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Abstract. PointsPy, ..., P, in the unit square define a convexchain if they are below
y = x and, together withP, = (0, 0) andP,; = (1, 1), they are in convex position. Under
uniform probability, we prove an almost sure limit theorem for these chains that uses only

probabilistic arguments, and which strengthens similar limit shape statements established

by other authors. An interesting feature is that the limit shape is a direct consequence of
the method. The main result is an accompanying central limit theorem for these chains. A

weak convergence resultimplies several other statements concerning the deviations between

random convex chains and their limit.

1. Introduction and Summary
Take n points in the unit square in the plane. Write them in order of increasing

coordinate a$, ..., P, and letPy = (0, 0) andP,.1 = (1, 1). The points are the ver-
tices of aconvex n-chaiif the vectorsP, . ; — P, have increasing slope= 0, ..., n. The
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dation and the National Security Agency.
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(0,0)

Fig. 1. The limit shapel.

chain itself is the set of points on the segments that connect successive vertices. To sam-
ple arandom convex n-chain Qust take then points uniformly and independently from

the unit square, conditional on the evéhthat they form a convex chain. This defines

the uniform probability on conver-chains and we refer to it as thaiform model

for chains. The evenE occurs rarely because, as shown in Section 2 by elementary
methods,

Theorem 1. Let R, ..., P, be a sample of n pointsndependently and uniformly
distributed in[0, 1]%. Then

Prob(the sample forms a convex n-chain ——.
K P B D!

In deriving this result the vertices on random conweghains are revealed as quantiles
of n uniform [0, 1] random variables.

Random convex chains have a limit in a rather strong sense. We define the parabolic
arc

L={Xy):Jy=1-+V1-x, 0<x <1} D

of points in the square equidistant fraggh 1) and the liney = x—1, see Fig. 1. Denoting
the Hausdorf distance ki we prove the following statement in Section 3.

Theorem 2. For each n let G be a random convex n-chaifihen

Prob(§(Cn, L) — 0) = 1.

Thus sequences,, Co, ... of random, convex chains convergeltavith probability 1,
an analogue of the strong law of large numbers. The curigecalled thdimit shape It
is interesting that the proof technique deritedirectly.

In Section 4 we prove our main result, which shows that deviations between random
chains and the limit shape are asymptotically normally distributed in the following sense.
Fort € [0,1], x = 2t — t? andy, = t? are the coordinates of the point anwhere
the tangent slope t5/(1 — t). Then the difference betweér, y;) and the vertex on the
random chain where the tangent slope/id — t) converges in distribution to a bivariate
normal vector with mear0, 0).

The technique used to establish these results can be pushed further without much
difficulty. In Section 5 we show that random chains converge weakly as stochastic pro-
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cesses, and then use the invariance principle to obtain results for various functionals,
e.g., the area between a convex chain bnd

In the remainder of this Introduction we discuss the context for the above theorems
and mention some previous, related results. Most pertain tattiee modebf random
chains and respond to a question posed by Vershik about 15 years ago: “Is there a limit
shape for the set of convex lattice polygons contained in a given convexoatyr??”
Let K = [0, 1]? denote the unit square afiy, the set of all (upward) convex polygonal
paths inK that connect0, 0) to (1, 1) and whose vertices are {1/n)Z2. Barany [1],
Sinai[7], and Vershik [10] each proved theorems giving a positive answer to the question.
It is shown, for example, that, for amy> 0,

{P € Pa: 8(P, L) < &}
[Pl

-1 2

asn — oo. In other words a random convex lattice chain is close to the limit shapith
(uniform) probability converging to 1. A main difference between (2) and Theorem 2 is
that in the lattice model the number of vertices on a cliria P, is a random variable.
This variable was studied in Sinai's paper [7] where, in addition, a central limit theorem
for the deviations betweeR and L was stated. A further development in the lattice
model is due to Bfany [2] where a statement like (2) was shown to hold deery
compact, convex bod c R? with nonempty interior. In addition he characterized the
limit shape as the convex curve with maximal affine perimeter.

Finally, Theorem 2 may be regarded as a strengthening of the following recent result.

