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AN IMPROVED UPPER BOUND ON THE GROWTH

CONSTANT OF POLYIAMONDS

GILL BAREQUET, GÜNTER ROTE, and MIRA SHALAH

Abstract. A polyiamond is an edge-connected set of cells on the triangular lattice.
Let T (n) denote the number of distinct (up to translation) polyiamonds made of n

cells. It is known that the sequence T (n) has an asymptotic growth constant, i.e.,

the limit λT := limn→∞ T (n + 1)/T (n) exists, but the exact value of λT is still
unknown. In this paper, we improve considerably the best known upper bound

on λT from 4 to 3.6108.

1. Introduction

An animal on a two-dimensional lattice is a connected set of cells on the lattice,
where connectivity is by edges. Examples are polyominoes on the square lattice
and polyiamonds on the triangular lattice. Two fixed lattice animals are regarded
as equal if they are translates of each other, while rotations are not considered. The
study of lattice animals began in parallel more than half a century ago in statistical
physics [13] and in mathematics [5]. In this paper, we consider fixed animals on
the triangular lattice in the plane (where all cells are equilateral triangles), and
refer to them in the sequel simply as “polyiamonds.”

Let T (n) denote the number of polyiamonds of size n. Figure 1 shows polyi-
amonds of size up to 5. Early counts of polyiamonds were given by Lunnon [9]
up to size 16, by Sykes and Glen [12] up to size 22, and by Aleksandrowicz and
Barequet [2] up to size 31. The values T (n) (sequence A001420 in the On-Line En-
cyclopedia of Integer Sequences [1]) have been computed up to n = 75 [6, p. 479],
using a version of Jensen’s subgraph-counting algorithm [7]. The largest known
value is T (75) = 15,936,363,137,225,733,301,433,441,827,683,823 ≈ 1.6× 1034.

Due to results of Klarner [8] and Madras [10], we know that the limits λT :=

limn→∞
n
√
T (n) = limn→∞ T (n+ 1)/T (n) exist and are equal. This number, λT ,

is called the growth constant of polyiamonds. Based on existing data, it is
estimated [12] that λT = 3.04± 0.02. Klarner [8, p. 857] showed that λT ≥ 2.13,
see also Lunnon [9, p. 98]. Rands and Welsh [11] improved the lower bound
to 2.3011. However, as was already pointed out [4], they could easily have shown
that λT ≥ 2.3500, using the data available at the time. Moreover, using the
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n = 1: Two moniamonds n = 2: Three diamonds

n = 3: Six triamonds

n = 4: 14 tetriamonds

n T (n)

1 2
2 3
3 6
4 14
5 36
6 94
7 250
8 675
9 1 838

10 5 053
11 14 016
12 39 169
13 110 194
14 311 751
15 886 160
16 2 529 260
values of T (n)

n = 5: 36 pentiamonds

Figure 1. Polyiamonds of sizes 1 ≤ n ≤ 5, and the first few values of T (n).

same method but with more values T (n) known today, one obtains the lower
bound 2.7714. At any rate, the current best lower bound, λT ≥ 2.8424, was
obtained with a different method [4].

To the best of our knowledge, there is only a single work [9, p. 98] that proves
an upper bound. It shows the rather easy bound λT ≤ 4. In this paper, we
use a novel method in order to improve significantly the upper bound, showing
that λT ≤ 3.6108. The new bound is obtained by investigating the growth constant
of a sequence that bounds the number of polyiamonds from above.
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2. The Method

We follow the method used recently [3] for polyominoes (animals on the square
lattice). In fact, there is an error in this article, which invalidates the claimed im-
proved upper bound on the growth constant of polyominoes. Theorem 2.5 therein
claimed a linear upper bound on the number of compositions (see Section 3
below) of two polyominoes. However, G. Rote found a counterexample consisting
of two polyominoes, each of size n, having Θ(n3/2) compositions. In a follow-up
joint work with A. Asinowski, still unpublished, this counterexample was refined
to construct, for any ε > 0, a pair of polyominoes, each of size n, having Ω(n2−ε)
compositions. In the current work, we take a different approach for proving The-
orem 2 below, proving a quadratic upper bound on the number of compositions.

