if they pass through p. These circles can not
intersect the gate only once, unless the circle is tangent to the gate. Looking at
the other side of the double-wedge boundary, all centers of circles located here
are closer to the endpoints of the gate than to p. Each disk which includes p has
to include the endpoints and its boundary does not intersect the gate at all. ut

pi pj

gj

brbl

Fig. 2. The region of all centers of circles passing through pi and gate gj . The cir-
cles with centers close to the intersection of bl and br , in the region with the curved
boundary, intersect gj twice and are not considered as centers of valid arcs.

By Definition 1, an arc stabs the gates properly only if every gate is inter-
sected only once. Therefore the centers of circular arcs stabbing an intermediate
gate are located in the double wedge of the gate. For the first and last gates of
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the arc we insist that the arc goes through the original point located at the gate.
Thus the first and last gates are treated differently from the intermediate gates
(see Section 3).

According to Lemma 1, one wedge is the region of the centers of disks in-
cluding the left endpoint of the gate and excluding the right endpoint. Circular
arcs centered in this region pass the gate from the correct side, according to
the stabbing condition, if they are in CCW (counter-clockwise) orientation. In
CW (clockwise) orientation, the arc would walk around the left endpoint before
intersecting the gate. The unbounded part of this wedge lies to the left of P .
Symmetrically the circular arcs in the other wedge need CW orientation to pass
the gate in the correct direction, and the unbounded part of this wedge lies to
the right of P .

So from now on we talk about the left wedge and the right wedge. A circular
arc stabbing through the gates cannot change its orientation.

Lemma 2. A circular arc a starting at a point p stabs gates gi, . . . , gj properly
if and only if its center lies in the intersection of the left wedges defined by p and
the gates, or the intersection of the right wedges. ut
Lemma 3. Incrementally computing the two regions of centers of all valid cir-
cular arcs passing through a point p and stabbing all gi, . . . , gj gates properly can
be done in O(n log n) time.

Proof. It is the incremental intersection of O(n) half-planes. ut

3 Arc Endpoints

A valid circular arc from pi to pj must reach each endpoint from the correct
side of its gate. All arcs that start at pi and end at pj have their centers on
the bisector of the segment connecting pi and pj . We can go around each circle
whose center is on the bisector in a CW or CCW direction. When the circle is
tangent to the gate, both directions are possible. For other circles the arc in one
direction will approach the gate from the correct side and the arc from the other
direction will approach the gate from the wrong side. This leads to the following
characterization of the desired arcs.

Lemma 4. Let b be the perpendicular bisector of the segment between pi and pj.
Let si be the point of b which is the center of a circle tangent to gi at pi, and let
sj be defined symmetrically. The centers of all CW arcs that reach both pi and
pj from the correct side are all points on b to the right of both si and sj. CCW
arcs are symmetric. ut

4 Tolerance Boundary

The tolerance boundary R consists of two polygonal chains, one on each side of
the original polygonal chain P . For a CW arc we will only check that it does not
cross the boundary on the left side of P . It cannot cross the boundary on the
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right side of P if it passes through all gates, by assumption (B), and therefore we
need not check for such an intersection explicitly. (For a CCW arc, the situation
is symmetric.)

A circle passing though point p does not intersect or contain any edge on a
polygonal chain C if its center lies closer to p than to any point on C. That is,
if we compute the Voronoi diagram of C ∪ p, the center of the circle must lie in
point p’s region, V (p).

This is not quite the condition that we want, namely that a circular arc does
not cross chain C. The Voronoi region guarantees that an entire circle does not
cross C. However, in our case these are equivalent.

Lemma 5. If an arc from gi to gj does not intersect a tolerance boundary be-
tween gi and gj then neither does the circle on which that arc lies.

