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1 Introduction

1.1 Overview of the Results

The greedy triangulation (GT) of a set S of n points in the plane is the triangulation obtained by
starting with the empty set and at each step adding the shortest compatible edge between two of
the points, where a compatible edge is de�ned to be an edge that crosses none of the previously
added edges. In this paper we present a simple, practical algorithm that computes the greedy
triangulation in expected time O(n) and space O(n), for n points drawn independently from a
uniform distribution over some �xed convex shape C.

This algorithm is an improvement of the O(n logn) algorithmof Dickerson, Drysdale, McElfresh,
and Welzl [7]. It uses their basic approach, but generates onlyO(n) plausible greedy edges instead of
O(n logn). It uses some ideas similar to those presented in Levcopoulos and Lingas's O(n) expected
time algorithm [18]. Since we use more knowledge about the structure of a random point set and
its greedy triangulation, our algorithm needs only elementary data structures and simple bucketing
techniques. Thus it is a good deal simpler to explain and to implement than the algorithm of [18].

1.2 Background

E�ciently computing the greedy triangulation is a problem of long standing, going back at least
to 1970 [9]. A number of the properties of the GT have been discovered [16, 19, 22, 23] and the
greedy algorithm has been used in applications [5, 23].

The naive approach to computing the GT is to compute all
�
n

2

�
distances, sort them, and

then build the GT an edge at a time by examining each pair in order of length and adding or
discarding it based on its compatibility with the edges already added. It is easy to see that
this method requires O(n2) space and O(n3) time, because in the compatibility test each pair
must be tested for intersection with O(n) edges already in the partial triangulation. Gilbert [10]
presented a data structure allowing an O(logn) time compatibility test and an O(n logn) time
update, thus improving the algorithm's overall time complexity to O(n2 logn) without adversely
a�ecting space complexity. He does this by building a segment tree for each point in the set, where
the endpoints of the \segments" are the polar angles between the given point and every other point
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in the set. Manacher and Zobrist [23] have since given an O(n2) expected time and O(n) space
greedy triangulation algorithm that makes use of a probabilistic method for pretesting compatibility
of new edges.

Dickerson, Drysdale, McElfresh, and Welzl [7] showed how to improve on this \generate and
test" paradigm by supplying an edge compatibility test that takes constant time for a test or an
update and by showing how to generate all \plausible" greedy edges in expected O(n logn) time.
Our result reduces the expected number of edges generated to O(n) and shows that their lengths
can be bucket-sorted in O(n) expected time, creating an O(n) expected time algorithm.

An alternate approach to \generate and test" is to generate only compatible edges. One way to
do this was discovered independently by Goldman [11] and by Lingas [20]. The method uses the
generalized or constrained Delaunay triangulation [3, 14, 27]. The constrained Delaunay triangu-
lation is required to include a set of edges E. The rest of the edges in the triangulation have the
property that the circumcircle of the vertices of any triangle contains no point visible from all three
vertices.

This alternate approach computes the constrained Delaunay triangulation of the points with the
current set of GT edges as the set E. The next edge to be added to the GT can be found in linear
time from the constrained Delaunay triangulation. The triangulation must then be updated to
include the new edge in E, which takes O(n logn) time in the worst case. This gives an O(n2 logn)
time and O(n) space algorithm, thus improving the space complexity of Gilbert's algorithm without
a�ecting the worst case time. Lingas [20] shows that his method runs in O(n log1:5 n) for points
chosen uniformly from the unit square.

Recently Levcopoulos and Lingas [17], and independently Wang [25], have shown how to do
the update step in O(n) time, using a modi�cation of the linear-time algorithm for computing the
Voronoi diagram of a convex polygon [1], leading to an O(n2) time and O(n) space algorithm in
the worst case. More recently Levcopoulos and Lingas give a modi�cation of this algorithm that
is expected to take O(n) time for points uniformly distributed in a square [18]. These methods
are elegant, but are signi�cantly more complicated to implement than our method and should be
slower for practical-sized problems. They do have one de�nite advantage over our method | they
only require O(n) space in the worst case, whereas our approach could take O(n2) space (although
O(n) space is expected with high probability).

The greedy triangulation and the minimum weight triangulation. One use of the greedy
triangulation is as an approximation to the minimum weight triangulation (MWT). A Minimum
Weight Triangulation (MWT) of a point set in the plane is a triangulation that minimizes the total
length of all edges. The MWT arises in numerical analysis [19, 21, 24]. In a method suggested by
Yoeli [28] for numerical approximation of bivariate data, the MWT provides a good approximation
of the sought-after function surface. Wang and Aggarwal use a minimum-weight triangulation
in their algorithm to reconstruct surfaces from contours [26]. Though it has been shown how to
compute the MWT in time O(n3) for the special case of n-vertex polygons [13], there are no known
e�ciently computable algorithms for the MWT in the general case [24]. We therefore seek e�ciently
computable approximations to the MWT.

Although neither the GT nor the Delaunay triangulation (DT) yields the MWT [22, 21], the
GT appears to be the better of the two at approximating it. In fact, for convex polygons the GT
approximates the MWT to with a constant factor while the DT can be a factor of 
(n) larger
[16]. For general point sets, the DT can be a factor of 
(n) larger than the MWT, but the best
lower bound for the GT is 
(

p
n) [12, 15]. For points lying on a convex polygon or uniformly

distributed points in a square, both the GT and the DT are expected to be within a constant factor
of the MWT [18, 2]. Therefore a large amount of e�ort has gone into �nding e�cient methods for
computing the greedy triangulation.

