
ZOR - Methods and Models of Operations Research (1993) 38:281-307 V ~ , I] ~ 4

A Heuristic for Decomposing Traffic Matrices in
TDMA Satellite Communication

GfdNTER ROTE AND ANDREAS VOGEL

Technische Universit~it Graz, Institut ffir Mathematik, Steyrergasse 30, 8010 Graz, Austria

Abstract: A heuristic for decomposing traffic matrices in TDMA satellite communication. With the
time-division multiple access (TDMA) technique in satellite communication the problem arises to
decompose a given n x n tramc matrix into a weighted sum of a small number of permutation
matrices such that the sum of the weights becomes minimal. There are polynomial algorithms when
the number of permutation matrices in a decomposition is allowed to be as large as n 2. When the
number of matrices is restricted to n, the problem is NP-hard. In this paper we propose a heuristic
based on a scaling technique which for each number of allowed matrices in the range from n to n 2
allows to give a performance guarantee with respect to the total weight of the solution. As a
subroutine we use new heuristic methods for decomposing a matrix of small integers into as few
matrices as possible without exceeding the lower bound on the total weight. Computational results
indicate that the method might also be practical.

Key~ Words: Matrix decomposition problem, TDMA satellite communication, greedy heuristics,
edge coloring, bottleneck assignment problem, voting systems, apportionment.

1 Introduction

1.1 Background and Description of the Problem

In satellite communication, one satellite can serve several radio stations on
earth. In order to allow signals to be sent from each radio station to each other
radio station, the TDMA (time division multiple access) technique is used. At
any instant, the satellite is set to a fixed switching mode: All radio stations
transmit and receive data simultaneously, and the switching mode determines
for each radio station the radio station which receives the data which the former
transmits. In mathematical terms, a switching mode is a one-to-one mapping on
the set of radio stations, i.e., a permutation. The satellite time-multiplexes regu-

This work was supported by the Fonds zur F6rderung der wissenschaftlichen Forschung, Project
$32/01.

0340 - 9422/93/38 : 3/281 - 307 $2.50 �9 1993 Physica-Verlag, Heidelberg

282 G. Rote and A. Vogel

lady between different switching modes in short intervals, according to a fixed
cyclic schedule.

The communication needs between the radio stations are given by a matrix
T = (tij), the traffic matrix, t~j is the amount of information per time unit that
has to be transmitted from the i-th to the j-th radio station. More information
on the technical background can for example be found in Burkard (1985). We
consider the problem of setting up a schedule for the satellite, i.e., a sequence of
switching modes and a duration for each switching mode. Formally, the matrix
decomposition problem can be stated as follows:

Given an n x n matrix T = (tij) with nonnegative entries, find a decom-
position of T, i.e., a sequence of permutation matrices p1, p2, . . . , pq
and a sequence of nonnegative weights 11, 12 lq such that

q

T < ~ Ik Pk (elementwise) . (1)
k = l

The total duration d of the decomposition is given by

d= ~ l k .
k = l

The first goal in setting up a switching schedule is of course to keep the total
duration as small as possible. On the other hand, every change of the switching
mode incurs a certain overhead and loss of time. Therefore, the number of
matrices, q, should not be too large. There is a trade-off between the two
objectives, d and q.

1.2 Related Results

Inukai (1979) and Burkard (1985) have shown that the optimal total duration is
equal to t*, the maximum row or column sum of the traffic matrix, but in general,
a time-optimal decomposition may require up to n 2 - 2n + 2 matrices, which is
too large for practical purposes. Burkard (1985) has also given an algorithm
which takes O (n 4) steps and constructs a decomposition where the number q of
matrices is at most n 2 - - 2n + 2, or, if T is an integer matrix, at most t*, which-
ever number is smaller.

It is clear that any decomposition must consist of at least n matrices, unless
some entries in the traffic matrix are zero. Gopal and Wong (1985) and Rendl
(1985) have shown that the problem of constructing a shortest decomposition

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 283

into at most n matrices is NP-complete. A closely related problem, which also
tends to decompose the traffic matrix into few matrices, has been attacked by
Ribeiro, Minoux, and Penna (1989). With a branch and bound procedure they
could solve problems optimally for up to n = 15 cities, but their solution uses
hours of CPU-time.

