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Abstract. PointsP1, . . . , Pn in the unit square define a convexn-chain if they are below
y = x and, together withP0 = (0,0) andPn+1 = (1,1), they are in convex position. Under
uniform probability, we prove an almost sure limit theorem for these chains that uses only
probabilistic arguments, and which strengthens similar limit shape statements established
by other authors. An interesting feature is that the limit shape is a direct consequence of
the method. The main result is an accompanying central limit theorem for these chains. A
weak convergence result implies several other statements concerning the deviations between
random convex chains and their limit.

1. Introduction and Summary

Take n points in the unit square in the plane. Write them in order of increasingx-
coordinate asP1, . . . , Pn and letP0 = (0,0) andPn+1 = (1,1). The points are the ver-
tices of aconvex n-chainif the vectorsPi+1−Pi have increasing slope,i = 0, . . . ,n. The
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project P8971-PHY. The research of Cun-Hui Zhang was partially supported by the National Science Foun-
dation and the National Security Agency.
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Fig. 1. The limit shapeL.

chain itself is the set of points on the segments that connect successive vertices. To sam-
ple arandom convex n-chain C, just take then points uniformly and independently from
the unit square, conditional on the eventE that they form a convex chain. This defines
the uniform probability on convexn-chains and we refer to it as theuniform model
for chains. The eventE occurs rarely because, as shown in Section 2 by elementary
methods,

Theorem 1. Let P1, . . . , Pn be a sample of n points, independently and uniformly
distributed in[0,1]2. Then

Prob(the sample forms a convex n-chain) = 1

n! (n+ 1)!
.

In deriving this result the vertices on random convexn-chains are revealed as quantiles
of n uniform [0,1] random variables.

Random convex chains have a limit in a rather strong sense. We define the parabolic
arc

L = {(x, y):
√

y = 1−√1− x, 0≤ x ≤ 1} (1)

of points in the square equidistant from( 1
2,

1
2) and the liney = x−1, see Fig. 1. Denoting

the Hausdorf distance byδ, we prove the following statement in Section 3.

Theorem 2. For each n let Cn be a random convex n-chain. Then

Prob(δ(Cn, L)→ 0) = 1.

Thus sequencesC1,C2, . . . of random, convex chains converge toL with probability 1,
an analogue of the strong law of large numbers. The curveL is called thelimit shape. It
is interesting that the proof technique derivesL directly.

In Section 4 we prove our main result, which shows that deviations between random
chains and the limit shape are asymptotically normally distributed in the following sense.
For t ∈ [0,1], xt = 2t − t2 and yt = t2 are the coordinates of the point onL where
the tangent slope ist/(1− t). Then the difference between(xt , yt ) and the vertex on the
random chain where the tangent slope ist/(1− t) converges in distribution to a bivariate
normal vector with mean(0,0).

The technique used to establish these results can be pushed further without much
difficulty. In Section 5 we show that random chains converge weakly as stochastic pro-
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cesses, and then use the invariance principle to obtain results for various functionals,
e.g., the area between a convex chain andL.

In the remainder of this Introduction we discuss the context for the above theorems
and mention some previous, related results. Most pertain to thelattice modelof random
chains and respond to a question posed by Vershik about 15 years ago: “Is there a limit
shape for the set of convex lattice polygons contained in a given convex bodyK ⊂ R2?”
Let K = [0,1]2 denote the unit square andPn, the set of all (upward) convex polygonal
paths inK that connect(0,0) to (1,1) and whose vertices are in(1/n)Z2. Bárány [1],
Sinai [7], and Vershik [10] each proved theorems giving a positive answer to the question.
It is shown, for example, that, for anyε > 0,

|{P ∈ Pn: δ(P, L) < ε}|
|Pn| → 1 (2)

asn→∞. In other words a random convex lattice chain is close to the limit shapeL with
(uniform) probability converging to 1. A main difference between (2) and Theorem 2 is
that in the lattice model the number of vertices on a chainP ∈ Pn is a random variable.
This variable was studied in Sinai’s paper [7] where, in addition, a central limit theorem
for the deviations betweenP and L was stated. A further development in the lattice
model is due to B´arány [2] where a statement like (2) was shown to hold forevery
compact, convex bodyK ⊂ R2 with nonempty interior. In addition he characterized the
limit shape as the convex curve with maximal affine perimeter.

Finally, Theorem 2 may be regarded as a strengthening of the following recent result.