2 The Greedy Triangulation Algorithm that We Improve

Upon

We assume throughout that the input consists of n points drawn independently from a uniform
distribution over some �xed convex shape C. For convenience we also assume that C has area 1,
and we denote the perimeter of C by U . Some of the bounds that we derive depend on U , but
we will regard U as constant. Dickerson, Drysdale, McElfresh, and Welzl [7] create fast greedy
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triangulation algorithms for uniformly distributed points by using the generate and test approach,
but reducing the number of pairs generated and the time for a test from previous algorithms.

They de�ne a plausible pair of points as follows. For two points p and q in the plane, and for a
real number r > 0, let D(p; q; r) denote the closed disk of radius r centered at (p+ q)=2. The line
through p and q de�nes two closed half-disks of D(p; q; r), denoted by D0(p; q; r) and D00(p; q; r).
(It does not matter which half is D0 and D00.)

Given a set S of n points in the plane, they call a pair fp; qg of points in S plausible, if
D0(p; q; r1)\S = ; or D00(p; q; r1)\S = ;, with r1 = 
jp� qj=2. They show that if 
 = 1=

p
5, only

plausible pairs can be in a greedy triangulation.
They then show that for a set S of n points uniformly distributed over a convex shape C, the

expected number of plausible pairs is O(n). They furthermore show in a precise way that every
plausible pair is expected to be \short" (at most O(

p
logn=n) long) or has both points \close"

(within O(
p
logn=n)) to the boundary of C. They de�ne a candidate pair as a pair that is \short"

enough or \close" enough to the boundary. They show that there are only O(n logn) candidate
pairs, and that they are easy to generate by using �xed-radius near neighbor search and by pairing
up points close to the boundary of C.

This leads to their �rst algorithm. They �rst generate O(n logn) candidate pairs which are
almost certain to contain all greedy edges. They then reduce this set to O(n) plausible pairs by
testing each candidate pair for plausibility in constant expected time per test. They sort these
O(n) plausible pairs in O(n logn) time. Finally they insert them into a partial greedy triangulation
in order of length, using an edge compatibility test that requires O(1) time for a test or a data
structure update. This leads to an O(n logn) algorithm. (This version only �nds the GT with very
high probability, but they later modify it to guarantee that it always �nds the greedy triangulation.)

Our algorithm is a modi�cation of this algorithm. There are two major di�erences. First,
instead of generating O(n logn) candidate pairs and then reducing them to O(n) plausible pairs,
we only generate O(n) candidate pairs to start with, and guarantee that all plausible pairs are
candidate pairs, so that the GT is a subset of these edges.

The second di�erence is the sorting. We show that we can sort these O(n) candidate pairs in
linear time using a bucket sort. The uniform distribution of the points is enough to let us show
that a bucket sort is expected to run in O(n) time. Given the set of candidate pairs in sorted order,
we then use the edge compatibility test in [7] to �nd the triangulation in O(n) expected time.

3 A Necessary Condition for an Edge to be in the Greedy

Triangulation

Our algorithm uses a de�nition of plausibility based on shapes other than disks. It is based on the
following lemma and corollary. First we need a de�nition.

De�nition 1 Let p; q be a pair of points in a set S. Consider the disc D of radius � = jp; qj=(2
p
5)

centered at the midpoint of pq (cf. Figure 1). Let pu and pl be the upper and lower points of

intersection between D and tangent lines from p, and de�ne qu and ql similarly. Then we call the

union of D, triangle ppupl, and triangle qquql the exclusion region for p and q. The segment pq

divides the exclusion region into two half-regions.

up

qp

D

p

uq

ql l

Figure 1: Our Exclusion Region
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Lemma 1 If each half-region of the exclusion region of two points p and q contains at least one

point in S (other than p and q) then the edge pq cannot be in the GT of S.

This lemma is an extension of Lemma 3 in [7], where the exclusion region was only disk D. It
is proved in a similar way, and the �gure in the proof appeared originally in that paper. Theorem
3 in Levcopoulos and Lingas [18] is also similar. We de�ne a plausible pair (or a plausible edge) to
be a pair where at least one of the halves of the exclusion region de�ned in the lemma contains no
points from S.

For the proof of the lemma see the appendix.

We do not believe that our bound is tight. The worst example that we have been able to �nd
is a 'distorted' diamond with pq as its diameter, and opposite edges of the same length, namelyp
8=17 jp; qj and

p
9=17 jp; qj. There are two additional points just outside of the longer edges

of the diamond, at distance 1=3
p
9=17 jp; qj from p and q respectively. This case approaches the

bound � =
p
2=17 jp; qj as closely as desired and thus disproves the conjecture of the Open Problem

3 in Dickerson, Drysdale, McElfresh, and Welzl [7].
From Lemma 1 we derive the following crucial corollary on which our algorithm is based.

Corollary 1 Given four points p, q, a, and b with jp; aj; jp; bj � jp; qj=2 such that the angles apq

and qpb are at most arctan(1=
p
5) (a bit more than 24�) and pq intersects ab, then pq cannot be a

GT edge.

Proof. Consider points p, a, b, and q as described in the lemma. Let m be the midpoint of pq.
Consider a right triangle with pm as one leg and a segment cm of length � perpendicular to pm

as the other leg. There are two such triangles, and a must be contained in one of them and b in
the other. But these two triangles are subregions of the two halves of the exclusion region for pq
described in De�nition 1. Therefore by this lemma pq cannot be a greedy edge.

This bound could be slightly improved because a slightly larger circular sector of radius jp; qj=2
can be �t into the exclusion area.

4 Generating the Candidate Pairs

In this section we show how to generate O(n) candidate pairs that include all plausible pairs in
O(n) time.

Here is an intuitive description of our algorithm: Grow two concentric circles C and D around
p, D always double the size of C. If two points that have been passed by C are closer than 24�,
the wedge between them is closed o�. All points that are swept by D and that are not closed
o� are matched with p. Of course, regions where D moves out of C can also be closed o�. Our
decomposition into �xed wedges is just an easy \bucketing" way to implement this, very much like
in the linear-time solution of the MAX-GAP problem.