Thus, it makes sense to look for heuristics. The currently best heuristic for
decomposing into n matrices is due to Balas and Landweer (1983). Decomposing
into a number q of matrices which is slightly larger than n has also been
considered, for example by Lewandowski, Liu, and Liu (1983), who decompose
into 2n matrices (which are given in advance), cf. also Burkard (1985), section 4.
A more extensive review of results concerning the matrix decomposition prob-
lem can be found in Burkard (1991).

1.3 Results and Overview of the Present Paper

In this paper (in section 2) we propose a simple and fast "scaling" heuristic for
constructing a short schedule with a given upper bound Q on the number q
of switching modes. (Thus we solve "problem 3" in the classification of Balas
and Landweer (1983).) We can prove a relative error guarantee for the total
duration d of the decomposition. The method is not applicable if Q = n or Q
exceeds n only slightly. When Q is somewhat larger than n (of the order 2n or 3n),
the error bound is still very crude, but it improves as the ratio of Q and n
becomes larger.

As a subproblem, we address the problem of decomposing a matrix under
the constraint that the lower bound t* on the total duration has to be achieved;
the number q of matrices remains as the objective function to be minimized.
(This is "problem 1" in Balas and Landweer (1983).) The traffic matrices that we
have in mind for this problem are matrices with small integer entries. Here we
use two heuristics: one based on a bottleneck assignment problem and on
matching techniques, and a more powerful one which solves maximum flow
problems.

As a side issue, we mention that one other subproblem that we have to solve
has some interesting connections with voting systems.

Section 3 describes an implementation of the proposed procedures and pre-
sents the results of numerical experiments measuring the actual behavior of
our heuristics (as opposed to the worst-case error guarantee). We compare our
algorithm to the heuristic of Balas and Landweer (1983) for decomposing into
only n matrices.

The concluding section 4 discusses the merits of our heuristics and relates
them to other algorithms from the literature.

A preliminary version of this paper was presented at the 1988 Annual GAMM
Conference in Vienna, and an extended abstract was published in Rote (1989).

284

2 The Heuristic

G. Rote and A. Vogel

Our algorithm is based on the simple idea of scaling the entries of the given
traffic matrix and rounding them to small integers. A matrix with small integers
will require a small number q of matrices for decomposition; theoretically, we
will utilize the trivial upper bound t* on the number q of required permutation
matrices. (Recall that t* is the maximum row or column sum of the traffic
matrix.)

Globally, the algorithm runs as follows:
Input: A non-negative real n x n matrix T.

(a) Choose some "unit" F > 0.
(b) Round the entries of the matrix upwards to the next multiple of F:

(c) Solve the matrix decomposition problem for the resulting matrix T (or
equivalently, for the integer matrix (u~j):= (ftUF]) obtained by dividing
through F).

(d) The resulting decomposition can be adjusted downwards to compensate for
the rounding up in step (b).

The quality of the solution produced depends first of all on the choice of F in
step (a). The idea is to choose F so large that the matrix (ui~) consists of small
integers and only few permutation matrices are needed for its duration-optimal
decomposition in step (c), and so small that the error incurred in the rounding
in step (b) is not too large. By choosing F appropriately, we will be able to
give a performance guarantee for the quality of the solution produced by the
heuristic.

Step (c) is the heart of the algorithm. The principal goal of this step, a
duration-optimal decomposition, is relatively easy to achieve, but we also want
few matrices, since their number will be the number of matrices that the solution
will have. We shall discuss three methods for carrying out this step.

2.1 Method I - Simple and Fast: Edge Coloring

Before giving more details, we will formulate a couple of lemmas about the
heuristic as stated so far. The first lemma repeats the already mentioned bound

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 285

on q for matrices with small entries and gives a possible implementation of step
(c).

Lemma I: An integer n x n matrix U with maximum row and column sum u* can
be decomposed into q = u* permutation matrices in time O(u*n log n).