Proposition 1[3]. For everye > 0, Prob(§(Cpn, L) > &) — 0.

Like (2), this is a weak law of large numbers but here it pertains to the uniform model
for chains.

2. The Uniform Distribution on Chains

FromnowonP, = (x;, ¥i),i =1, ..., n,willdenote a sample af points taken indepen-
dently and uniformly from [01]2, and numbered so that < - - - < X,. We write Py =
(0,0)andP,,1 = (1,1). The sample space = {z = (X1, ..., Xn; Y1, - - -» ¥n): Xi, Vi

€ [0, 1], x; increasing; probability is Lebesgue measure, normalized so F3pk- 1.

Proof of Theoreni. By definition, theP, are vertices on a convex chaij only if the
slopes of the difference vectats = P, — P,_; areincreasing,= 1, ..., n+1. For this
it is necessary that the sample defing@s@notone chaini.e., they; are nondecreasing.
Otherwise A has positive slope but sonag will have negative slope. The probability
that a sample defines a monotone chaimig—* since the subsdl ¢ Swherey, <

- < ¥y clearly has the same probability as the subset whgre< --- < vy, , for any
permutationr.

Now we condition on the everte M, that the sample defines a monotone chain. We
make the following claim:

Claim. On the event Mall permutations of the slopes of the segmextsre equally
likely.



38 |. Barany, G. Rote, W. Steiger, and C.-H. Zhang

Fig. 2. Permuting segments in monotone chains.

The proof is based on an idea of Valtr [8] who made a similar statement for increasing
paths in a lattice. This fact will complete the proof of the theorem. First note that points
in M are in one-to-one correspondence with theBet {A = (A1, ..., Ant1): Aj =
(Ui, vi), U, v >0, and Zln;rll Aj = (1, 1)}. For a chain ire € M with differences,

if we interchange\; and A1 (see Fig. 2), then

1. the verticed, ..., B_1andP, 1, ..., Py,y1 remain fixed,
2. P isreflected atP_; + P;1)/2to P/, and
3. inthe new chain, the ranks of the slopes\pfand A; ., are interchanged.

Therefore, sincd, is uniform in the rectangle with corners Bt_; andP, .1, given the

other points, the chairse M whose differences have slopes with ranks given lnave

the same probability as the chains whose slopes abeg permutation differing from

7t by a single transposition. Because all permutations may be obtained by a sequence of
such transpositions, the claim, and thus the theorem, is proved. O

Remark 1. By definition, a random convex chay, may be generated as a sample

of n points in the square, rejecting the sampl€Qf0), (1, 1), and the points are not

in convex position; thé? in an accepted sample are the internal vertices of the convex
chain. Theorem 1 implies that the expected number of samples until one is accepted is
n! (n 4+ 1)!. On the other hand, the proof suggests a more efficient algorithm in which a
single random sample is transformed into a convex chain:

1. Generatd®’ = (ui, vi), i =1,...,n, asample oh points uniformly distributed
in the square.

2. Writingug, for theith smallestamonag, . . ., u, (itis called the th order statisti¢
and v, theith smallest amongy, ..., v, (also anith order statistic)Q; =
(ugy, vg)) denotes then internal vertices on a random, monotone chainrMn
(dotted line in Fig. 3).

3. Compute difference vectors; = Q; — Qi_1,i = 1,...,n+1, letA() be the
vector with thejth smallest slope, and compuR = A@) + -+ + Agy, | =
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Fig. 3. A sample of four points, its random monotone chain (dotted), and its convex chain (solid).

1, ..., n. These are the internal vertices—in order of increagiogordinate—of
a random convex chai@, (solid line in Fig. 3).