Another difference between the current work and the original one [3] lies in the
last step of the proof (Section 5 of the current paper). In both papers, the upper
bound on the growth constant of the respective type of animals is computed by
estimating the growth constant of a sequence which bounds from above the number
of animals. While for the erroneous bound on the growth constant of polyominoes,
the growth constant of the dominating sequence was computed using a nonrigorous
numerical method, in this work we apply for the same purpose a rigorous and quite
delicate mathematical induction.

3. Number of Compositions

Definition 1. A polyiamond P can be decomposed into two polyiamonds P1

and P2 if the cell set of P can be split into two disjoint non-empty subsets, such
that each subset comprises a valid (connected) polyiamond. We also say that the
polyiamonds P1, P2 can be composed, with the appropriate relative translation, so
as to yield the polyiamond P .

A composition of two polyiamonds is a generalization of the widely-used no-
tion of the concatenation of polyiamonds. Given a total order of the cells of a
lattice, concatenation of two animals is simply a composition (possibly in more
than one way) so that the lexicographically-largest cell of one animal is attached
to the lexicographically-smallest cell of the other animal.

Theorem 2. (Composition) Let P1, P2 be two polyiamonds of sizes n1 and n2,
respectively. Then, at most (n1+2)(n2+2)/2 different polyiamonds can be obtained
by composing P1 and P2.

Proof. Every boundary edge of a polyiamond is either vertical, ascending, or
descending. The inside of the polyiamond can be either to the left or to the
right of the edge. Accordingly, we classify the boundary edges into six cate-
gories v, a, d, v̄, ā, d̄, see Figure 2 for an example. By counting the edges in each
category, we get a 6-tuple of numbers, (v, a, d, v̄, ā, d̄), the boundary signature
of the polyiamond, whose sum v + a + d + v̄ + ā + d̄ equals the perimeter of the
polyiamond.
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Figure 2. A polyiamond with boundary signature (v, a, d, v̄, ā, d̄) = (3, 5, 7, 5, 3, 5).

Suppose that we are given two polyiamonds P1, P2 with respective perime-
ters p1, p2 and associated boundary signatures (vi, ai, di, v̄i, āi, d̄i), for i = 1, 2.
Then, a trivial upper bound on the number of compositions of P1 and P2 is∑
t∈{v,a,d,v̄,ā,d̄}(t1 · t̄2), using the convention ¯̄ti = ti. The number of boundary

edges of any type in a polyiamond of perimeter p cannot exceed p/2, otherwise
there are not enough remaining edges to turn the boundary into one or more closed
loops. The maximum of a bilinear function under linear inequality constraints on
each operand is attained at an extreme point of the feasible region. Therefore, the
maximum value of the upper bound under these constraints is attained, for exam-
ple, by setting (v1, a1, d1, v̄1, ā1, d̄1) = (p12 , 0, 0,

p1
2 , 0, 0) and (v2, a2, d2, v̄2, ā2, d̄2) =

(p22 , 0, 0,
p2
2 , 0, 0), leading to an upper bound of 2(p1/2 · p2/2) = p1p2/2 on the

number of compositions of P1 and P2. The perimeter of a polyiamond of size n
is maximized when the cell-adjacency graph of the polyiamond is a tree, in which
case the perimeter is n+2. (Indeed, the perimeter of a single triangle is 3, and
each of the additional n−1 triangles adds at most 1 to the perimeter.) The claim
follows. �

4. Balanced Decompositions

Definition 3. A decomposition of a polyiamond of size n into two polyia-
monds P1, P2 is k-balanced if k ≤ |P1| ≤ n− k (and hence k ≤ |P2| ≤ n− k).

Lemma 4. Every polyiamond of size n has at least one d(n−1)/3e-balanced
decomposition.

Proof. Let us rephrase the claim in graph terminology. In fact, we prove a
more general claim which states that every connected graph G, with |G| = n
vertices and maximum degree ∆(G) ≤ 3, can be partitioned into two vertex-
disjoint subgraphs A,B, such that A,B are connected and d(n− 1)/3e ≤ |A|, |B| ≤
b(2n+ 1)/3c. Applying this claim to the cell-adjacency graph of the polyiamond
gives the lemma.