4.1 Description of the Approach

The points are treated one by one as follows. Consider a �xed point p. We divide the plane into s
wedges of size 
 = 2�=s centered at p. For our algorithm, s = 30 and 
 is 12�.

Conceptually we sweep through each wedge W , moving a growing circular arc centered at p
across W and examining points as we �nd them. As we sweep W we will keep track of the closest
point w to p, the leftmost point l found so far, and the rightmost point r found so far.

We sweep each wedge until we are sure that we need not search further to �nd plausible pairs
containing p. All points found in this process are paired with p and added to the set of candidate
pairs to be sorted and tested for compatibility in the greedy algorithm.

The usual way that we know that we have swept far enough depends on the nearest neighbors of
p in the two adjoining wedges. We call the wedge lying left (counterclockwise) fromW wedgeWl and
the one lying right Wr. We call the nearest neighbors to p in these wedges wl and wr respectively.
The angles qpwl and qpwr are never more than 24� for any q 2W . We therefore need not consider
points q 2 W such that jp; qj � 2max(jp; wlj; jp; wrj). By Corollary 1 such edges are not possible
greedy edges.
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However, if one of the adjacent wedges is empty (which is likely if p lies near the boundary of C),
then our wedge W cannot be bounded in this way. Always sweeping such a wedge to the border of
C would be too expensive, so we must �nd an alternate way to bound W in this case.

This is where we use the leftmost and rightmost points. If l is the leftmost point found so far
in W and we have swept far enough to ensure that l is indeed the leftmost point in all of W , we
can use l in place of wl in the above formula. (In fact, even if wl exists we use l instead of wl if it
is closer to p.) A similar situation holds on the right side.

We summarize the above conceptual sketch of the algorithm.

1. For each wedge W , �nd the point w closest to p.

2. For each wedge W , repeat the following steps.

Let Wl and Wr be the adjacent wedges of W .

Denote by wl and wr the closest points to p in these wedges.

Set the thresholds tl := jp; wlj and tr := jp; wrj;
(If any of wl and wr does not exist, set the corresponding quantity to 1.)

Start sweeping W , i.e., visit the points q in order of increasing distance v = jp; qj:
while v � 2max(tl; tr) and S(W; v) does not yet cover W \ C do
Let q be the next point swept.

Generate the pair p; q as a possible edge.

If this point is the �rst point swept, set l := q and r := q;

Otherwise, if q is to the left of l, set l := q;

Otherwise, if q is to the right of r, set r := q;

If the circular arc with radius v centered at p, between the left edge of W

and the ray pl, lies outside C, set tl := min(tl; jp; lj);
If the circular arc with radius v centered at p, between the ray pr and the

right edge of W lies outside C, set tr := min(tr; jp; rj);
end while

4.2 Implementation Details

Our implementation will �rst cover C by a grid of squares with side 1=
p
n and will bucket the points

into these squares. On the average there will be one point per square, and there are n+O(U
p
n) =

O(n) squares.
For each point p we search out from p in each wedge W , examining points in overlapping squares

until we �nd the nearest point w (or run out of possible squares). We can then continue searching
in each wedge until we are beyond the distance at which further points in the wedge can possibly
pair with p to form a greedy edge.

Practically, the approach of looking at wedges one at a time would cause squares near p to be
re-examined lots of times. (But not more than s times.) Instead one should begin spiraling out
from p, putting points into whichever wedges they belong. More speci�cally, we start with the
square containing p, continue with all squares intersecting a circle of radius 1=

p
n around p, then

all squares intersecting a circle of radius 2=
p
n that have not been examined, and so on. As wedges

are closed o� one should skip squares lying only within those wedges and look only into wedges that
are still active. We quit when all wedges are closed o�. We show in section 5.5 that we can a�ord
to look at all points in a square even if only a part of the square intersects some active wedge.

So what the algorithm really does is as follows. Departing from the description in section 4.1,
we don't vary v continuously, stopping at every distance where some event occurs, but vary it
in �xed steps, and even that only approximately. For i = 0; 1; 2; : : :, we go around the point
p following a circle of radius i=

p
n. Every square that intersect this circle and an active wedge

is handled completely, in the sense that we go through all its points in an arbitrary order, pair
them with p, and update w, l, and r for their respective wedges, as appropriate. (Of course, a
square that has been considered in the previous round need not be considered again.) Only after
processing all these squares and points for round i we update the thresholds tl and tr for every
wedge which is still active and decide if any of them can be closed. This is the case when either
v := i=

p
n > 2max(tl; tr) or the wedge is exhausted. We can thus avoid such troubles as sorting

the points in a square according to their distance from p, which we would have to do if we followed
the sketched algorithm of section 4.1 literally.
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This approach allows us to generate O(n) candidate pairs which include all plausible pairs in
time O(n). The proof will be given in section 5.

In the analysis we will �rst assume that the algorithm proceeds as originally described above
in section 4.1, and we will later account for the \error" that we make in being too liberal in the
selection of squares and points that we examine.

The above description in section 4.1 assumes that the algorithm knows the shape C from which
the points are drawn. If C is not given we �rst compute the convex hull of the points using one of
the algorithms that perform this task in O(n) expected time for uniformly distributed points [24].
We compute the area of this hull, scale the data so that the area becomes 1, and then use the hull
instead of C. The analysis is of course unchanged. The only place where C enters the algorithm is
when testing if a wedge is exhausted, and whether the current leftmost or rightmost point is the
true leftmost or rightmost point of the whole wedge.

The �rst test is very easy to carry out. For example, as we go around the circle of radius i=
p
n

in round i, we may build a list of squares to be visited in round i + 1. In this list we skip all
squares that do not intersect an active wedge or that lie completely outside C. Every square which
should appear in this list is adjacent to at least one other square on the list or to a square which
is visited in round i, and thus this list can easily be built. With this list, a wedge is automatically
and implicitly \closed o�" as soon as all its squares that lie inside C have been visited.