Proof. Look at the arc between consecutive gates gk and gk+1. Let q and q′ be
the intersection points with these gates. By assumption (C), the line ` through q
and q′ does not intersect the tolerance boundary between gk and gk+1, i.e., the
tolerance boundary lies entirely on one side of `. For a CW arc, the tolerance
boundary in question lies on the left side of `. On the other hand, ` is the line
that splits the circle into the arc from q to q′ (on the left side) and into the
opposite part which is not used. Thus the part of the circle which is not used
can never intersect the relevant part of the tolerance boundary. ut

While we could compute the entire Voronoi diagram of C ∪ p to determine
V (p), this would be too expensive. Fortunately, we can iteratively add n consec-
utive segments of C and update p’s Voronoi region V (p) in O(n) total time.

Voronoi regions are “generalized star shaped”. This means that a shortest
segment from a boundary point to a nearest point in the shape defining the
region lies entirely within the region.

Lemma 6. Each segment added will either cause no change to V (p) or will
replace a section of V (p) by at most three new segments (two straight lines and
a parabola). (If V (p) is unbounded we think of an edge “at infinity” connecting
the two infinite rays, so that these three “segments” are considered consecutive.)

Proof. Suppose that the boundary between V (p) and V (S) for some open seg-
ment S consisted of two disconnected pieces. Draw a shortest segment (or ray
for the piece “at infinity”) from each disconnected piece to S. Because Voronoi
regions are generalized star shaped, both of these segments lie within V (S) and
cannot be crossed by another Voronoi region. S itself cannot be crossed by an-
other Voronoi region. This means that some segment S′ must lie within the
region bounded by S, the two segments, and the boundary of V (p) between the
two segments. But such an S′ would then be disconnected from the rest of the
chain, a contradiction. ut

There are two parts to updating p’s Voronoi region V (p) when adding a
segment S to the diagram. First, we find a place on the boundary of V (p) that
is equidistant from p and S, if such a place exists. If so, we walk around the
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boundary of V (p), eliminating boundary sections until we reach the other place
on the boundary where p is equidistant from S. (Note that either of these places
could be “at infinity”.)

The second part is easy — walk around the boundary of V (p) from the
starting point, eliminating obsolete bisector segments until you get to the finish
point.

Because C is a polygonal chain, the first part is also easy. V (p) is bounded
by bisector pieces between p and a subset of the segments in C. Of the segments
in this subset, there is a first segment F and a last segment L, according to the
order along the chain.

Lemma 7. If V (p) changes, then its boundary with either V (F ) or V (L) must
change.

Proof. The intuition is, if you can’t go through the chain C, then the only way
to get to V (p) is through V (F ) or V (L).

If the chain from F to L consists of only F and L (which could be the
same segment), the lemma is trivially true. Otherwise consider the union of the
chain C between F and L exclusive, the boundary of V (F ) from the endpoint it
shares with the next segment on C to the end of its boundary with V (p), and the
boundary of V (L) from the endpoint it shares with the segment before it on C
until the end of its boundary with V (p). If V (p) is bounded these two boundaries
end at the same point - the point where V (p), V (F ), and V (L) meet. If V (p)
is unbounded then its boundaries with V (F ) and V (L) end in infinite rays. In
either case, this union separates the plane into two parts, one including p (the
inside) and the other not including p (the outside). We will call this union the
separator. Note that F and L are defined to lie outside of this separator (except
for the endpoint that is part of the separator).

Suppose that a segment S is added that changes V (p). The previous segment
on C is either L or some segment that did not modify V (p). In either case, the
endpoint shared with that previous segment is outside of the separator, so we
know that at least part of S lies outside of separator.

If S crosses the separator, then it cannot cross C, because the chain is simple.
If it crosses the Voronoi boundary of V (F ) then the part of the boundary between
the crossing point and the end of the boundary between V (p) and V (F ) will be
eliminated. A similar argument holds for L. Thus if S crosses the separator then
the boundary of V (p) with either V (F ) or V (L) must change.