Proof." We restrict the problem to decomposition into "unit" permutation matri-
ces, i.e., we allow only weights lk = 1 in (1). This problem is essentially an edge
coloring problem for a bipartite multigraph with vertices ri and c~ (i = 1, . . . , n),
with uij parallel edges between r~ and cj. An edge coloring of this graph is an
assignment of colors to all edges such that no two edges of the same color share
a common vertex. An edge coloring corresponds to a solution of our matrix
decomposition problem: The edges of one color form a matching, and the
corresponding n x n adjacency matrix can be (arbitrarily) filled to a complete
permutation matrix to get formulation (1). The number of colors is the number
q of permutation matrices.

It is well known that, in a bipartite (multi-)graph, the number of colors
required (the chromatic index) equals the maximum degree, which is equal to u*
in our case. Cole and Hopcroft (1982) gave an algorithm to find an edge coloring
with this minimum number of colors in time O(E log n), where E is the number
of edges. They described their algorithm only for simple graphs, but it is straight-
forward to extend it to multigraphs. In this case E has to count the edges by their
multiplicities. The upper bound nu* for the total multiplicity of all edges yields
the claimed time bound. �9

The bound q < u* of lemma 1 is tight if and only if u* < , as is

proved in the appendix of Rote and Vogel (1990). However, the bound of
the following theorem 1, which relies on this lemma, will be surpassed by
theorem 4 anyway, and therefore this fact is not so important in the context of
this paper.

The next lemma relates F and the quality of the solution.

Lemma 2: I f F is chosen as the smallest value such that u* < M, for some given
value M > n, then the following relation holds between the maximum row and
column sum Fu* of the rounded-up matrix and the corresponding value t* of the
original matrix:

M
Fu* < �9 t* .

- M - n + l

286 G. Rote and A. Vogel

Proof." As Uix = rt,jlF], the following relation holds between t o and u~j:

Fuij > tij > F(uij - 1) . (2)

If we would decrease F by a small amount, the maximum row and column sum
of U would jump above M. For definiteness, let us assume, w.l.o.g., that this new
maximum would occur in row 1: Then the first row sum would jump from
r 1 := ~ j u U to r 1 + n I > M, where n~ is the number of elements in the first row
with ttj = Fuli. Using the right side of (2) for the remaining n - nl elements of
row 1, we can write:

So we get the claimed bound for the maximum row and column sum of F. U:

M M
u*F < M F - (M - n + 1)F < t* �9

M - n + l M - n + l

Theorem I: An n x n matrix T can be decomposed into a weighted sum of no more
than Q permutation matrices (Q >_ n) with a total duration that is within a factor
of Q/(Q - n + 1) of the value t* that is obtainable without restriction on the
number of matrices in the decomposition. The decomposition can be found in time
O(Qn log n).

Proof: It is clear that u* can be made < n by choosing F larger than the largest
matrix entry; as we make F smaller and smaller, u* will increase. By choosing F
as the smallest value which gives u* < Q (as in lemma 2 with M = Q) and
running steps (b) and (c) we get the bound for the quality. Lemma 1 yields the
bound for the time complexity of step (c). Step (b) is trivial, and the time bound
for step (a) will follow from lemma 3 in the next section. (We do not use step (d)
to achieve our performance guarantee.) �9

2.2 How to Determine F: Proportional Voting Systems

We want to find the smallest value F such that the maximum row or column
sum of the matrix [tiJF] is at most some given value M. We can do this by

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 287

looking at each row and column individually, finding the smallest F such that
the sum of [t~j/F] in this row or column is at most M, and taking the maximum
of all those F's. To be specific, let us look at the first row of T. We look for the
smallest F such that

[t l j / F] < M .
j=l

This problem occurs in another application, namely in proportional voting
systems and the theory of apportionment: Given n parties and a number tij of
votes for each party, M seats of a parliament have to be distributed to the parties;
or the M representatives in a parliament are to be allocated to n districts, where
tlj is now the number of inhabitants in each district. The above method of
allocation is known as Huntington's method of the smallest divisor, cf. e.g.
Woodall (1982): F is the quota for one seat, and u~j := [tUF] representatives are
allocated to the j-th party or district. (A related voting system, which is widely
used in European countries is the method of d 'Hondt or Jefferson method, which
allocates Ltij/F j seats.)