For the second test we have to decide whether the angular region (sub-wedge) between, say, the
ray pl and the left edge of W , may possibly contain any further points. As we walk around the
circle of radius v and build up the list of squares for the next round, we can easily determine if the
relevant angular region is closed o� in this round, or whether any further squares will intersect this
angular region in the next round. In the latter case we cannot be sure that l is the leftmost point.
In the �rst case, we know that we have looked at all points that may possible have been further
to the left than l. That is, we either have found a new point l or we have established that the old
previous point l was indeed the leftmost point in its wedge.

In a preprocessing step, after initially computing the convex hull, we can determine for each
square whether it intersects the boundary at all, and if so, we can �nd the intersection points of
the hull boundary with the boundary of the square. There can be only a constant number (at most
8, theoretically) of such intersection points. Then we can determine which of the four adjacent
squares intersect C or lie completely outside C. With this information it is straightforward to carry
out all the above operations.

4.3 Possible Improvements

The remaining part of this section discusses some possibilities to speed up the practical implemen-
tation. It can be skipped without a�ecting the remainder of the paper.

Dickerson et al. [7] use a plausibility test that runs in linear expected time to reduce the number
of pairs that are sorted and tested for inclusion into the triangulation. It is based on bucketing.
Our algorithm need not use such a plausibility test because it generates only a linear number
of candidate pairs. However, the constants for space (and probably time) can be improved by
pretesting the candidate pairs for plausibility.

One could use the method described in [7] to test for plausibility, but an alternate method is
available. A simple way to test a pair (p; q) for implausibility when it is �rst found in wedge W
is to look at the near neighbors and leftmost and rightmost points in the wedges that overlap the
exclusion region for pq. Overlapping wedges consist of the wedge W and its two adjacent wedges.
If one of these points lies in one half of the exclusion region and another lies in the other half, then
pq is not plausible.

It is possible that an implausible pair is not rejected by this test, because the two points that
prove the implausibility of pair (p; q) are not necessarily the closest or the leftmost or the rightmost
points in their respective wedges. However, this test is fast and easy and should work often enough
to make it worthwhile. The test of [7] is probably too expensive, in view of the fact that the
remaining steps which an edge undergoes once it is generated are very simple and fast.

We �nd each pair of points twice, once from each endpoint. Thus we can search only half (say
the upper half) of the wedges, plus two additional boundary wedges that are only searched out
until the �rst point is found (to be used for bounding their neighbors). Then each pair would be
found only when searching from the lower of the two points. Alternatively, we generate all pairs
and eliminate those pairs which are generated only once. A radix sort based on the indices of the
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endpoints can accomplish this in linear time, or it can be done while sorting the generated edges by
length. This involves more work but it reduces the number of edges for the rest of the algorithm.

5 Analysis of the Run Time

The sweep of the wedge W under consideration is stopped by the minimum of the two thresholds
tl = min(jwl; pj; jl; pj) and tr = min(jwr; pj; jr; pj). They come, respectively, from the closest point
wl in Wl and the closest point wr in Wr . Instead of thinking in terms of the wedge W being
bounded, we will consider the wedges Wl and Wr doing the bounding. The wedge Wl contributes
\half" of the bound for W and \half" of the bound for its left neighbor. We can thus construct
the area around p to be searched by taking the union of 2s circular sectors. We de�ne S(W; v) as
the circular sector which is the intersection of wedge W with a disk of radius v centered at the
apex of W . For the wedge Wl, we construct S(W; 2tl) and a similar sector S((Wl)l; v) for the left
neighbor ofWl. The union of these 2s sectors will be the area around p that needs to be considered,
and its area will be less than the total area of all sectors.

We will show that the expected area of such a sector is O(1=n), implying that the area that
needs to be searched for a given point p before all wedges are closed o� by points in adjacent wedges
is O(1=n). A constant number of points is thus examined for each p and the overall work is linear.

We analyze how the wedge Wl in
uences W via the threshold tl = min(jwl; pj; jl; pj), the situa-
tion for Wr being symmetric. The analysis is divided into two cases, corresponding roughly to the
cases when tl = jwl; pj and when tl = jl; pj. Formally, the two cases of our analysis are distinguished
as follows. Let b be the distance from p to the closest point of the boundary of C inside Wl.

� Case M. b � tl: The arc sweeping Wl does not intersect the boundary of C before the
distance tl = min(jwl; pj; jl; pj) is reached.

� Case B. b < tl: The arc sweeping Wl intersects the boundary of C before the distance tl is
reached.

We �rst analyze case M, which is typical when the point p lies in the middle of C. In this case,
the sweep of the wedge W under consideration is usually stopped by wl and wr, not by l or by r.
Case M is the predominant case for most wedges, and there we can give a fairly good estimate on
the area of the wedge.

We then consider case B, which brings in the e�ect of the boundary of C. At �rst glance the
boundary seems to only make things better, because we can stop searching in a wedge once we cross
the boundary. However, it can also make searches longer: if the wedge Wl is cut o� and contains
no points, the adjacent wedge W (which can be quite large and therefore contain a large number
of points) will not be bounded by any point in the empty wedge. The approach of keeping track of
the leftmost and rightmost point in each wedge provides an alternate bound in this case. We apply
rather crude estimations, and we can show that the area is still O(1=n).

5.1 Case M: Area Bounds Based on Adjacent Wedges

As mentioned above, the bound that will usually allow us to stop searching in the wedge W is the
one that says we need look no farther than 2max(jp; wlj; jp; wrj). In this section we analyze the
expected number of points that we will have to consider in searching a wedge W assuming that the
boundary of C does not interfere.