3. ALimit Shape Theorem

The proofs of Theorems 2 and 3 are direct, once we have a more convenient representation
for the vertices of a convex chain. By definition, the sample space for coneéains
is S c R? defined by

S = {(xl,...,xn; Vi, ..., Yot X, Vi €[0,1], %, y; increasing,

Yi —VYi1
Xi — Xi—1

and increasingi ;

probability is Lebesgue measure, normalized so Bpk= 1. Givenn, let (2, u) be
a probability space on which we define two sequerXgs .., Xn 1 andYs, ..., Yo
of mutually independent random variables, each exponentially distributed; {ie.¢
Q: Xi(w) <t} = F() =1—e*. For each, write

Yi
Razz,
W = X+, 3)
4o R__Y

1+R W
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It is not difficult to verify three known facts concerning exponential variables:

1. Z; is uniformly distributed in [Q1].
2. Zj andW; are independent.

3. Foreveryn > 0,k < n, and any permutatio(yjs, ..., janr1) of 1, ..., n+ 1, the
ratio
Y. +..-+Y
J1 + + Jk (4)
Yi+ -+ Yo
is distributed like thekth order statistic of independent, uniform random vari-
ables.

Write | o for the indicator of the everd C Q and fixn > 0. Fort € (0, 1) define the
functions

TIW(A - Z)liz«g Y Xiliz <y

— i=1
0= wa- z) S X ©
and
Ya(t) = Zitlani Ziliz<g _ Y Y I[Zist]. ®
MWz Ty
These functions describe the vertices of a random comvehain.
Lemmal. LetX,...,Xy1andY,..., Yy beii.d. exponential random variables

on (2, u) withratios R = Y;/X; andwrite Z = R /(1+ R).Lett < --- < thy1 be
the ordered values of £. .., Zn,1. The points

|:)I :(Xn(ti)v yn(ti))7 I ::I-a"-vnv
are in convex positigrand, for any measurable & S,
p{w: Xn(t1), ..., Xn(th); Yn(ta), .. ., Yn(tn))(w) € A} = Prol(A);

i.e., the R are the n internal vertices of a randgmonvex n-chain

Proof. Letjy, ..., jns1 be the permutation that sorts the ratios; iR, < - - - < Rj,,,.
Thereforet; = Z;,. Observe from (6) thag (t) is a step function with a step of size
Yi
Yi+ -+ Yo

att; and that, ontf, tc.1),
Yo 4. 4,
yn('[)=bk5—Jle + L k=1,...,n.
Yi+ -+ Yo
Similarly x,(t) has a step of size
X

Xi+-+ Xnp1
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att; and, on fx, tk,1),

X, + -+ X;
X (1) = = 1 Jk .
n(l) = & —Xl+"'+xn+l
So ag increases from 0 to Ixn(t), yn(t)) “jumps” from (0, 0) through the set of points
Pc = (ag, by, k=1,...,n,to(1,1). These are the vertices on a random convex chain
because, from (4),
s — Xi+--+ X and v — Yi+---4Y,
D7 Xi+ o+ X O TN+ Yo

are both distributed like thieh order statistics from a samplemindependent uniforms.
Also the pointsQ; = (ug), v()) have differenced; = Q; — Q;_1 whose slopes are

R |:X1+"'+Xn+l:|’

(N
Yi+ -+ Yoy

andthey are ordered by the permutatjen . ., jn1. Therefore using part 2 of Remark 1,
Pe=Aj 4+ 4

is seen to be thkth vertex on a random convexchain, and, fot € [ty, tx;1), P« =
(Xn (D), Ya(1))- O

To prove Theorem 2 we need the following statement; here, and througtow) | =

Lemma?2. Foreachte (0,1) ands > O,
Prob([|(xn(t), yn(t)) — (2t =t t?)[| > &) — 0
as n— oo.
Proof. Multiply the numerator and denominator of (6) by(f + 1) and apply the
(weak) law of large numbers to each to observe

E(WZlz<y)
1
in probability; hereW is the sum of two exponentials arflis uniform on(0, 1) and

independent ofV. Thereforey,(t) — t2 in probability. The same steps applied to (5)
show that

Yn(t) —

Xn(t) = [E(W liz<) — E(W Zz<)] = 2t — t?
in probability. O

Remark 2. For eacht € [0, 1] the limits

(X, Vo) = (2t — t%,t?)
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satisfy /i = 1— /1 — X, t € [0, 1], because + x; = (1—t)?; therefore(2t —t2, t?)

is on the limit curvel defined in (2). Sincd. is the limit of (x,(t), Ya(1)), it has been
“discovered” as a consequence of the method of proof. Previous limit shape theorems
start withL and show that the difference from a random chain converges to zero.