Proposition 1 [3]. For everyε > 0, Prob(δ(Cn, L) > ε)→ 0.

Like (2), this is a weak law of large numbers but here it pertains to the uniform model
for chains.

2. The Uniform Distribution on Chains

From now onPi = (xi , yi ), i = 1, . . . ,n, will denote a sample ofn points taken indepen-
dently and uniformly from [0,1]2, and numbered so thatx1 ≤ · · · ≤ xn. We writeP0 =
(0,0) andPn+1 = (1,1). The sample space isS= {z= (x1, . . . , xn; y1, . . . , yn): xi , yi

∈ [0,1], xi increasing}; probability is Lebesgue measure, normalized so Prob(S) = 1.

Proof of Theorem1. By definition, thePi are vertices on a convex chainCn only if the
slopes of the difference vectors1i ≡ Pi −Pi−1 are increasing,i = 1, . . . ,n+1. For this
it is necessary that the sample defines amonotone chain; i.e., theyi are nondecreasing.
Otherwise,11 has positive slope but some1i will have negative slope. The probability
that a sample defines a monotone chain is(n!)−1 since the subsetM ⊂ S wherey1 ≤
· · · ≤ yn clearly has the same probability as the subset whereyπ1 ≤ · · · ≤ yπn , for any
permutationπ .

Now we condition on the eventz ∈ M , that the sample defines a monotone chain. We
make the following claim:

Claim. On the event M, all permutations of the slopes of the segments1i are equally
likely.
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Fig. 2. Permuting segments in monotone chains.

The proof is based on an idea of Valtr [8] who made a similar statement for increasing
paths in a lattice. This fact will complete the proof of the theorem. First note that points
in M are in one-to-one correspondence with the setD = {1 = (11, . . . , 1n+1): 1i =
(ui , vi ),ui , vi ≥ 0, and

∑n+1
i=1 1i = (1,1)}. For a chain inz ∈ M with differences1,

if we interchange1i and1i+1 (see Fig. 2), then

1. the verticesP0, . . . , Pi−1 andPi+1, . . . , Pn+1 remain fixed,
2. Pi is reflected at(Pi−1+ Pi+1)/2 to P′i , and
3. in the new chain, the ranks of the slopes of1i and1i+1 are interchanged.

Therefore, sincePi is uniform in the rectangle with corners atPi−1 andPi+1, given the
other points, the chainsz ∈ M whose differences have slopes with ranks given byπ have
the same probability as the chains whose slopes obeyπ ′, a permutation differing from
π by a single transposition. Because all permutations may be obtained by a sequence of
such transpositions, the claim, and thus the theorem, is proved.

Remark 1. By definition, a random convex chainCn may be generated as a sample
of n points in the square, rejecting the sample if(0,0), (1,1), and the points are not
in convex position; thePi in an accepted sample are the internal vertices of the convex
chain. Theorem 1 implies that the expected number of samples until one is accepted is
n! (n+ 1)!. On the other hand, the proof suggests a more efficient algorithm in which a
single random sample is transformed into a convex chain:

1. GenerateP′i = (ui , vi ), i = 1, . . . ,n, a sample ofn points uniformly distributed
in the square.

2. Writingu(i ) for thei th smallest amongu1, . . . ,un (it is called thei thorder statistic)
and v(i ), the i th smallest amongv1, . . . , vn (also ani th order statistic),Qi =
(u(i ), v(i )) denotes then internal vertices on a random, monotone chain inM
(dotted line in Fig. 3).

3. Compute difference vectors1i = Qi − Qi−1, i = 1, . . . ,n + 1, let1( j ) be the
vector with the j th smallest slope, and computePi = 1(1) + · · · + 1(i ), i =
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Fig. 3. A sample of four points, its random monotone chain (dotted), and its convex chain (solid).

1, . . . ,n. These are the internal vertices—in order of increasingx-coordinate—of
a random convex chainCn (solid line in Fig. 3).