If S does not cross the separator, pick some point q that is on the boundary
of the new V (p) that was not on the boundary of the old V (p) and let E be the
shortest segment from q to a point on S. E must lie entirely in V (S) and must
cross the separator. It cannot cross C. The rest of the analysis is exactly as in
the paragraph above, with E replacing S. ut

Lemma 8. For a fixed gate gi, we can compute the centers of all circular arcs
that pass between gi and each gate gj without crossing the tolerance boundary in
O(n) time.
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Proof. Incrementally add segments from C and amortize the update time. We
have shown that the centers of CW [CCW] arcs are the region of V (pi) in the
Voronoi diagram of p along with the CW [CCW] boundary between gi and gj.
We can compute these regions incrementally. It takes constant time to test if
segment S changes the boundary between p and either F or L, so the total time
for finding starting points is O(n).

Walking along the boundary of V (p) will take time proportional to the num-
ber of pieces eliminated. Because an eliminated piece is removed and never reap-
pears, the total time for this step in all n insertions is bounded by the number of
boundary pieces added. This is at most 3n, because a bisector curve between p
and a segment consists of at most three pieces. Thus this requires time O(n). ut

5 Computing the Shortest Path

To determine the shortest path from the start point to the end point of the
polygonal curve we can build a directed graph of all possible valid arcs and do a
BFS to find the shortest path from p1 to pn. The following theorem summarizes
how to find the valid arcs from pi to pj .

Theorem 1. A point c is the center of a valid CW circular arc from pi to pj if
and only if it is in the intersection of :

– the intersection of the right wedges between pi and each of the gates gi+1

through gj−1;
– the region of V (pi) in the Voronoi diagram of pi and all of the segments on

the left boundary between gi and gj; and
– all points on b to the right of both si and sj, where b, si, and sj are as defined

in Lemma 4.

The conditions for valid CCW arcs are symmetric. ut

We find the possible arcs from a point pi to all points further along P incre-
mentally. We maintain the intersection of the right wedges, the intersection of
the left wedges, the Voronoi region of pi with the left boundary, and the Voronoi
region of pi with the right boundary. At each step we update each of the four
items. We intersect each bisector ray with an intersection of wedges and with
a Voronoi region, and then test if the two intersections overlap. Because wedge
intersections and V (pi) are convex these intersections require O(log n) time.

Note that we can quit early as soon as both wedge intersection regions become
empty. This may lead to a better behavior of the algorithm in practice than the
worst-case time bound proved in the theorem below.

Theorem 2. Given an open polygonal curve P = (p1, . . . , pn), a polygonal tol-
erance boundary of size O(n), and a gate for each pi, we can approximate P by
a minimum number of valid circular arcs in O(n2 log n) time.

Proof. Each starting point takes O(n log n) time. ut
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p1

p2

c1

c2

Fig. 3. The joint circle, and an S-shaped biarc with both tangents pointing outside the
joint circle

6 Biarcs

The sequence of arcs produced in the previous algorithm may have arbitrary
corners at the vertices. In many situations, a smooth curve is desired. We now
assume that an oriented tangent direction ti is specified for each vertex pi of
the open polygonal curve. (If such tangent information is not available, it can
also be computed from the point data alone, using various tangent estimation
methods.)

Our algorithm will select a subsequence of the input points and interpolate
between them smoothly by biarcs, pieces consisting of pairs of circular arcs,
respecting the tangent directions ti at the points which are used. Our algorithm
will find such an approximation with the minimum number of biarcs given a
set of gates and a tolerance region. In this setting the gates would ideally be
perpendicular to the tangent directions ti, but we do not require this. We do
require that the gates are chosen so that each tangent ti passes through gate gi in
the same direction as the original polygonal chain P . Otherwise our requirements
on gates and the tolerance region R are the same as for arcs.

Again we first find all valid biarcs and then build the directed graph of these
biarcs from the start point to the end point of the polygonal curve. The last step
is the computation of the shortest path as described in the previous section. The
difference between the two algorithms is the computation of the valid arcs/biarcs.
Therefore we will now focus on the computation of valid biarcs.