Algorithmically, we proceed by setting up the following array:

t i i , t i i /2, t i i /3, ti1/4

ti2, ti2/2, tiz/3, t12/4

t l , , t l , /2, t i , /3, t i , /4

If some element txj is 0, this element does not contribute anything; otherwise
the following holds: If F is between the (l - 1)-st and the/- th entry in row j (or
equal to the l-th entry) then [tlj/F] = l; in other words, [qi /F] is one plus the
number of elements in the row which are greater than F. Therefore,

~ [t lJF] = n' + the number of elements in the array which are > F ,
j=l

where n' is the number of non-zero elements. Thus we are looking for the small-
est F such that at most M - n' elements are larger, i.e., F is the (M - n' + 1)-
largest element in the array.

We can determine the k-largest element in an array with n sorted rows
by a method due to Frederickson and Johnson (1982), which takes
O(n-max{1, log(k/n)}) time. If k > n this complexity increases with k. But by

288 G. Rote and A. Vogel

computing some simple bounds for F we can ensure that we need only find the
k-largest element with k < n.

An upper bound on F is given as follows:

ff := rl
M - - n + 1 '

where r 1 = ~,Y=I t l j , because

[tu / f f] < ~ (t l j / f f -t- 1) = r l / f f -b n = (M - n + 1) + n = M + 1 ,
j= l j = l

and thus ~ [tlj/F] ~ M.
If we remove from each nonzero row j of the array the first [q j / f f] - 1

elements, we effectively remove all elements which are larger than if, and their
number is M := ~Y=I [t l J F] - n', which is between M - 2n' + 1 and M - n'.
Thus F, which is the (M - n' + 1)-largest element in the original array, is the
k-largest element in the reduced array, where k = (M - n' + 1) - M is between
1 and n.

The k-largest or the k-smallest element in an array with n sorted rows can be
found in O(n) time, for k _< n, by the method of Frederickson and Johnson. Since
we have to repeat the whole process 2n times (once for reach row and column)
we get

Lemma 3: For any given value M >_ n, the smallest value F such that the maximum
row or column sum o f the matrix [t iJF] is <_ M can be found in O(n 2) time. �9

A theoretically slower but simpler and more practical algorithm would select
the k-largest element in O(k log n) time by putting the current element of each
row in a priority queue and retrieving the elements of the array in sorted order.
The resulting complexity of O(n 2 log n) would still by far be dominated by the
time for step (c). As will be discussed in section 3, not even this level of sophisti-
cated data structures was needed for our computational experiments.

2.3 Method I I - Greedy: Bottleneck Assignment

The fast solution of step (c) by using edge coloring techniques yields a decompo-
sition into u* permutation matrices, but there is no way to adapt this algorithm
to use fewer matrices. In practice, we would like to have an algorithm which uses

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 289

as few matrices as possible, because this would allow us to choose F smaller than
indicated by the worst-case bound of theorem 1, yielding a larger value of u* and
thus losing less in the rounding-up of step (b).

We try to reduce q by the following greedy strategy: We select the f i r s t
weighted permutation matrix 11P~ in such a way that the maximum row and
column sum of the remaining traffic matrix max(U - l i P ~, 0) is reduced by as
much as possible. This will reduce the bound u* on the number (and, hopefully,
also the actual number) of further matrices which will be needed in the decompo-
sition. We continue this strategy with the remaining matrix until we are done.

Let us now discuss how to determine p1 and 11. We denote the i-th row sum
and the j-th column sum by r~ and cj, respectively. For keeping the total dura-
tion of the decomposition within u*, the maximum row and column sum of U
must be reduced by 11 when the matrix min(l~P 1, U) is subtracted. This can be
formulated as follows:

If P~} = 1 then r ~ - min{ll, u,j} <_ u* - l~ and cj - min{l 1, uq} <_ u* - l~ .