3. A Limit Shape Theorem

The proofs of Theorems 2 and 3 are direct, once we have a more convenient representation
for the vertices of a convex chain. By definition, the sample space for convexn-chains
is S⊂ R2n defined by

S =
{
(x1, . . . , xn; y1, . . . , yn): xi , yi ∈ [0,1], xi , yi increasing,

and
yi − yi−1

xi − xi−1
increasing

}
;

probability is Lebesgue measure, normalized so Prob(S) = 1. Givenn, let (Ä,µ) be
a probability space on which we define two sequencesX1, . . . , Xn+1 andY1, . . . ,Yn+1

of mutually independent random variables, each exponentially distributed; i.e.,µ{w ∈
Ä: Xi (w) ≤ t} = F(t) = 1− e−t . For eachi , write

Ri = Yi

Xi
,

Wi = Xi + Yi , (3)

Zi = Ri

1+ Ri
= Yi

Wi
.
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It is not difficult to verify three known facts concerning exponential variables:

1. Zi is uniformly distributed in [0,1].
2. Zi andWi are independent.
3. For everyn > 0, k ≤ n, and any permutation( j1, . . . , jn+1) of 1, . . . ,n+ 1, the

ratio
Yj1 + · · · + Yjk

Y1+ · · · + Yn+1
(4)

is distributed like thekth order statistic ofn independent, uniform random vari-
ables.

Write I A for the indicator of the eventA ⊂ Ä and fixn > 0. Fort ∈ (0,1) define the
functions

xn(t) ≡
∑n+1

i=1 Wi (1− Zi )I [Zi≤t ]∑n+1
i=1 Wi (1− Zi )

=
∑n+1

i=1 Xi I [Zi≤t ]∑n+1
i=1 Xi

(5)

and

yn(t) ≡
∑n+1

i=1 Wi Zi I [Zi≤t ]∑n+1
i=1 Wi Zi

=
∑n+1

i=1 Yi I [Zi≤t ]∑n+1
i=1 Yi

. (6)

These functions describe the vertices of a random convexn-chain.

Lemma 1. Let X1, . . . , Xn+1 and Y1, . . . ,Yn+1 be i.i.d. exponential random variables
on (Ä,µ) with ratios Ri = Yi /Xi and write Zi = Ri /(1+ Ri ). Let t1 < · · · < tn+1 be
the ordered values of Z1, . . . , Zn+1. The points

Pi = (xn(ti ), yn(ti )), i = 1, . . . ,n,

are in convex position, and, for any measurable A⊂ S,

µ{w: (xn(t1), . . . , xn(tn); yn(t1), . . . , yn(tn))(w) ∈ A} = Prob(A);
i.e., the Pi are the n internal vertices of a random, convex n-chain.

Proof. Let j1, . . . , jn+1 be the permutation that sorts the ratios; i.e.,Rj1 < · · · < Rjn+1.
Thereforeti = Zji . Observe from (6) thatyn(t) is a step function with a step of size

Yji

Y1+ · · · + Yn+1

at ti and that, on [tk, tk+1),

yn(t) = bk ≡ Yj1 + · · · + Yjk

Y1+ · · · + Yn+1
, k = 1, . . . ,n.

Similarly xn(t) has a step of size

Xji

X1+ · · · + Xn+1
,
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at ti and, on [tk, tk+1),

xn(t) = ak ≡ Xj1 + · · · + Xjk

X1+ · · · + Xn+1
.

So ast increases from 0 to 1,(xn(t), yn(t)) “jumps” from (0,0) through the set of points
Pk = (ak,bk), k = 1, . . . ,n, to (1,1). These are the vertices on a random convex chain
because, from (4),

u(i ) = X1+ · · · + Xi

X1+ · · · + Xn+1
and v(i ) = Y1+ · · · + Yi

Y1+ · · · + Yn+1

are both distributed like thei th order statistics from a sample ofn independent uniforms.
Also the pointsQi = (u(i ), v(i )) have differences1i = Qi − Qi−1 whose slopes are

Ri

[
X1+ · · · + Xn+1

Y1+ · · · + Yn+1

]
, (7)

and they are ordered by the permutationj1, . . . , jn+1. Therefore using part 2 of Remark 1,

Pk = 1j1 + · · · +1jk

is seen to be thekth vertex on a random convexn-chain, and, fort ∈ [tk, tk+1), Pk =
(xn(t), yn(t)).

To prove Theorem 2 we need the following statement; here, and throughout,‖(x, y)‖ =√
x2+ y2.

Lemma 2. For each t∈ (0,1) andε > 0,

Prob(‖(xn(t), yn(t))− (2t − t2, t2)‖ > ε)→ 0

as n→∞.