Biarcs. Biarc curves were introduced by Bolton [12] and are used for curve
approximation in a tangent-continuous manner. A biarc consisting of two circular
arcs that share an endpoint with a common tangent. This common endpoint
is called the joint of the biarc. Given two points pi and pj with two tangent
vectors ti, tj at these points, a biarc Bij between pi and pj is characterized in
the following way [2, 12]:

– Bij consists of two consecutive circular arcs, a1, a2



10 R. L. Scot Drysdale, Günter Rote, and Astrid Sturm

– a1 is an oriented arc from pi to point pjoint and a2 is an oriented arc from
pjoint to pj ;

– a1 matches the tangent vector ti at the point pi and a2 matches the tangent
vector tj at pj ;

– both arcs have a common tangent at pjoint, the joint of the biarc.

These conditions leave one degree of freedom. The locus of possible joints forms
a circle that passes through pi and pj [9–11], see Figure 3. For each point on
this joint circle, there is a unique biarc which uses this point as the joint. (There
are some degenerate cases, which we ignore in the sequel: as a limiting case, the
joint could be one of the points pi or pj : the joint circle might be a line; if there
is a circle through pi and pj with the given tangents, this is the joint circle, but
all joints on this circle lead essentially to the same biarc.)

Proposition 1. One circular arc of the biarc lies outside the joint circle, and
the other lies inside the joint circle, except for their endpoints, which lie on the
joint circle. Both tangents ti and tj point to the same side (either inside or
outside) of the joint circle, and they form equal angles with the joint circle. ut
(In fact, the last property characterizes the joint circle.)

Definition 4 (Valid biarc). A valid biarc Bij from pi to pj consists of two
circular arcs a1 and a2 and satisfies the following conditions :

– a1 matches ti at the point pi, a2 matches tj at pj , and they meet at a point
on the joint circle.

– a1 and a2 stay inside the tolerance boundary.
– a1 and a2 intersect the gates gi and gj only once.

The joint, which is the ending point of a1 and the starting point of a2, is not
required to be an original point. The joint must of course lie inside the tolerance
region. Note that we relaxed the gate stabbing condition. The arcs a1 and a2 are
allowed to intersect the gates of the starting and ending points only once, but
all intermediate gates can be intersected twice. The restrictions on intersecting
gi and gj guarantee that successive biarcs will not intersect except at endpoints.

For each possible starting point pi of a biarc, the tangent direction ti is fixed.
The pencil of circular arcs starting in this direction forms a “circular visibility
region” Wi inside the feasible region R , see Fig. 4. The tangent ray splits the
visibility region into CW and CCW visibility regions (WiCW

, WiCCW
).

To find a valid biarc that starts at pi and ends at pj we need to reach a point
on the joint circle via a valid arc from pi and then continue via a valid arc to
pj . The possible joints from the perspective of pi are the intersection of the joint
circle and the circular visibility region of pi, consisting of WiCW

and WiCCW
. By

reversing the direction of the second arc and tangent we can make computing
the second arc symmetric to computing the first. We will use arc ã2, which has
opposite orientation and whose tangent at pj is t̃j , the reverse of tj . We will call
this circular visibility region W̃j (W̃jCW

, W̃jCCW
). Our goal is to find all points

on the joint circle which are in both Wi and W̃j of the biarc class.
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ti
pi

Fig. 4. A circular visibility region Wi

As a first step in this process we determine the portion of each gate that
is within Wi for each point pi and the portion of each gate that is in W̃j for
each point pj . Our second step is to determine a joint interval region for each
pair of points pi, pj and biarc class. This is the part of their joint circle which
might be visible from both endpoints; it depends on the orientation of the arcs
and their position to the joint circle. Finally, we compute for each joint interval
its intersection with the corresponding Wi and W̃j . This step uses the pre-
computed information about the intersection of circular visibility regions with
gates.