Since ri < u* and cj <_ u*, this is equivalent to

If px = 1 then rl - - Uij <-- U* - - 1 1 and cj - ulj <_ u* - 11 ,

or in other terms:

If p.i.,j=l then l l _ < u i j + (u * - m a x { r i , cj}) . (3)

Let us interpret this formula. For cr i t i ca l rows (and columns), i.e., rows with
ri = u*, 11 must be < uij. Non-critical rows and columns have some s lack u* - ri
or u * - c j , respectively, which allows to weaken this inequality for their
elements: The smaller of the row slack and the column slack for each element
can be added to the bound uij.

Now, for given 11, a possible permutation matrix corresponds to a complete
matching in a bipartite graph with n + n nodes, whose edges are given by the
above conditions. The maximum value of/1 can be found by solving a bottleneck
assignment problem whose cost matrix is given by the right side of (3).

After determining P1 and 11, min(l~P 1, U) is subtracted from U. p2 and 12 are
determined by the same procedure for the remaining matrix, and so on.

E x a m p l e 1: Consider the matrix

16 15 14

1 4 1 3 5 6 1 U = 15 8 6 1

16 5 4 7

290 G. Rote and A. Vogel

We have u* = 16, and the row and column sums are given beside the matrix.
Now, let us try 11 = 7, i.e., we want to reduce u* to 9. We cannot take the element
5 of the first row, because then c2 could only be reduced to 10. However, we are
allowed to take the element 6 of the first row, although it is smaller than l~ = 7:
Both its row and its column have a slack of 2, and thus it would be sufficient to
reduce this element by ll - (u* - max{r~, c3}) = 5, and u~3 > 5. So we finally
get the following pattern of allowed elements:

6 i1
This matrix contains no permutation matrix. But if we try I 1 = 6, we get the
following pattern of allowed elements:

6

in which the underlined elements form a matching. The matrix given by the
right side of (3) is obtained by adding to each entry of U the minimum of the
corresponding row slack and column slack:

0 1 2

[! 5 ! 1 4 6 + 02 [i 1 i l l 01 = [! 6 i 1 4 7

The row and column slacks are written adjacent to the second matrix, and each
entry of that matrix is equal to the minimum of its respective slacks. The feasible
entries for a given value of 11 are just those entries which are > 11 in the last
matrix.

Now, as the largest possible value of 11 is 6, and the first permutation matrix
is as indicated above, the first step in the decomposition is as follows:

10 10 8

[i 5 i 1 4 6 = [i 5 i l 0 0 +1099 [3 0 ! 1 2 5 46

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 291

Indeed, the maximum row and column sum of the last matrix has decreased by
ll = 6. Computing again the cost matrix for the bottleneck assignment problem,
we get

0 0 2

[i 0 i 1 4 6 + 011 [i 0 i l 0 0 = [i 0 ! 1 6 4

The bottleneck assignment (of value 12 = 5) is indicated by the underlined
elements. Thus, the second matrix can be subtracted:

Ii~ 11 I i ~ 0 5 + I i ~ 4 1
Continuing this process, we get

I i ~ 41 11 I i ~ o 2 + I i ~ 2~ + I I~ 0~ o 1
Thus, we have q = 5 matrices with (ll, 12, 13, 14, 15) = (6, 5, 2, 2, 1). - �9

Example 2: A typical sequence of lk 'S , which arose in a randomly generated test
example, a 10 x 10 matrix with u* = 51, was as follows:

7 7 6 6 5 4 3 2 2 2 1 1 1 1 1 1 1

with q = 17 matrices.

The fastest known algorithm for the bottleneck assignment problem is due to
Gabow and Tarjan (1988) and takes O(nS/Zx/~ n) time. This has to be multi-
plied by the number q of matrices to get a total complexity of O(QnS/Zx/~g n)
for method I I .

The above example exhibits two properties of the sequence 11, 12 lq:

- The sequence is decreasing (in the order in which it is generated);
- There are no gaps between successive values, and near the end of the sequence,

the small numbers occur repeatedly.