Proof. Multiply the numerator and denominator of (6) by 1/(n + 1) and apply the
(weak) law of large numbers to each to observe

yn(t)→ E(W Z I[Z≤t ])

1

in probability; hereW is the sum of two exponentials andZ is uniform on(0,1) and
independent ofW. Thereforeyn(t) → t2 in probability. The same steps applied to (5)
show that

xn(t)→ [E(W I[Z≤t ])− E(W Z I[Z≤t ])] = 2t − t2

in probability.

Remark 2. For eacht ∈ [0,1] the limits

(xt , yt ) ≡ (2t − t2, t2)
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satisfy
√

yt = 1−√1− xt , t ∈ [0,1], because 1− xt = (1− t)2; therefore(2t − t2, t2)

is on the limit curveL defined in (2). SinceL is the limit of (xn(t), yn(t)), it has been
“discovered” as a consequence of the method of proof. Previous limit shape theorems
start withL and show that the difference from a random chain converges to zero.

Remark 3. The tangent toL at (2t − t2, t2) has slopet/(1− t). On the other hand,
for t ∈ [tk, tk+1), (7) says that(xn(t), yn(t)) is the vertex on then-chain supporting the
line of slope

Rjk+1

X1+ · · · + Xn+1

Y1+ · · · + Yn+1
;

this quantity→ t/(1− t) in probability asn→∞ becauset/(1− t) ∈ [Rjk , Rjk+1) and
the ratio of sums converges to 1.

Proof of Theorem2. For eachn > 0 letX(n)
1 , . . . , X(n)

n+1 andY(n)
1 , . . . ,Y(n)

n+1 be mutually
independent exponential variables onÄand definexn(t)andyn(t)as in (5) and (6) except
we useZ(n)i = Y(n)

i /(X(n)
i + Y(n)

i ) and the formulas

xn(t) =
∑n+1

i=1 X(n)
i I [Z(n)i ≤t ]∑n+1

i=1 X(n)
i

(8)

and

yn(t) =
∑n+1

i=1 Y(n)
i I [Z(n)i ≤t ]∑n+1

i=1 Y(n)
i

. (9)

These functions describe a random convex chainCn. Fix t ∈ (0,1). Lemma 2 was based
on the facts that, for large enoughn,

Prob

(∣∣∣∣∣ 1

n+ 1

n+1∑
i=1

X(n)
i (I [Z(n)i ≤t ] − (2t − t2))

∣∣∣∣∣ > ε

)
< ε

and

Prob

(∣∣∣∣∣ 1

n+ 1

n+1∑
i=1

Y(n)
i (I [Z(n)i ≤t ] − t2)

∣∣∣∣∣ > ε

)
< ε.

In fact a much stronger statement is true becauseX(n)
i andY(n)

i have finite variance.
According to the complete convergence theorem of Hsu and Robbins [5] (see, e.g.,
p. 375 of [4]), the denominators in (8) and (9) satisfy

∞∑
n=1

Prob

(∣∣∣∣∣ 1

n+ 1

n+1∑
i=1

(X(n)
i − 1)

∣∣∣∣∣ > ε

)
<∞

and
∞∑

n=1

Prob

(∣∣∣∣∣ 1

n+ 1

n+1∑
i=1

(Y(n)
i − 1)

∣∣∣∣∣ > ε

)
<∞,



A Central Limit Theorem for Convex Chains in the Square 43

and this implies that both
∑n+1

i=1 X(n)
i /(n + 1) and

∑n+1
i=1 Y(n)

i /(n + 1) converge to 1
almost surely. The same result applied to the numerators shows that

∞∑
n=1

Prob

(∣∣∣∣∣ 1

n+ 1

n+1∑
i=1

[X(n)
i (I [Z(n)i ≤t ] − (2t − t2))]

∣∣∣∣∣ > ε

)
<∞

and
∞∑

n=1

Prob

(∣∣∣∣∣ 1

n+ 1

n+1∑
i=1

[Y(n)
i (I [Z(n)i ≤t ] − t2)]

∣∣∣∣∣ > ε

)
<∞.

Together these facts guarantee that, for fixedt ∈ (0,1), (xn(t), yn(t)) → (2t − t2, t2)

almost surely; i.e., for anyε > 0 and almost allw ∈ Ä there isN(t, ε, w) for which

‖(xn(t), yn(t))− (2t − t2, t2)‖ < ε,

n > N(t, ε, w).
Now taketi = i /(m+ 1), i = 1, . . . ,m, and apply the previous fact to eachti . For

almost allw ∈ Ä there isN(ε, w) such that

‖(xn(ti ), yn(ti ))− (xti , yti )‖ < ε, for all i = 1, . . . ,m,

when n > N(ε, w). If m is sufficiently large, this condition for them points of the
chain is sufficient to ensure thatδ(Cn, L) < 2ε whenn > N(ε, w), since the curves are
convex.