We could compute the intersection of Wi with all later gates by using inter-
sections of wedges and Voronoi regions, as we did before. However, because we
know the tangent at pi we can do this more efficiently by computing Wi directly.
The pencil of circular arcs consists of an interval of possible curvatures. As we
walk along the left and right tolerance boundaries the interval of curvatures
either remains unchanged or shrinks, but it always remains a single interval.

Lemma 9. For a given point pi, the oriented circular visibility regions of Wi

and their intersection with and all gates can be computed in O(n) time. The part
of a gate that is visible in WiCW

or WiCCW
is at most two segments.

Proof. We cut each oriented visibility region into two pieces, forward and back-
ward visibility. The forward visibility region is the part of the visibility region
which is reached by portions of arcs that do not intersect any gate twice. The
backward visibility is the part reached by portions of arcs after they have in-
tersected a gate twice, so they are moving backwards through the gates. We
walk along the left and right boundaries of the tolerance region, determining
the intersection between each boundary and a part of the pencil of arcs and
computing the forward visible region. When the last reachable gate is known,
we can compute for each gate moving backwards the arcs that build the back-
ward visibility region. The backward part of the visibility region for a gate gi

consists of the arcs that intersect gate gi+1 twice (possibly after passing through
even higher-numbered gates twice) and reach back to gi, plus the arcs that don’t
cross gi+1 but intersect the gate gi a second time. These arcs correspond to a
connected piece of the pencil of arcs and we need to determine the intersection of
this pencil part with the corresponding boundary of the tolerance region moving
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from gi+1 to gi. Because the complexity of the tolerance boundary between two
gates is constant we can do the forward and backward visibility computations
between two gates in constant time, so the total time required is O(n). ut

Note that the interval on a gate reachable by forward portions of arcs is
disjoint from the interval reachable by backward portions of arcs, because a
given point is reachable by exactly one arc leaving pi with tangent ti. These
regions (if non-empty) may join at the point where an arc is tangent to the gate,
but if this arc is invalid (because it intersects the boundary) the regions will be
separated. See Fig. 5.

pi

ti

gi

gk

Fig. 5. Forward and backward visibility segments of region WiCW on gate gk

For the rest of the paper we will deal with one particular situation: The joint
is on the CW arc of the joint circle from pi to pj . The first arc a1 of the biarc
is CW and second arc a2 is CCW, and the two tangents point outside the joint
circle. This is the case illustrated in Figure 3. The other cases can be treated
analogously.

All valid arcs a1 lie outside the joint circle and all valid arcs ã2 lie inside the
joint circle. Thus, we define the potentially reachable region of the joint circle
from pi to be the part of the joint circle between pi and the first intersection with
the left tolerance boundary when going CW. This is the part of the joint circle
that can be reached from pi while staying outside the joint circle and intersecting
gi once. (Note that points on the joint circle before pi may be in the circular
visibility region of pi, but are only reachable by intersecting gi twice.)

Analogously, we define the potentially reachable region of the joint circle from
p2 to be the part of the joint circle between p2 and the first intersection with
the right tolerance boundary when going CCW. We define the joint interval to
be the intersection of these potentially reachable regions of the joint circle, see
Figure 6. Note that by the way it is defined the joint interval cannot cross the
tolerance boundary.
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p1
p2

Left end

Right end

Fig. 6. Joint interval for an S-shaped (CW,CCW) biarc

Lemma 10. The joint interval is either empty or is a single arc of the joint-
circle which lies inside the tolerance region, and is the only place where valid
joints can occur. ut

The intersection of the joint circle with the tolerance boundary can be found
by circular ray shooting with the joint arc. For the circular ray shooting we use
the algorithm introduced by Cheong et al. [13], that performs ray shooting in
a simple polygon. Their algorithm requires O(n log n) preprocessing time and
space and O(log2 n) time to shoot a ray. We need to shoot a circular ray against
one boundary, i.e., against a polygonal chain, as in Fig. 7a. Conceptually, this
can be reduced to ray shooting inside a simple polygon by doubling the path and
enclosing it in a bounding rectangle as illustrated in Fig. 7b. Of course, one can
also adapt the circular ray shooting algorithm to handle open chains directly.