We consider an arbitrary spanning tree T of G. Then, each edge of T induces
a split of T , and hence of G, into two connected parts. Let e be the edge that
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gives the most balanced split of G into two parts A,B, and let s be the size of
the smaller part (A). In addition, let x be the endpoint of e in B. The removal
of x from B splits B into two parts B1, B2 (the smaller of which may be empty).
Obviously, |B1| ≤ s and |B2| ≤ s, otherwise the edge from x to the bigger of the
two parts would then give a split of G which is more balanced than the split (A,B).
Consequently, n = |A|+ |B1|+ |B2|+ 1 ≤ 3s + 1. Hence, s ≥ (n− 1)/3, and the
claim follows from the fact that s must be integral. �

Remark. The bound d(n−1)/3e in the lemma is tight, as can be seen by a Y-
shaped graph with three paths of length approximately n/3 ending in a common
central vertex of degree 3, or in other words, a subdivision of the star graph K1,3.
This graph can arise as the cell-adjacency graph of a polyiamond.

5. A Dominating Sequence

We can now prove our main result.

Theorem 5. λT ≤ 3.6108.

Proof. First, we show that the combination of Theorem 2 and Lemma 4 implies
the following bound:

(1) T (n) ≤
b 2n+1

3 c∑
k=dn−1

3 e

(k + 2)(n− k + 2)

4
T (k)T (n− k) +

(n/2 + 2)2

4
T (n2 )

Indeed, every polyiamond P of size n can be decomposed in at least one d(n−1)/3e-
balanced way into a pair of polyiamonds P1, P2 of sizes n1 = k and n2 = n − k,
respectively. There are at most (n1 + 2)(n2 + 2)/2 possibilities to compose P1, P2

in order to reconstruct P . The extra factor 1/2 is introduced to compensate for
double counting. The term T (k)T (n − k) counts the ordered pairs (P1, P2) of
polyiamonds of appropriate sizes. Clearly, the opposite pair (P2, P1) generates the
same composite polyiamonds. Every unordered pair {P1, P2} occurs twice, except
when P1 = P2. These exceptional pairs of equal elements exist only for k = n−k =
n
2 , and their number is T (n2 ). The last term makes the necessary adjustment to
ensure that these pairs are fully counted. In order to avoid clumsy case distinctions,
we define T (x) = 0 if x is not an integer.

The following sequence, U(n), is therefore an upper bound on T (n): It starts
with the known values of T (n) for n ≤ 75, and extends them by the relation (1).

(2) U(n) =


0 for n /∈ N
T (n) for n ≤ 75 b 2n+1

3 c∑
k=dn−1

3 e
(k+2)(n−k+2)

4 U(k)U(n− k) + (n/2+2)2

4 U(n2 )

 for n > 75

We are done if we can show the following bound:

(3) U(n) ≤ Cµn

(n+ 2)3
, for n ≥ 1000,
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with µ = 3.6108 and C = 1/1.46 ≈ 0.685. We prove this by induction on n.
The induction basis covers the range n = 1000, . . . , 3000, and can be checked by
computing U(n) according to the recursion (2) for n ≤ 3000, using a computer.
For this purpose, we wrote a straightforward program1 in the Sage system,2 which
supports integer arithmetic with unbounded precision.

For n > 3000, we use again the recursion for the inductive step, and n is big
enough so that the induction hypothesis can be applied on the right-hand side:

U(n) =

 b
2n+1

3 c∑
k=dn−1

3 e

(k + 2)(n− k + 2)

4
U(k)U(n− k) +

(n2 + 2)2

4
U(n2 )


≤
b 2n+1

3 c∑
k=dn−1

3 e

(k + 2)(n− k + 2)

4

Cµk

(k + 2)3

Cµn−k

(n− k + 2)3
+

(n2 + 2)2

4

Cµn/2

(n2 + 2)3

= C2µn
b 2n+1

3 c∑
k=dn−1

3 e

1

4(k + 2)2(n− k + 2)2
+
Cµn/2

2n+ 8

= C2µn
(
S +

1

Cµn/2(2n+ 8)