Remark 4. Lemma 2 says that a random, convexn-chainCn is likely to be close toL
whenn is large. Theorem 2 says that in a sequenceC1,C2, . . . of chains,Cj having j
vertices, the chains are sure to be close toL and they remain close. Note also that the
chains need not be independent.

4. A Central Limit Theorem

For eachn > 0 we have mutually independent exponential variablesX1, . . . , Xn+1 and
Y1, . . . ,Yn+1, and use the definitions in (3), (5), and (6). We will show that, for any
t ∈ [0,1], the deviations

Dn(t) ≡
(
xn(t)− (2t − t2), yn(t)− t2

)
have a limiting bivariate normal distribution, a fact responsible for the heading of this
section. Consider first

√
n+ 1

[
yn(t)− t2

] = (1/
√

n+ 1)
∑n+1

i=1

[
Yi (I [Zi≤t ] − t2)

]
(1/(n+ 1))

∑n+1
i=1 Yi

.

The random variables in the numerator sum are independent with mean zero and variance
σ 2

y (t) = 2t3(1− t)(1+ 2t) so by the central limit theorem

Prob

{
yn(t)− t2 ≤ v√

n+ 1

}
→ 1√

2πσ 2
y (t)

∫ v

−∞
e−w

2/2σ 2
y (t) dw.
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Similarly the quantity

√
n+ 1

[
xn(t)− (2t − t2)

] = (1/
√

n+ 1)
∑n+1

i=1

[
Xi
(
I [Zi≤t ] − (2t − t2)

)]
(1/(n+ 1))

∑n+1
i=1 Xi

has a limiting normal distribution because the numerator is the sum of random variables
with mean zero and varianceσ 2

x (t) = 2(1− t)3t (3− 2t). Thus

Prob

{
xn(t)− (2t − t2) ≤ v√

n+ 1

}
→ 1√

2πσ 2
x (t)

∫ v

−∞
e−w

2/2σ 2
x (t) dw.

Clearlyσ 2
x (t) = σ 2

y (1− t). Not only does the central limit theorem hold independently
for each coordinate of the point(xn(t), yn(t)) representing vertices of a random convex
chain, but also

Theorem 3. For each t∈ [0,1],

P(u, v) = Prob

{
xn(t) ≤ (2t − t2)+ u√

n+ 1
and yn(t) ≤ t2+ v√

n+ 1

}
converges to the bivariate normal distribution with mean(0,0) and covariance matrix

Kt =
(
σ 2

x (t) σx,y(t)
σx,y(t) σ 2

y (t)

)
;

σ 2
x (t) = 2(1− t)3t (3−2t), σ 2

y (t) = 2t3(1− t)(1+2t), andσx,y(t) = 3t2(1− t)2. Thus

P(u, v)→
∫ u

−∞

∫ v

−∞
ϕ(r, s)dr ds,

whereϕ(r, s) = (1/2π√det(Kt ))exp(− 1
2(r, s)K

−1
t (r, s)T ).

Proof. Using (5) and (6) we write
√

n+ 1Dn(t) as

(1/
√

n+ 1)
∑n+1

i=1

(
Xi (I [Zi≤t ] − (2t − t2)), An[Yi (I [Zi≤t ] − t2)]

)
(1/(n+ 1))

∑n+1
i=1 Xi

, (10)

whereAn = (
∑n+1

i=1 Xi )/(
∑n+1

i=1 Yi ). Concentrating on the numerator, we estimate the
probability that it is componentwise less than(u, v), an arbitrary pair of reals. This is

Prob

[
1√

n+ 1

n+1∑
i=1

(
Xi (I [Zi≤t ] − (2t − t2)),Yi (I [Zi≤t ] − t2)

) ≤ (u,
v

An

)]
.

The sum adds independent random vectors, each of mean(0,0); the expectation of the
product of the components of these vectors is easily verified to beσx,y(t) = 3t2(1− t)2.
Therefore the sum has a limiting normal distribution with mean(0,0) and covariance
matrix Kt . The asserted limit statement holds because bothAn and the denominator of
(10) converge to 1.