(a) (b)

Fig. 7. circular ray shooting

All circular ray shootings needed will take place in these two polygons. Each
computation of a joint interval takes the time for two ray shootings, which is
O(log2 n), where n is the number of points of the polygon.

Once we know the joint interval, we know between which gates the joint of
valid biarcs will be, if it exists.

Lemma 11. The intersection of WiCW
with the joint interval is one connected

arc.
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Proof. If two arcs a1 and a′
1 starting from pi reach two points on an arc of the

joint circle, every point between these points can be reached by an arc “between”
a1 and a′

1, and all these arcs are within the feasible region R . ut

We need to establish exactly where the joint interval enters and leaves parts
of the circular visibility region from p. As we have only arcs with one orientation
in the circular visibility region the circular visibility region intersects the gates
in at most two segments. At any gate we can test whether the joint interval of
the joint circle intersects the gate to the right of, within, or to the left of the
segment (or segments in the case of two) of the gate reachable by valid arcs from
p. The fact that the joint circle passes through the circular visibility region in a
monotone order allows us use binary search to find pairs of gates between which
a transition occurs. A transition occurs if the joint circle moves from outside to
inside or inside to outside of the circular visibility region. Once such a pair of
gates is found it is a constant-time operation to determine where the joint circle
intersects the boundary of the circular visibility region. If the circular visibility
region is disconnected into two regions we have two segments on the gates, but
we can still only have a maximum of two transitions: entering and leaving the
circular visibility region. The joint circle can not intersect both the forward and
backward regions, because then it would intersect arcs of the circular visibility
region three times, which is impossible. If the joint circle intersects with the gate
in between the segments this implies that the joint circle has not yet entered the
circular visibility region.

Because the arcs of the biarc are not allowed to intersect the gates of the
start and endpoints twice we have to adjust this process slightly. Starting the
potentially reachable region of the joint circle at pi avoids arcs that intersect gi

more than once. However, it is possible that arcs start at pi, pass through gj, and
then come back and intersect gj−1 and earlier gates. Such arcs are not allowed,
because we cannot consider backward regions whose arcs intersect gj twice. But
because the backward visibility region is computed once during pre-processing,
such regions are included. (They may be valid for biarcs ending at points beyond
pj .)

This means that we need to update the backward visibility regions of the
gates between gi and gj to rule out arcs that pass through gj twice. Updating
all gates directly would take O(n) time, but we instead update regions “on the
fly” as we consider them during the binary search. Because the invalid part of
the backward visibility region corresponds to a constant interval of arcs, we can
update the backward intersection segment on a gate in constant time. Therefore
we update only O(log n) gates, taking only O(log n) time.

Once we have found the part of the joint interval reachable from each end-
point, we intersect them. All points in the intersection of these arcs on the joint
circle are valid joints for biarcs.

Theorem 3. Given an open polygonal curve P = (p1, . . . , pn), a polygonal tol-
erance boundary of size O(n), and a gate for each pi, we can approximate P by
a minimum number of valid biarcs in O(n2 log2 n) time.
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Proof. For each point pi, determine which part of on every other gate is reachable
by computing Wi and W̃i in O(n2) time. For each pair of points use circular ray
shooting to find where the joint circle first hits each boundary, and thus the joint
interval (if any) in O(n2 log2 n) time. For each joint interval we determine the
part of the joint interval reachable from the left endpoint and the part reachable
from the right endpoint, doing binary search on the gates crossed by the joint
interval. All points in the intersection of these arcs on the joint circle are valid
joints for biarcs. This requires O(n2 log n) time. This gives us a total run time
of O(n2 log2 n). ut

7 Future Work

It would be good to find algorithms that have fewer restrictions. For example,
we could allow arcs or biarcs that do not start and end at original points.
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