292 G. Rote and A. Vogel

The first property is clear: If we had I k < lk+ 1 then, by exchanging lkP k and
lk+lP k+l in the summation ~,=1 lk Pk > U, we see that we could as well have
taken pk+l before p k and thus 1 k is not the true value of the k-th bottleneck
assignment problem. The second property is not necessarily true but it is typical.
It certainly depends on the size of the matrix elements. But these elements are
scaled down to small integers in step (b) before we apply the decomposition;
thus, even if gaps appear, they can be expected to be small.

These observations suggests a different approach: Test for successive values of
I k in decreasing order, starting with an upper bound L, on 11, e.g., the largest
matrix entry. Each test amounts to finding a complete bipartite matching. For
this purpose, we can use the procedure of Hopcroft and Karp (1973), which
requires O(n 5/2) steps. After a successful test, we get a new solution matrix pk,

and, after reducing U, we can try the same value lk again. If we don't find a
complete matching, we reduce l k by 1 and try again. In this case, we can take the
maximum matching from the previous iteration as a starting solution.

Thus, there will be q successful tests and at most f, unsuccessful tests. Thus,
we get a total complexity of O((q + L)nS/2). E can be bounded by u*, but it is
usually much smaller. We could get L by solving one initial bottleneck assign-
ment problem to compute 11. Thus we can state the complexity of method II:

Theorem 2: Method II can be carried out in O((q + ll)n 5/2) time or in
O(q lx~ n" n 5/2) time. �9

In our computational experiments we have additionally reduced l k in each
step, if necessary, in order to ensure that the graph defined by (3) has no isolated
vertices. This was sufficient to eliminate most of the unsuccessful tests, see
section 3.4. Therefore, it would not have paid off to use Gabow and Tarjan's
method for the bottleneck assignment problem, and we have only used the
Hopcroft and Karp algorithm in our implementation of method II.

It is interesting to compare our approach to the heuristic of Balas and
Landweer (1983) (also proposed in Gopal and Wong (1985)), who also use the
bottleneck assignment problem as a subroutine in their algorithm. However,
they minimize the largest entry uij among the remaining entries, whereas we
maximize the smallest entry of a modified matrix in each step. Thus, in a certain
sense, our approach is opposite to that of Balas and Landweer: We find the
largest part in the decomposition first, whereas they start with the smaller parts.

2.4 Method I I I - Even Greedier: Maximum Network Flow

The sequence of example 2 shows that many matrices p k belong to a group of
equal I k values. By solving a maximum flow problem on a suitably defined graph,

A Heuristic for Decomposing Traffic Matrices in T D M A Satellite Communicat ion 293

we can try to determine all permutation matrices pk which belong to a group of
equal Ik'S simultaneously. Instead of looking for one permutation pk with a given
value of lk we try to find as m a n y as possible. A sum of g matchings corresponds
to a flow in a bipartite network with n + n vertices where each row node has a
supply of g units and each column node has a demand of g units.

In order to determine capacities we have to make the following consider-
ations: An entry (i , j) which is used in a permutation pk can "use up resources"
of two kinds:

- It can reduce u u by lk (in case u u > Ik).
- It can also reduce the slacks u* - r~ and u* - Q of the row and column to

which it belongs.

We have to model these two kinds of resources by two kinds of arcs (cf. figure
1). The network has two nodes for each row i: A regular source node r i and a
"slack" node ~i. Similarly, there is a sink node cj and a column slack node ~j for
each column j. For each entry u u we have now two arcs: There is a "direct" arc
from ri to Q of capacity luu/lg j . This capacity counts how often a permutation
may use the entry u u in the first way, i.e., by reducing u u. In addition, there is a
"pseudo-arc" from ~ to ?j of infinite capacity. Using this arc corresponds to using
an entry in the second way, i.e., reducing the slacks u* - r~ and u* - cj by Ik. This
usage is restricted by the capacities of the "slack" arcs from h to f~ of capacity
[.(u* - - ri)/lk. 1 and from ~j to Q of capacity L(u* - cj)/lkJ, which precede and
follow the pseudo-arc.