A Central Limit Theorem for Convex Chains in the Square 45

In fact all finite-dimensional distributions along a random chain are asymptotically
normal. Suppose we are givens1 < · · · < sk in [0,1]. An argument similar to the
previous one leads to the conclusion that(xn(s1), yn(s1), . . . , xn(sk), yn(sk)) converges
to a certain 2k-dimensional normal random variable.

5. Weak Convergence

Again, for eachn > 0 we have mutually independent exponential variablesX1, . . . , Xn+1

andY1, . . . ,Yn+1, and use (5) and (6) to definexn(t) andyn(t), t ∈ [0,1]. In Section 2 we
showed that(xn(t), yn(t)) describes the vertices of a random convex chainCn. Here we
study the chain itself and show that it converges as a stochastic process. This allows us
to invoke the invariance principle to study various functionals of the chain, for example
A(Cn, L) andδ(Cn, L), respectively the area and Hausdorf distance between the chain
and the limit shape.

Under the notation of Lemma 1,Wi = Xi + Yi , Zi = Yi /Wi , andt1 < · · · < tn+1

denotes the ordered values ofZ1, . . . , Zn+1. For eacht ∈ [tk, tk+1] define

Cn(t) = tk+1− t

tk+1− tk
(xn(tk), yn(tk))+ t − tk

tk+1− tk
(xn(tk+1), yn(tk+1)),

k = 0, . . . ,n, wheret0 = 0. By Lemma 1, this function interpolates linearly between
vertices on a randomn-chainC, soCn(t), 0 ≤ t ≤ 1, provides a version of the chain
itself. Write

L(t) = (x(t), y(t)) = (2t − t2, t2)

and define

ξn(t) =
√

n+ 1(Cn(t)− L(t)). (11)

Since|Cn(t)− (xn(t), yn(t))| < c logn/n almost surely, we can write

ξn(t) =
√

n+ 1((xn(t), yn(t))− L(t))+ o(1),

a fact we will use repeatedly.
Let C2

0[0,1] be the Banach space of all continuous functionsg(t) from [0,1] to R2

under the sup-norm‖g‖∞ = sup0≤t≤1 ‖g(t)‖. Define

f (z; t) = ( f1(z; t), f2(z; t)),
where

f1(z; t) =
√

6(1− z)(I [z≤t ] − (2t − t2)) f2(z; t) =
√

6z(I [z≤t ] − t2),

and, lettingB(z) be a standard Wiener process, define

ξ(t) =
∫ 1

0
f (z; t)d B(z). (12)
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From (10)

ξn(t) = (1/
√

n+ 1)
∑n+1

i=1 (Wi /
√

6) ( f1(Zi ; t), An f2(Zi ; t))
(1/n)

∑n+1
i=1 Xi

+ o(1),

and this has a normal limit. Calculation of the covariance operator ofξn shows that

lim
n→∞Cov(ξn(t), ξn(s)) = K (t, s) =

∫
f (z; t)T f (z; s)dz,

which is identical to that ofξ(·). (In fact Kt = K (t, t) is explicitly given in Theorem 3.)
This is the intuition behind the following statement which gives much more information
about the convergence.

Theorem 4. The stochastic processξn(·),n ≥ 1, converges weakly(in distribution) to
the Gaussian processξ(·) in (12)as random elements in C20[0,1]; i.e.,

lim
n→∞ Eh(ξn) = Eh(ξ) (13)

for all bounded continuous mappings h from C2
0[0,1] to the reals. The covariance

operator ofξ(·) is K(t, s) = ∫ f (z; t)T f (z; s)dz. In addition,

sup
n

E exp[λ‖ξn‖∞] <∞

for all λ <∞.

Proof. The argument is straightforward, but somewhat technical, so it appears in the
Appendix.

Theorem 4 can be used to investigate the convergence of many functionals of the
random chainCn. Perhaps the easiest example is the coordinate functionalht (ξ) = ξ(t)
which gives Theorem 3.

The boundedness of the moment generating function implies that (13) also holds
for all continuous mappingsh from C2

0[0,1] to the reals which, for someλ satisfy
|h(g)| ≤ exp[λ‖g‖∞], g ∈ C2

0[0,1], even for unbounded ones. This property is needed
in some of the following applications.