Thus our problem is reduced to �nding the expected area of S(W; 2jp; wlj), which is four times
the area of S(Wl; jp; wj). Formally, we de�ne a random variable A1 which is equal to this area
(4
t2

l
) if the arc with radius tl does not intersect the boundary of C inside Wl (case M). The radius

V1 = 2tl is an upper bound on the distance v at which the sweep of W stops. If case M does not
hold we de�ne A1 and V1 to be 0.

Clearly, if V1 = 2tl is to be bigger than some threshold v, the sector S(Wl ; v=2) of half the radius
must be empty, because otherwise the point wl would be in this sector and tl would be at most v.
Therefore we have

Pr[A1 � u] = Pr[ the sector S(Wl ;
p
u=(4
)) of area u=4 is empty ] = (1� u=4)n�1:

This equation holds when the sector S(Wl ;
p
u=(4
)) is contained in C; otherwise we have Pr[A1 �

u] = 0. In any case the right side is an upper bound for Pr[A1 � u]. Thus we get the following
bounds for the expected values of A1 and V1.
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Lemma 2 The expected value of the area A1 of the part of the wedge W which is swept in case M

is at most 4=n. The expected radius V1 of this sector is at most
p
s=(n � 1).

Proof.

E(A1) =

Z 1

u=0

Pr[A1 � u] du �
Z 1

u=0

(1� u=4)n�1du = 4=n

For the radius V1, which is related to the area by the formula A1 = V 2
1 � 2�=s, we have

E(V1) =

Z 1

v=0

Pr[V1 � v] dv =

Z 1

v=0

Pr[A1 � v2 � 2�=s] dv �
Z 1

v=0

(1� v2 � �=(2s))n�1 dv

�
Z 1

v=0

e�2�(n�1)=(2s)�v
2

dv =

r
s

n� 1
:

5.2 Case B: Area Bounds Based on Leftmost and Rightmost Points

Now we consider the case where the arc sweeping a wedge Wl reaches the boundary before dis-
tance tl. This includes the case where the sweep of Wl still �nds a point wl at a later time, and
the distance of that point is used as tl to bound the sweep of W . Typically, however, the sweep of
W is stopped by the leftmost point l in W , i. e., tl = jp; lj. Intuitively, we rotate a ray around p,
starting from the left edge of Wl, rotating clockwise until we hit l. The distance jp; lj determines
the radius of the sector S(W; 2jp; lj) in W which we have to sweep. As in the previous section, we
would like to relate its area to the area over which the ray has swept before hitting l, which must
necessarily be empty. Now, if p is close to the boundary of C, the sector S(W; 2jp; lj) may be very
large althoughW contains very little of C. Our bound on the expected number of generated points
will therefore involve the distance � = �(p) of p from the boundary of C. We will then average of
the possible values of � to determine expected area of the sector for a random point p.

Let us bound the expected area of the sector S(W; 2tl) in case B. Similarly as before, let us
denote by V2 the random variable whose value is 2tl, the radius of the sector, and by A2 = V 2

2 �2�=s
its area. If case B does not hold we de�ne A2 and V2 to be 0.

To estimate the probability that V2 � v for some threshold v, let f be the leftmost point of
C \W that lies at distance v from p (see Figure 2). Denote by f 0 the midpoint between p and f ,
and let g be the point on the left edge of Wl whose distance from p is equal to the distance � from
p to the boundary of C. Since we assume that case B holds for the wedge W , we can have V2 � v

only if v=2 � �.

p

C

f

g

v/2

v

f ’ W

Wl

β

Figure 2: Bounding W

Now, the sweep of W can reach distance v only if the shaded sector of radius v=2 between f 0

and the left edge of Wl contains no points of S. The triangle pgf
0, whose area is denoted by L, is

contained both in this sector, since jp; gj � v=2, and in C, by convexity. Therefore, the probability
Pr[V2 � v] is at most (1 � L)n�1. This triangle has a base pf 0 of length v=2. Its height is at least
� sin 
, and so we can bound L as follows.

L � 1

2
� v=2 � � sin 
 = cv�
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with the constant c = (sin 
)=4 � 0:05. So we get

Pr[V2 � v] � (1� L)n�1 � e�L(n�1) � e�cv�(n�1):

Lemma 3 For a point p with distance � from the boundary of C, the expected value of the threshold

distance V2 = 2tl in case B is at most 1=(c�(n � 1)). The expected value of the area A2 of the

corresponding part of the wedge W which is swept is at most O(1=(�n)2).

Proof.

E(V2) =

Z 1

v=0

Pr[V2 � v] dv �
Z 1

v=0

e�cv�(n�1) dv =
1

c�(n � 1)
:

Let us now bound the expected area A2 = V 2
2 � 2�=s of the sector S(W;V2).

E(A2) =

Z 1

a=0

Pr[A2 � a] da =

Z 1

a=0

Pr[V 2
2 � 2�=s � a] da =

Z 1

x=0

Pr[V 2
2 � 2�=s � x2] � 2x dx

=

Z 1

x=0

Pr[V2 � x
p
s=(2�)] � 2x dx �

Z 1

x=0

2x e�cx�(n�1)
p
s=(2�) dx =

4�

c2s�2(n� 1)2

The above expression still depends on the distance � = �(p) from the boundary. So we integrate
over all possible values of �, using an upper bound of U on the density function of � for a random
point p. (In other words, the \probability" that a point is at distance � from the boundary of C
is at most U d�.) Thus we get the following bound on the total number of point pairs that are
generated for a random point p.

Lemma 4 For a random point p, the expected value of the threshold distance V2 = 2tl in case B is

at most O((logn)=n). The expected value of the area A2 of the corresponding part of the wedge W

is at most O(1=n).