Remark 3. The tangent td_ at (2t — t2, t?) has slope /(1 — t). On the other hand,
fort € [t, tkr1), (7) says thatx,(t), yn(t)) is the vertex on the-chain supporting the
line of slope

o Xat e+ Xy

Jk+1 Y]_+'+Yn+l ’
this quantity— t/(1 —t) in probability asn — oo because/(1—-t) € [R;, R;,,,) and
the ratio of sums converges to 1.

Proof of Theoren2. Foreactm > OletX{"”, ..., X\, andY,", ..., Y\", be mutually

independent exponential variables@and deflne<n (t) andy, (t) asin (5) and (6) except
we useZ™ = Y /(X" + Y, and the formulas

n+1 y/(n)
Z X | [Zi(”)gt]

Xn(t) = Txl(m 8
and
n+1 /(N
H YI I (n)
[Z77<t]
yn (t) = n+1 (n) (9)
i1 Yi

These functions describe a random convex cRairFixt € (0, 1). Lemma 2 was based
on the facts that, for large enough
> 8) <é&

>8><8.

In fact a much stronger statement is true becaxi$¢ and Y, have finite variance.
According to the complete convergence theorem of Hsu and Robbins [5] (see, e.g.,
p. 375 of [4]), the denominators in (8) and (9) satisfy

Z Prob( > a> <00

>e><oo,

n+1
Prob(‘— dOXT (|[Z<m<t] 2t —t?)

and

n+1 @
n) 2
Prob(‘—lzlY (Iizo g = t2)

n+1

Z(x(”) -1

and
n+1

Z Prob<‘ —— Z(Y(”) 1)
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and this implies that both ! X™/(n + 1) and Y11 Y. /(n + 1) converge to 1
almost surely. The same result applied to the numerators shows that

Z Prob( > 8) < 00
n+1

ZProb( Z[Y (l[z“"<t] t2)]] > 8) < 00.

Together these facts guarantee that, for fiked (0, 1), (X, (1), ya(t)) — (2t —t2,t?)
almost surely; i.e., for any > 0 and almost allv € 2 there isN(t, &, w) for which

[(Xa(1), Yn(D)) — (2t — 2, t9)]| < &,

n+1

Z[x“‘ (g — (@2 = t7))]

and

n> N(, e, w).
Now taket; =i/(m+1),i = 1,..., m, and apply the previous fact to eaghFor
almost allw € Q there isN (g, w) such that

[Xn(ti), Yn(ti)) — (g, Vo)l < €, forall i=1,....m,

whenn > N(e, w). If mis sufficiently large, this condition for then points of the
chain is sufficient to ensure th&{C,,, L) < 2¢ whenn > N(g, w), since the curves are
convex. O

Remark 4. Lemma 2 says that a random, conveghainC, is likely to be close td
whenn is large. Theorem 2 says that in a seque@geCy, . .. of chains,C; having
vertices, the chains are sure to be closé tand they remain closé\Note also that the
chains need not be independent.

4. A Central Limit Theorem

For eacm > 0 we have mutually independent exponential varialdes. . ., X,.1 and
Y1, ..., Yat1, @and use the definitions in (3), (5), and (6). We will show that, for any
t € [0, 1], the deviations

Dn(t) = (Xa(t) — (2t — t2), yn(t) — t?)

have a limiting bivariate normal distribution, a fact responsible for the heading of this
section. Consider first

VN + D) Y Yz < — 2

(I/(n+ 1)) 2is1

The random variables in the numerator sum are mdependent with mean zero and variance
af(t) = 2t3(1 — t)(1 + 2t) so by the central limit theorem

v 1 v 2 2
F’rob{yn(t) —t2< } - / e /2070 gy,
vn+1 \/27my2(t) oo




44 |. Barany, G. Rote, W. Steiger, and C.-H. Zhang

Similarly the quantity
WVAFD Y X (=g — @ —19)]
(1/(n+ 1) Y X

has a limiting normal distribution because the numerator is the sum of random variables
with mean zero and varianeg (t) = 2(1 — t)3(3 — 2t). Thus

YN+ 1x () — 2t —t?)] =

Prob{xn(t) — (2t — tz) < e—wz/ZGXZ(t) dw.