We first study the limiting Hausdorf distance. From (11) we write

ξn(t) =
√

n+ 1((xn(t), yn(t))− L(t))+ o(1) = (ξ1,n(t), ξ2,n(t))

and note that(t, t − 1)/
√

t2+ (t − 1)2 is the unit normal to the tangent line atL(t).
Then (see Fig. 4)d(Cn(t), L) andd(Cn, L(t)) (distance fromCn(t) to the limit shape
and distance fromL(t) to the random chain, respectively) are both

(1+ o(1))

∣∣∣∣∣ tξ1,n(t)+ (t − 1)ξ2,n(t)√
t2+ (t − 1)2

∣∣∣∣∣ .
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Fig. 4. Area and Hausdorf distance.

Therefore
√

nδ(Cn, L) = h(ξn)+ o(1) where

h(ξn) = sup
t

(
|(tξ1,n(t)+ (t − 1)ξ2,n(t))|√

t2+ (t − 1)2

)
.

Clearlyh is continuous andh(g) ≤ 2‖g‖∞ ≤ exp[λ‖g‖∞], λ = 2. Now,

E(h(ξ)) = E sup
t

∣∣∣∣∣
∫ 1

0

(t f1(z; t)+ (t − 1) f2(z; t))√
t2+ (t − 1)2

d B(z)

∣∣∣∣∣ ,
and Theorem 4 implies

Corollary 1. The Hausdorf distance between the random convex chain Cn and its limit
L satisfies

lim
n→∞
√

nEδ(Cn, L) = E sup
0≤t≤1

∣∣∣∣∫ 1

0
f ∗(z; t)d B(z)

∣∣∣∣ <∞,
where

f ∗(z; t) =
√

6
{
(t − z)I [z≤t ] − t2(2− 3z− t + 2tz)

}√
t2+ (t − 1)2

.

Next let A(Cn, L) denote the area between the random convex chainCn and its limit
L and letvn(t) be the vertical distance fromL(t) to Cn (Fig. 4). Then

√
n A(Cn, L) = √n

∫ 1

0
vn(t)dx(t) = 2

√
n
∫ 1

0
(1− t)vn(t)dt.

Since (see Fig. 4)
√

n(1− t)vn(t) = |tξ1,n(t)+ (t − 1)ξ2,n(t)| + o(1),

√
n A(Cn, L) =

∫ 1

0

∣∣tξ1,n(t)+ (t − 1)ξ2,n(t)
∣∣ dx(t)+ o(1).
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The integrand converges uniformly on 0≤ t ≤ 1− ε so we write

√
n A(Cn, L) = hε(ξn)+ 2

√
n
∫ 1

1−ε
(1− t)vn(t)dt + o(1), (14)

where

hε(ξn) =
∫ 1−ε

0
|tξ1,n(t)+ (t − 1)ξ2,n(t)|dx(t).

√
nvn(t)(1−t)converges in distribution to|∫ 1

0 [t f1(z; t)+ (t − 1) f2(z; t)] d B(z)|, which
is the absolute value of a normal random variable with mean zero and varianceVt =∫ 1

0 [t f1(z; t) + (t − 1) f2(z; t)]2 dz, by Theorem 3 a simple calculation showsVt to be
2t3(1− t)3. In addition,|hε(ξn)| ≤ ‖ξn‖∞, so that, by Theorem 4,

Ehε(ξn)→ Ehε(ξ) =
∫ 1−ε

0
|Normal(0,2t3(1− t)3)|dt.

It is easy to show that limε→0 limn→∞ of the last two terms in (14) is zero. Therefore,
since theL1-norm of Normal(0,2t3(1− t)3) is 4

√
(t3(1− t)3/π),

Corollary 2. The area A(Cn, L) between Cn and L satisfies

lim
n→∞
√

nE[ A(Cn, L)] = 2

√
2

π

∫ 1

0

√
2t3(1− t)3 dt = 4√

π

02(5/2)

0(5)
= 3
√
π

32
.