Proof. The distance � is bounded by U=(2�), and V2 can be at most U=2. Thus, the previous
lemma gives

E(V2) �
Z U=(2�)

�=0

min

�
1

c(n� 1)�
;
U

2

�
U d� =

2

cU (n� 1)
� U

2

2
+

U

c(n� 1)
�
Z U=(2�)

�=2=(cU(n�1))

d�

�

=
1

c(n� 1)
+

U

c(n� 1)
� ln cU

2(n� 1)

4�
= O

� logn
n

�

From the bound on V2 we conclude that the area is bounded from above by (U=2)2
 = U2�=(2s).
Thus, the result of the previous lemma gives

E(A2) �
Z 1

�=0

min

�
4�

c2s�2(n� 1)2
;
U2�

2s

�
U d�

=

p
8

cU (n� 1)
� U

3�

2s
+

4�U

c2s(n � 1)2
�
Z 1

�=
p
8=(cU(n�1))

d�

�2

=

p
2�U2

cs(n� 1)
+

4�U

c2s(n � 1)2
� cU (n� 1)p

8
=

p
2�U2

cs(n � 1)
+

p
2�U2

cs(n � 1)
= O(1=n):

5.3 The Total Number of Pairs Generated

The area of a sector S(W; tl) can simply be written as A1 + A2, to account for the two cases.
We have therefore established above that, for a wedge W emanating from a random point p, the
expected area of S(W; tl) is O(1=n).

We have to multiply this area by 2s to account for every wedge W and its two adjacent wedges
Wl and Wr, and by n � 1 to get an upper bound on the expected number of new points. The
resulting expression must be multiplied by n to get the expected overall sum over all points p.

Thus we have the following theorem.

Theorem 1 The expected number of candidate pairs that the algorithm generates is O(n).
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Based on some considerations which are partially heuristic, we shall now derive a more accurate
estimate of the number of candidate pairs.

For points p in the middle, case B should be very unlikely; but even if the point p lies at the
boundary of C, the analysis of Lemma 3, and hence of Lemma 4, overestimates the area in which
points for candidate pairs are found by some factor of the order s: Among the s wedges surrounding
p only the two wedges which contain a large part of the boundary of C are cases where the area
bound used in the proof of Lemma 3 is tight (see Figure 2). Therefore, by looking at the constants
in the lemmas one can see that the contribution of case B to the number of generated pairs should
be rather small in comparison to case M.

Concentrating thus on Lemma 2, we know that the expected number of points in a sector is
bounded by (n � 1) � E(A1) � 4. This is a very precise estimate, because the only error that we
commit is that A1 is the area of the whole sector, even if part of it lies outside C. In case M this
should be negligible. Since we create 2s bounding sectors, the expected number of points in their
union is 8s. Actually, each sector gets covered up to two times in this analysis, when once is enough.
Therefore a more accurate estimate of 6s can be shown: We have to consider the maximum of two
areas which are distributed like A1 instead of their sum. The overall number of pairs generated
can therefore be estimated as 6sn. For our choice of s = 30 this is 180n, a factor of 60 times the
number of edges actually in the triangulation. Because many edges are generated twice (once from
each endpoint), this �gure over-estimates of the number of generated pairs by a factor at most 2.

All these considerations hold for the algorithm as it is described in section 4.1. With the
bucketing technique, we generate more pairs, but it is di�cult to estimate the precise e�ect of this.

5.4 Area Bound for Searching the Closest Point

Before searching each wedge up to its threshold in order to �nd candidate pairs, we must search
every wedge to �nd its closest point w (step 1 of the algorithm). In practice these two searches are
not carried out separately, but we have to account for the fact that we always have to search out
to the �rst point w in W , even if the bounds from the adjacent regions would tell us to stop before
we found w, and wp will not be generated as a candidate edge.

The analysis is similar to case M, except that we now use the points in W itself to bound the
search in W , not one of the adjacent wedges. Thus, let A3 be the area of S(W; jp; wj)\ C which is
searched until w is found. In contrast to the previous analyses, we do not take the full sector but
only the part which belongs to C. If W is empty we take the whole area of W \ C. Similarly as in
section 5.1, we have

Pr[A3 � u] = Pr[ the region S(W;
p
u=
) \ C of area u is empty ] = (1� u)n�1;

when u is less than the maximum area of W \ C, and Pr[A3 � u] = 0 otherwise.

Lemma 5 The expected value of the area A3 of the part of the wedge W which is searched until

the closest point w is found is at most 1=n. The expected value of the corresponding radius V3 is

O(1=
p
n).

Proof. The area bound follows from the analogous calculation as in the proof of Lemma2. For the
radius, we make a similar case distinction as above. In the case when w is found before the sweeping
arc reaches the boundary of C, V3 is equal to V1=2 from Lemma 2, and therefore its expected value
is O(1=

p
n). Otherwise, we use a similar argument as in case B to prove a statement analogous to

Lemma 3. Assume that V3 � v, where v � �. Let f any point of C \W that lies at distance v

from p (see Figure 3). Let g and g0 be the two points at distance � on the edges of W . Then the
quadrilateral pgfg0 must be empty. Its area is

L0 = 1=2 � v � (sin\gpf + sin\g0pf) � v=2 � sin 
;

which is twice the empty area L which was used to bound V2 in Lemma 3. Thus we can conclude
as in Lemmas 3 and 4 that E(V3) = O((logn)=n)

5.5 The Number of Buckets Searched

In the above analyses, we have shown how to restrict each wedge W to a subset W 0 that must be
examined in order to �nd a superset of all plausible pairs.

10
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Figure 3: Bounding the area that is examined in searching for w

We have shown that the total area of all the W 0 regions is O(1) and that the number of points
found is therefore O(n), if we follow the original approach of section 4.1. In addition, the total area
searched in order to �nd the closest points w in every wedge is also O(1) (Lemma 5). However,
this does not immediately imply that the work done is O(n), because we are using bucketing to
�nd the points. Since a square may overlap W 0 only partially, the number of squares examined in
searching all of the W 0 regions is not necessarily proportional to the total area.