It is easy to see that a flow in this network which satisfies a constant supply
and demand of value g at each source and sink vertex, respectively, corresponds

|

L(,.,* - . . . i (- 3

c)/tkl

Fig. 1. The network for the max imum flow problem (initial version). From the middle level, only two
representative arcs are shown.

294 G. Rote and A. Vogel

to a set of g permutation matrices with weight I k which can be continued to a
duration-optimal solution. (Equation (3) would suggest to use a bipartite graph
with n + n nodes and a capacity of L(u* + uij - max{r~, @) i l k] for each arc (i , j) .
An example showing that this would not lead to the correct result is contained
in the report Rote and Vogel (1990).)

In addition to the two uses of an entry that have been discussed, there is also
a "mixed" use of an entry (i , j) by a permutation pk: When I k > Uij but u~j ~ 0,
this reduces both u o and the slacks u* - rg and u* - cj. However, we cannot
model this in our network without getting fractional capacities. Thus, as we have
defined the network so far, it is possible that there is not even a single matching
(i.e., a flow with 9 = 1) in the network although one should exist according to
criterion (3) which was used in method II.

Therefore we make the following modification:

Whenever u* - ri < Ik, we set the capacity of the slack arc (r~, P~) to 1
instead of 0, but at the same time we eliminate all arcs out of ~ for
which uij > lk or uq + u* -- r i < I k.

We do the same for all columns. In this way we have ensured that, if an entry u~j
should be usable by criterion (3), then there is a way to send at least one unit of
flow from ri to cj: If uq > lk then we can use the direct arc; otherwise we can use
the corresponding pseudo-arc. If the above modification is carried out for a node
?~, only one of the arcs ff~, ?j) out of ~i can be used in a feasible flow, reducing the
slack of row i and possibly the entry u w There is no parallel direct arc (r~, cj) with
positive capacity that would also decrease ugj.

We can even allow some more arcs, as follows:

When we set the capacity of the slack arc (r~, fi) to 1 instead of 0, we
eliminate only those arcs out of ~ for which (u;j mod Ik) + u* -- r~ < Ik,
(and similarly for the columns).

This rule will clearly not eliminate more edges than the former rule. Here the
remainder (uij mod Ik), which cannot be "used up" by the flow on the direct edge
(ri, c~) of capacity LuUlk.l, is put together with the slack u* - r~ to see whether a
total of Ik can be reached.

Let us now summarize method III to find permutation matrices of weight I k
into which we can decompose the matrix: We set up the network as described
above and look for the largest value of g such that a flow satisfying all supplies
and demands of value g exists. This value g is the number of permutation
matrices that we get. To find these matrices, we have to decompose the flow that
we have found into "permutation flows". When we add up the flow on each arc
and its corresponding pseudo-arc and interpret this as the multiplicity of an edge
(r~, cj) we get a bipartite multi-graph which is regular of degree g. This graph can
be decomposed into g complete matchings, for example by the coloring tech-
niques of Cole and Hopcroft (1982), which we used in method I.

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 295

If g > 0, we have to try the same value of I k again, since we may have missed
some "mixed usage" of a matrix entry. If we got g = 0, the next weight Ik must
be smaller.

Example 2 (continued): For the same data as above, this improved algorithm
yields only 15 matrices instead of 17, with the following weight sequence:

(7 7) (6) (6) (5) (4) (3 3) (2 2) (2) (1 1 1 1)

Here, each parenthesis groups together all lk'S which were obtained in one suc-
cessful run of the maximum flow algorithm. There was one unsuccessful run,
with l k = 4. �9

One possible strategy to search for the maximum value of g is exponential
search: Try the values g = 1, 2, 4, 8, 16 until g is found to be too large, and
continue with binary search. In section 3, we shall describe the method that we
have implemented.