Appendix. Proof of Theorem 4

The weak convergence is easy. From (5), (6), and the definition of( f1(z; t), f2(z; t)) it
follows that

(xn(t), yn(t))− L(t)

(n+ 1)−1/2

=
(∑n+1

i=1 (Wi /
√

6) f1(Zi ; t)
(n+ 1)−1/2

∑n+1
i=1 Xi

,

∑n+1
i=1 (Wi /

√
6) f2(Zi ; t)

(n+ 1)−1/2
∑n+1

i=1 Yi

)
. (15)

By the strong law of large numbers
∑n

1 Xi /n→ 1,
∑n

1 Yi /n→ 1, and
∑n

1 Wi /n→ 2.
By the Borel–Cantelli lemma, lim supn max1≤i≤n Wi / logn = 1. Thus, by (11) and (15),
the weak convergence ofξn follows from that ofξ ′n(t) = (n + 1)−1/2∑n

i=1(Wi /
√

6)
f (Zi ; t) under the‖ · ‖∞ norm, and the two should share the same limiting distribution
if the weak convergence holds. SinceF = {(w/√6) f (z; t): 0 ≤ t ≤ 1} is a Vapnic–
Červonenkis class of functions of(w, z), the weak convergence ofξ ′n follows from
standard results in the empirical process theory, e.g. Theorems 2.6.7 and 2.5.2 of [9].
The limiting covariance operatorE(W1/

√
6)2 f T (Z1; t) f (Z1; s)of ξ ′n is clearly identical

to K (t, s) asE(W1/
√

6)2 = 1 andZ1 is independent ofW1 and uniformly distributed
on [0,1], so (13) holds.
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To prove the boundednessE exp[λ‖ξn‖∞] we compareξn(t) and (15) with

ξ ′′n (t) =
√

n+ 1

∑n
i=1 Wi f (Zi ; t)∑n

i=1 Wi
. (16)

By the large deviation results for gamma-distributions,

1

n
log P

{
n∑

i=1

Xi

n
≤ c

}
→ I (c), ∀0< c < 1,

1

2n
log P

{
n∑

i=1

Wi

2n
> c

}
→ I (c), ∀c > 1,

where I (c) = 1− c+ logc. SinceI (c) → −∞ asc → 0 or c → ∞ and‖ξn‖∞ ≤√
n+ 1, the boundedness ofE exp[λ‖ξn‖∞] for all λ follows from that ofE exp[λ‖ξ ′′n‖∞]

for all λ. Note here that, by (11), the maximum of each component ofξn(t) in absolute
value over 0< t < 1 is identical to those of (15). Since{Zi } are independent of{Wi },
(16) and the standard symmetrization methods imply

E exp[λ‖ξ ′′n‖∞] ≤ E exp

[
2λ

∥∥∥∥∥n+1∑
i=1

ai εi

∥∥∥∥∥
∞

]
, (17)

whereai = ai (t) =
√

n+ 1Wi f (Zi ; t)/
∑n

i=1 Wi and{εi } are Rademacher variables
(i.e., εi = ±1, each with probability 1/2), independent of{(Wi , Zi )}. Let Ẽ be the
expectation with respect to{εi } given {(Wi , Zi )}. SinceF = {(w/√6) f (z; t): 0 ≤
t ≤ 1} is a Vapnic–̌Cervonenkis class of functions, by the Dudley–Pisier and Hoeffding
inequalities (see Corollary 2.2.8 of [9]),

µ̃n
def= Ẽ

∥∥∥∥∥n+1∑
i=1

ai εi

∥∥∥∥∥
∞
≤ K J(τ̃n) (18)

for some finite constantK , whereJ(c) < ∞ is the entropy integral ofF and τ̃ 2
n =∑n+1

i=1 ‖ai ‖2∞. We apply Talagrand’s deviation inequalities for product measures (see,
e.g., top of p. 70 of [6]) tof = (∑n+1

i=1 ai εi )/τ̃n (but usingλτ̃n instead ofλ) to see

Ẽ exp

[
λ

∥∥∥∥∥n+1∑
i=1

ai εi

∥∥∥∥∥
∞

]
≤ exp

[
λµ̃n + λ

2τ̃ 2
n

2

]
(19)

for all λ > 0. It follows from inequalities (17)–(19) that, for anyM ,

Eeλ‖ξ
′′
n ‖∞ ≤ e2KλJ(M)+2λ2M2 + e2λ

√
12(n+1) Prob

12(n+ 1)
∑n+1

i=1 W2
i(∑n+1

i=1 Wi

)2 > M2

 ,
since‖ξ ′′n‖∞ ≤

√
12(n+ 1) andτ̃ 2

n ≤ 12(n+1)
∑n+1

i=1 W2
i /(
∑n+1

i=1 Wi )
2. For eachλ and

asn→∞, the probability in the above expression is of an order of magnitude smaller
than exp{−2λ

√
12(n+ 1)} for largeM .
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1. I. Bárány, The limit shape of convex lattice polygons,Discrete Comput. Geom. 13 (1995), 270–295.
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