In addition, we are somewhat sloppy in closing o� wedges, delaying the decision whether to
close a wedge until a whole round of squares is completed.

We treat both problems by enlarging every sector S = S(W; v) to its outer parallel body S" that
includes all points which are withing a distance " of S. If we choose " = (3 +

p
5)=(2

p
n) � 3=

p
n,

we are sure that every square that the algorithm looks at is contained in S". This �gure comes
about as follows. When we process a square that intersects the circle C of radius i=

p
n around p,

we are only sure that the wedge should have remained active after the previous round, i. e., for
distance v = (i � 1)=

p
n. This delay contributes 1=

p
n to ". In addition, we know only that the

square intersects both the circle C and the wedge W . A point in the square can have distance up
to (1=2 +

p
5=4)=

p
n from C \W . This is the second contribution to ".

The area of S" can be written as

area(S") = area(S) + " � perimeter(S) + "2� � A+
p
3=n � V � (2 + 
) + 9�=n;

denoting byA the area of the sector S and by V its radius. The expected area A = A1+A2 = O(1=n)
has already been considered in the previous section, and the sum of all areas has been shown to be
O(1). Thus the expected number of intersected squares (of area 1=n) to which this term contributes
is O(n), the same as the expected number of points covered.

The second term, the expected radius V = V1 + V2, was also analyzed to be O(
p
1=n) +

O((logn)=n) = O(
p
1=n), and since this is multiplied by

p
3=n, this does not exceed the bound of

O(1=n) for the area of S". The third term is also O(1=n).
Thus we have shown that we may include all points in the enlarged wedges S" without destroying

the validity of Theorem 1.

6 The Sorting Algorithm

We now must sort the O(n) point pairs by their distances in linear time. We do this using bucket
sort.

If we apply the function g(x) = x2� to the distance jp; qj of a random point q from a given point
p, the resulting random variable has probability density at most one. In fact, the density equals
one as long as the circle with radius x around p is contained in C, and it falls o� for larger x. Thus,
even if we take all

�
n

2

�
pairwise distances, square them and put them into buckets of size 1=(�

�
n

2

�
),

the average number of elements per bucket is less than one. Since the maximum possible distance
is U=2, the number of buckets is at most dU2n2�=8e.

So we can �rst sort the O(n) edge lengths into buckets using a two-stage radix sort on bucket
indices, using 2 � O(n + Un) = O(n) time and O(Un) space. After that, we can apply any simple
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quadratic sorting method to sort the elements in each bucket, and maintain the O(n) expected time
bound.

7 Summary and Open Problems

We have shown how to modify Dickerson, Drysdale, McElfresh, andWelzl's algorithm [7] to generate
a greedy triangulation of uniformly distributed points in expected linear time and space. Our
improvements were to generate the plausible edges in linear time and to show that the edge lengths
could be sorted in expected linear time. In the process we proved a necessary condition involving
wedges that is an extension of earlier lemmas.

This approach also seems promising for non-uniform distributions. The correctness of the basic
idea of searching out from a given point using wedges does not depend on the distribution. The
bucketing schemes and time bounds do. If the distribution is known, the bucketing could take
advantage of the known distribution. If not, then perhaps some sort of sampling or bucketing via
quad trees or k-d trees would allow the points in the wedges to be found quickly on the average.
It is also possible that some variation of searching on the Delaunay triangulation, as is done in
papers by Dickerson, Drysdale, and Sack [6, 8], could prove useful. It seems likely that this sort of
algorithm could work quite well for relatively smooth distributions.

Some obvious questions arise from this work.

Problem 1. What are reasonable ways to adapt this algorithm to other distributions? Ideally
the algorithm would adapt to any distribution and run in O(n logk n) time for some small k as
long as the distribution had some nice properties. One possible property is that the probability
density is a quasi-concave function, i. e., along any segment it is minimized at an endpoint. The
symmetric two-dimensional normal distribution is a good candidate. The algorithm at least can be
applied almost without change; only the sorting step may have to be adapted. The analysis will be
di�erent, since there is no clear distinction between the cases M and B.

Problem 2. It would be more elegant and probably faster to use a single-stage bucket sort. We
would need to know some approximation of the cumulative distribution function of the edge lengths
of the generated edges. We were able to compute this for the edges generated in case M, whereas for
the points close to the boundary this seems very di�cult to do. We would need some estimations
which would show that the in
uence of the \boundary edges", which tend to be longer than the
other edges, is limited. For example, if we could show that the number of edges generated under
case B were bounded by O(

p
n), they could not foul up our analysis even if they fell all in the same

bucket.

Problem 3. What is the true worst-case ratio for � in Lemma 1? We have bounded it between
jp; qj=(2

p
5) and

p
2=17 jp; qj. Note that in this paper we only use a circular sector with radius

jp; qj=2 centered at p as an exclusion region. Therefore we can't apply the example for the upper
bound mentioned after Lemma 1 for our exclusion region. But a very similar example gives ap-
proximately 43:87� for the angle apq of the circular sector (cf. Corollary 1) showing that we need at
least 17 wedges. A more accurate computation for Corollary 1 gives approximately 25:84� for the
angle apq, thus 28 wedges are enough (rather than 30). What is the true worst case for the angle
of the circular sector, i.e., the lowest number of wedges?
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Appendix: Proof of Lemma 1

For notational convenience, rotate the plane so that segment pq is horizontal, with p on the left
side. (For the remainder of the proof, refer to Figure 4.) Let a be the point in S closest to pq in
the upper exclusion region and let b be the point in S closest to pq in the lower exclusion region.
Let C be the circle with pq as a diameter, Cp be the circle of radius jp; qj centered at p, and Cq be

the circle of radius jp; qj centered at q. Let � =
p
jp; qj2� 4�2. The quantity � was chosen to make

the following true:

Observation 1 Any segment that intersects ab, does not intersect the interior of pq, and has
both endpoints on or outside of C is at least � long.
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Figure 4: Edges intersecting ab

We will assume that pq is a GT edge and show that this leads to a contradiction. We will use
the following observation.