1
m}* Nz o) 5/_00

Clearlyo2(t) = o7(1 —t). Not only does the central limit theorem hold independently
for each coordinate of the poifi,(t), yn(t)) representing vertices of a random convex
chain, but also

Theorem 3. For each te [0, 1],

u v

and y(t) <t?+ }
Vn+1 w(®) Vn+1
converges to the bivariate normal distribution with m&@n0) and covariance matrix

K — (XD oy®,
v Gx,y(t) Ui(t) ’

P(u,v) = Prob{xn(t) <2 —-td)+

oZ2(t) = 2(1-1)%(3—2t),02(t) = 2631 —t)(1+2t), andoy y (1) = 3t*(1— )% Thus

P(U,v)—>/ / @(r,s)drds,

wherep(r, s) = (1/27 /det(Ky)) exp(—3(r, KT, 9)T).

Proof. Using (5) and (6) we write/n + 1D (t) as

/N FD M (Xi(iz<g — 2= 12), AdlYi (Iiz, < — t3)])
(1/(n+ 1) X

: (10

where A, = (Z”“ Xi )/(Z”“Y.) Concentrating on the numerator, we estimate the
probability that it is componentwise less than v), an arbitrary pair of reals. This is

1 n+1

n

The sum adds independent random vectors, each of ®efj the expectation of the
product of the components of these vectors is easily verified tq bé) = 3t2(1—t)2.
Therefore the sum has a limiting normal distribution with méar0) and covariance
matrix K;. The asserted limit statement holds because Bgthnd the denominator of
(10) converge to 1. |
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In fact all finite-dimensional distributions along a random chain are asymptotically
normal. Suppose we are given < --- < S in [0, 1]. An argument similar to the
previous one leads to the conclusion thai(s;), Yn(S1), - . ., Xn(S), Yn(Sk)) converges
to a certain R-dimensional normal random variable.

5. Weak Convergence

Again, foreachn > 0we have mutually independent exponential varialdles . ., Xn11
andYy, ..., Yni1, and use (5) and (6) to defimg(t) andy,(t),t € [0, 1]. In Section 2 we
showed thatx,(t), y,(t)) describes the vertices of a random convex clizinrHere we
study the chain itself and show that it converges as a stochastic process. This allows us
to invoke the invariance principle to study various functionals of the chain, for example
A(C,, L) ands(Cy, L), respectively the area and Hausdorf distance between the chain
and the limit shape.

Under the notation of Lemma W, = X; + Y, Zi = Yi/W,, andt; < --- < th11

denotes the ordered valuesayf, . . ., Z,,1. For each € [t, t,1] define
1 —t t—t
Ca(t) = = (a(t). Yn(t) + - (Xn(tern) Ya(tis1)),
terr — ey — t
k =0,...,n, wherety = 0. By Lemma 1, this function interpolates linearly between

vertices on a random-chainC, soC,(t), 0 <t < 1, provides a version of the chain
itself. Write

L(t) = (x(1), y(t)) = (2t — t*,t%)
and define
En(t) = v/n+ 1(Ch(t) — L(1)). (11
Since|Ch(t) — (X (1), Ya(1))| < clogn/n almost surely, we can write
En(t) = VN + L((Xn (1), Yn(1)) — L(1)) +0(D),

a fact we will use repeatedly.
Let CS[O, 1] be the Banach space of all continuous functig(ty from [0, 1] to R?
under the sup-normig|l = SUR<¢<1 I9(1)[|. Define

f(zt)=(fuzb), fa(z: 1)),

where
f1(z; 1) = V6(1 — 2) (<) — (2t — t?)) f2(z; 1) = V62(ljz< — t2),

and, lettingB(z) be a standard Wiener process, define

1
Et) = / f(z;t)dB(2). (12
0
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From (10)

(/N + D) YW /VB) (F1(Zis t), An Fa(Zis 1)
1/n) Y X

and this has a normal limit. Calculation of the covariance operatgy siiows that

En(t) = +0(D),

lim Cov(&n(1), £n(5)) = K(t, ) :/ fztH f(zs)dz

which is identical to that of (). (In factK; = K (t, t) is explicitly given in Theorem 3.)
This is the intuition behind the following statement which gives much more information
about the convergence.