)
= C2µn(S + S0),

where S denotes the sum in the penultimate line, and S0 is the second term in the
parentheses in the last line. We will show that

(4) S + S0 ≤
1.46

(n+ 4)3
=

1

C(n+ 4)3
<

1

C(n+ 2)3
,

from which (3) follows. We estimate S by converting the sum to an integral. The
summand, f(k) = 1/[4(k + 2)2(n− k + 2)2], considered as a function of k, is first
decreasing to a minimum at k = n/2, and then increasing. For such a function,
the sum can be bounded from above by an integral as follows.

Lemma 6.
b∑

k=a

f(k) ≤
∫ b+1

k=a−1

f(k) dk.

Proof. Each summand f(t) is bounded from above by
∫ t
t−1

f(k) dk if t is on

the decreasing branch, or by
∫ t+1

t
f(k) dk if t is on the increasing branch. These

integration intervals are disjoint, and they all lie inside the interval [a−1, b+1]. �

(The easy estimate
∑b
k=a f(k) ≤ (b − a + 1) max(f(a), f(b)) would lead to a

slightly weaker upper bound on λT .)

1See http://page.mi.fu-berlin.de/rote/Papers/abstract/An+improved+upper+bound+on+

the+growth+constant+of+polyiamonds.html
2www.sagemath.org

http://page.mi.fu-berlin.de/rote/Papers/abstract/An+improved+upper+bound+on+the+growth+constant+of+polyiamonds.html
http://page.mi.fu-berlin.de/rote/Papers/abstract/An+improved+upper+bound+on+the+growth+constant+of+polyiamonds.html
www.sagemath.org
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We can, therefore, bound the sum S from above as follows.

S ≤
∫ (2n+4)/3

k=(n−4)/3

dk

4(k + 2)2(n− k + 2)2
=

1

(n+ 4)3

∫ 2/3+α

y=1/3−α

dy

4y2(1− y)2

with α = 2
3(n+4) , using the substitution y = k+2

n+4 . Since n > 3000, α can be

bounded by α0 = 1/4500, and the last integral is bounded from above by

(5)

∫ 2/3+α0

y=1/3−α0

dy

4y2(1− y)2
=

[
2y − 1

4y(1− y)
+

1

2
ln

y

1− y

]2/3+α0

y=1/3−α0

≤ 1.45.

We still have to deal with the term S0. It is tiny, and we can afford a generous
bound. Since µ = 3.6108 and n > 3000, the bound

S0 =
1

Cµn/2(2n+ 8)
≤ 0.01

(n+ 4)3

is a gross overestimate. Putting everything together, we get

S + S0 ≤
1.45

(n+ 4)3
+

0.01

(n+ 4)3
=

1.46

(n+ 4)3
,

establishing (4) and, thus, concluding the inductive step. �

100 200 300 400 500
n

3.5

3.6

3.7

3.8

Figure 3. n
√
U(n)(n+ 2)3/C as a function of n.

Note that the validity of the inductive step does not depend on the value of µ,
except for the term S0, which is negligible. In fact, when setting up the proof, we
first had to determine C from the integral (5) to make the induction work, and then
we fixed µ so as to satisfy the hypothesis (3) for 1000 ≤ n ≤ 3000, which we could
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accomplish by choosing µ ≥ max{ n
√
U(n)(n+ 2)3/C | 1000 ≤ n ≤ 3000 }. Fig-

ure 3 shows a plot of an initial segment of these values. They decrease for the range
where the true values T (n) are used (n ≤ 75). There is a jump when the recursion
sets in. The recursion reproduces the jump as soon as the large values start to be
used on the right-hand side of (2). The jumps get damped into smaller and smaller
waves as n increases. It pays off to let the induction start at n = 3000 instead of,
say, n = 300, but the possible improvement for even higher values of n is marginal.
Experimentally, the limit growth constant of U(n) is approximately 3.6050. The
true value of λT should, of course, be much smaller: It lies at the limit of the
leftmost descending branch of the plot in Figure 3, if that branch were continued.
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