Observation 2 Let p1 and p2 be any pair of points that are not connected by an edge in the GT.
Then some GT edge intersecting segment p1p2 must have length � jp1; p2j.

If pq is a GT edge, then ab cannot be a GT edge because they would intersect. Therefore, by
Observation 2 there must be some GT edge of length no longer than ja; bj \cutting o�" ab. We will
show that that no such edge exists either above or below pq.

Since there are points on both sides of edge pq, it is not a CH edge, and therefore it must be an
edge in two triangles { an upper and a lower. Let pw1q be the upper triangle and let pz1q be the
lower triangle.

For notational convenience, we label all the GT edges intersecting segment ab. The GT edges
above pq that intersect ab we label e1; : : : ; em, with the edge whose intersection with ab lies nearest
to pq labeled e1, the next nearest labeled e2, etc. The edges below pq that intersect ab we similarly
label f1; : : : ; fn. Our proof will be a case analysis on the edges e1; : : : ; em and f1; : : : ; fn.

Since the GT is a triangulation, e1 shares an endpoint with pq, each successive pair eiei+1 shares
a common endpoint, the non-shared endpoints are connected by an edge, and a is connected to
both endpoints of em. We label the new endpoint introduced by edge ei as wi. We similarly label
the new endpoint introduced by fi as zi.

We �rst make a series of observations about the ways that these edges can be arranged. These
observations will be stated in terms of the ei and will assume without loss of generality that pw1

(instead of qw1) intersects ab. However, these observations are also true when e is replaced by f

and a is replaced by b. They also remain true when p and q are interchanged.
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Observation 3 If all of the ei have both endpoints on or outside of C, then each ei is of the form
pwi and ja; qj � �.

To see this, we �rst note that the segment aq intersects precisely these ei. Each edge is at least
� long, by Observation 1. To prevent aq from being an edge that cuts these edges o�, ja; qj � � by
Observation 2. If some ei has a left endpoint di�erent than p, then by similar reasoning ja; pj � �.
But a cannot simultaneously lie at least � away from both p and q and remain in C.

Observation 4 If w1 is on or outside of C and ek is the lowest-numbered ei with an endpoint x
inside of C, then jx; qj � �.

All of the ei with 1 � i � k�1 must have both endpoints on or outside of C, so must be at least
� long by Observation 1. But these are precisely the GT edges intersecting xq (each completely
crosses C). Therefore by Observation 2 one of them must be no longer than xq, implying that
jx; qj � �.

Observation 5 jp; w1j < jp; qj.
Assume that jp; w1j � jp; qj. Then w1 lies on or outside of Cp, and therefore outside of C.

Assume that there exists an ei with either a left endpoint di�erent from p or a right endpoint inside
of Cp. Call the lowest numbered such edge ek and let that endpoint be x. Note that this new point
will connect to p and wk�1 to form a new triangle. All edges ei with 1 � i � k� 1 must be at least
jp; qj long, so jx; qj � jp; qj to prevent xq from cutting them all o�. This is not possible if ek is of
the form px, so ek must be of the form xwk�1 and x must lie outside of C to the left. This edge
has both endpoints outside of C and has neither p nor q as one of its endpoints. But then no ei
can ever have an endpoint wi in C. Otherwise the lowest-numbered such wj would have to lie at
least � away from both p and q to avoid cutting o� edges ei with k � i � j � 1. No point in C is
distance at least � away from both p and q.

But if no such ek exists, all edges ei have left endpoint p and right endpoint outside of Cp, so
are at least jp; qj long. But that is impossible, because ja; qj < jp; qj, so aq would cut them all o�.

The Contradiction This structure is very constraining. If w1 and z1 are both in C, then
jw1; z1j < jp; qj and the GT has chosen the longer diagonal from a convex quadrilateral. This is
impossible, so one of the points must lie on or outside of C. Without loss of generality we assume
that w1 is on or outside of C. It must lie on or below the upper tangent ray ~ppu. In addition, it
must lie within Cp by Observation 5. This leaves two cases to consider. (See Figure 4 again.)

We �rst consider the case where none of the ei has an endpoint within C. Then every ei is at
least � long by Observation 1. By Observation 3 a must lie at least � away from q.

In the second case some ei has an point x inside of C. By Observation 4 it must lie at distance
at least � from q. This point x must also lie below the upper tangent ray ~qqu. Note that the region
consisting of possible locations for x contains the region consisting of possible locations for a in the
previous case.

We now ask where z1 can go. It must lie strictly inside the lune formed by the intersection of
Cp and Cq by Observation 5. This also implies that segments z1w1, z1x, and z1a must all intersect
pq. It must lie above at least one of the rays ~ppl and ~qql. It must lie at least jp; qj away from w1

(only pq can intervene). It must lie at least � away from either a (case 1) or x (case 2), because all
intervening edges are of length at least �. (All have both endpoints on or outside of C.)

But this is not possible. If z1 is in the right half of C, it can be at most � away from w1. (The
distance between the intersections of ~ppu and ~ppl with Cp is exactly �, but in this case we require
the much larger separation of jp; qj.) If it lies in the left half of C, the actual maximum distance
will be the distance between the intersection of ~qqu with C and the intersection of ~qql with Cq,
and this distance is about :95�. Therefore we could increase the size of � slightly, but only at the
expense of greatly complicating its formula.
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