Theorem 4. The stochastic procegg(-), n > 1, converges weaklfin distribution) to
the Gaussian procegs-) in (12) as random elements in§<[D, 1];i.e,

lim Eh(&) = ENE) 13

for all bounded continuous mappings h fron§[G, 1] to the reals The covariance
operator ofé () is K(t,s) = [ f(z;t)" f(z; s) dz In addition,

SUpE expA[lénlle] < 00
n
forall A < 0.

Proof. The argument is straightforward, but somewhat technical, so it appears in the
Appendix.

Theorem 4 can be used to investigate the convergence of many functionals of the
random chairC,. Perhaps the easiest example is the coordinate functipf&l = & (t)
which gives Theorem 3.

The boundedness of the moment generating function implies that (13) also holds
for all continuous mappingk from C3[0, 1] to the reals which, for somg satisfy
Ih(g)| < explllglle), g € C3[0, 1], even for unbounded ones. This property is needed
in some of the following applications.

We first study the limiting Hausdorf distance. From (11) we write

En(D) = VN4 L((Xn (1), Yn(D) — L(1) + 0(1) = (1 (D), E2n(D)

and note thatt,t — 1)//t2 + (t — 1)2 is the unit normal to the tangent line htt).
Then (see Fig. 4)(C, (1), L) andd(C,, L(t)) (distance fronC,(t) to the limit shape
and distance fronk (t) to the random chain, respectively) are both

tE1n(t) + (t — Déan(D)

V24 (t —1)2

(1+0o(D)
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Fig. 4. Area and Hausdorf distance.

Therefore,/ns(Cp, L) = h(&,) + o(1) where

|(t&1n (1) + (1 — Déxn(1))]

Clearlyh is continuous anti(g) < 2||9llcc < eXprI9llc], 2 = 2. Now,

h(¢,) = SEP(

Lafuz t) + t — 1 faz b))

0 JEE(t—1)72

E(h()) = Esup dB(2)
t

)

and Theorem 4 implies

Corollary 1. The Hausdorf distance between the random convex chaam@its limit
L satisfies

nIim V/NES(Ch, L) = E sup < 00,
— 00

O<t<1

1
/ f*(z;t)dB(2)
0

where
6{(t —2)ljper) —t2(2—32—t + 2tZ
oty = YOI = Dl 1K taz),
t2 4+ (t — 1)?

Next let A(C,,, L) denote the area between the random convex dbaand its limit
L and letv,(t) be the vertical distance from(t) to C, (Fig. 4). Then

1 1
JRACH, L) = Jﬁ/ on() dx(® =2Jﬁf (1— un(h dt.
0 0
Since (see Fig. 4L — Ovn() = [texn() + (t — Dézn(®)] + 0(L),

1
JAACa, L) = /O [tEwn(®) + (t — Dz dx(t) + (D).
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The integrand converges uniformly on<0t < 1 — & so we write
1
VNAGC,, L) =h.(60) +2Vn | (1 —tua(t) dt 4 0o(D), (14
1-¢

where
1-¢
hg(én)=/0 [t1n(t) + (t — Dé2n ()| dX(1).

+/Nup(t) (1—t) converges in distribution uqol[tfl(z; t) + (t — 1) fo(z; t)] d B(2)|, which

is the absolute value of a normal random variable with mean zero and valiaree
fol[t fi(z;t) + (t — 1) fo(z; t)]?dz by Theoren 3 a simple calculation shows to be

2t3(1 — t)3. In addition, |h, (£,)| < ||&n]le0, SO that, by Theorem 4,

1-¢
Eh.(&) — Eh.(¢) =/ [NormalkO, 2t3(1 — t)%)| dt.
0

It is easy to show that lim,olim,_, o, Of the last two terms in (14) is zero. Therefore,
since thel ;-norm of Normal0, 2t3(1 — t)3) is 4,/(t3(1 — t)3/7),

Corollary 2. The area AC,, L) between G and L satisfies

. 2 1t 4 T?%(5/2 3w
— 3(1 — t)3 — —
lim VNE[A(C,, L)] _2‘/71/0 Va3l —t)3dt = A Te - 32

Appendix. Proof of Theorem 4

The weak convergence is easy. From (5), (6), and the definitiof, &f; t), fo(z; t)) it
follows that

(a(t), Ya()) = L
(n+ 1)~z
_ (W fuZis ) 3 WM/VE) fa(Zis t)
M+ D 2N T (n+ )2y )

(15)

By the strong law of large numbe}s} Xi/n — 1,37 Yi/n — 1, and} ] Wi/n — 2.

By the Borel-Cantelli lemma, lim sypnax<j<n Wi/ logn = 1. Thus, by (11) and (15),

the weak convergence &f follows from that ofg/(t) = (n + 1)"¥23"" (W /v/6)

f(Z;; t) under the| - || norm, and the two should share the same limiting distribution

if the weak convergence holds. Sinfe= {(w/+/6) f (z;t): 0 <t < 1} is a Vapnic—
Cervonenkis class of functions ofv, z), the weak convergence ¢f, follows from
standard results in the empirical process theory, e.g. Theorems 2.6.7 and 2.5.2 of [9].
The limiting covariance operat@& (W, /+/6)2 f T (Z1; t) f (Z1; s) of &, is clearlyidentical

to K(t, s) as E(Wl/«/é)2 = 1 andZ; is independent ofV; and uniformly distributed

on [0, 1], so (13) holds.
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To prove the boundedne&sexp[r||énllo] We compare, (t) and (15) with

W f(Z;;t
g = VTR D, AT a6
i= 1

By the large deviation results for gamma-distributions,

= ) ]

i=1

1 DLW
%IogP{Zz—r']>c}—>l(c), ve > 1,

i=1
wherel (c) = 1 — ¢+ logc. Sincel (¢) - —ocoasc — 0orc — oo and||&nllee <
+/n+ 1, the boundedness Bfexp[h ||&n ] for all A follows from that ofE exp[i ||€] || o]
for all A. Note here that, by (11), the maximum of each compone#t@j in absolute
value over O< t < 1 is identical to those of (15). Sind&; } are independent i\ },
(16) and the standard symmetrization methods imply

} ) 17

wherea; = a(t) = +/n+ 1IW f(Z;; 1)/ Zi“:lvvi and{s;} are Rademacher variables
(i.e., & = +1, each with probability 12), independent of (W, Z;)}. Let E be the
expectation with respect t&;} given {(W, Zj)}. SinceF = {(w/~/6)f(z;t): 0 <

t < 1} is a Vapnic-Cervonenkis class of functions, by the Dudley—Pisier and Hoeffding
inequalities (see Corollary 2.2.8 of [9]),

n+1

Zaib“i

Eexpll&)ll] < Eexp [2/\
i=1

n+1

—efE ZaiEi
i=1 .

for some finite constank, whereJ(c) < oo is the entropy integral ofF andz? =
Z““ llai|I2,. We apply Talagrand’s deviation inequalities for product measures (see,
e.g., top of p. 70 of [6]) tof = ( ,“+11a,e. /T (but using).t, instead of)) to see

= KJ(@) (18)

n+1

ZaiSi
i=1

for all » > 0. It follows from inequalities (17)—(19) that, for afy,

E exp {A >

r 22
} < exp| riin + ’”} (19

n+14\,,2
Egléle < @2KRIM+22M2 /120D prop 12n+1) Y5 W, M2
(Zn+1 )

sincell£/ |l < v/I2(n + 1) and? < 12(n+1) Y1 W2/ (31 WE)2. For eachi and
asn — oo, the probability in the above expression is of an order of magnitude smaller

than exg—21+/12(n + 1)} for large M. O
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