In theory, we may still be unlucky and find g = 1 or g = 0 at every step; thus,
method III may yield no savings with respect to method II. For dense graphs
(with O(n 2) edges), computing a maximum flow takes O(n a) time in the worst
case. In this time we can also afford to solve the bottleneck assignment problem
to ensure that we never get g = 0; the number of flow problems is at most the
number q of matrices, and we get the following upper time bound:

Theorem 3: Method I I I can be carried out in O(qn 3) time. []

The fastest implementation of method III would probably be a hybrid meth-
od. Initially, use the maximum matching algorithm of Hopcroft and Karp (1973).
Before repeated values of Ik'S can be expected to appear, switch to the maximum
flow techniques with some kind of exponential search for the correct value ofg.

2.5 Theoretical Implications of Method I I I

As a consequence of the maximum flow heuristic, we can improve the bound of
theorem 1. The following lemma is a variation of lemma 1. It has the additional
assumption that no matrix element is 0, but this assumption is only technical
and is not needed in the final theorem.

Lemma 4: A positive integer n • n matrix U with maximum row and column sum
u* can be decomposed into at most F(u* + n)/2] weighted permutation matrices.

296 G. Rote and A. Vogel

Proof: First we "fill up" U by enlarging some entries so that all row and column
sums become equal. This is always possible as the problem of finding the correct
integer numbers to add to the entries of U is just a transportation problem.

Then we set up the network for the flow problem as described above, for the
weight 11 = 2. Since all slacks are zero, slack nodes and pseudo-arcs can be
ignored. By the max-flow-min-cut theorem, a flow satisfying all supplies and
demands exists if and only if the following cut condition is satisfied for all subsets
X of nodes:

total supply in X - total demand in X < capacity of the cut (X, _~) . (4)

Here, the cut (X, X) consists of all arcs going from a node in X to a node not in
X, and its capacity is the sum of the capacities of these arcs.

Now let X = R w C be an arbitrary node set, where R =_ {rl, rz r,} and
C ~_ {ca, c2 c.} are the row nodes and the column nodes of X. We denote
their complements by R = {rl, rz r.}\R and C" = {cl, r c,}\C. As the
supply of each row node and the demand of each column node is 9, (4) can be
written as follows:

g I R l - g l C l ~ c (X , X) : = ~ ~ L u , j / 2 3 . (4')
ri~R cj~C

The right side can be bounded as follows:

R -- 2 R

Now we use the positivity assumption, adding

(n - IRI)" ICI - Z ~ % ~ 0
g c

to the last expression. We get

c(X,X)>~" u i j - ~ c % - l R l . n + l R l ' l C l + n ' l C l - l R l ' l C l

= ~' u i j - ~ ~ u , j - n'(lRI - [CI)
RuR C

1 u* - n
= ~-{[R[.u* - [C [' u * - n.([R] -[C[)} = ([R [- [C [) ' ~

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 297

Thus, ifg < (u* - n)/2 the cut condition is certainly fulfilled for all cuts; therefore
we can find at least g > I_(u*- n)/2J permutation matrices with weight 2,
reducing u* to u* - 2g. The total number of matrices is now

1
Lemma 4 has the additional assumption that no matrix entries are zero. To

apply it, we have to run the heuristic with the modification that, in step (b), zeros
are rounded upwards to 1. Lemma 2 is still true because relation (2) also holds
for t~i = 0 and u~ = 1.

Theorem 4: An n x n matrix T can be decomposed into a weighted sum of no more
than Q permutation matrices (Q >_ n) with a total duration that is within a factor
of (Q - n/2)/(Q - n + 1/2) of the value t* that is obtainable without restriction on
the number of matrices in the decomposition. The decomposition can be found in
time O(n 3 q- Qn log n).

Proof: We choose F as the smallest value such that u* < 2Q - n, where U is now
defined by u o. := max { [tiJF], 1 }. Lemma 2 with M = 2Q - n and lemma 4 give
the result. As for the running time, we have one maximum flow problem and two
applications of the edge-coloring procedure of lemma 1. �9

Note that in the theorem we start with 11 = 2 and not with the largest possible
ll as in methods II and III. The following matrix shows that this is indeed
necessary for achieving the claimed bound.

" 3 1 1 2 2 2 2

1 3 1 2 2 2 2

1 1 3 2 2 2 2

2 2 2 4 1 1 1

2 2 2 1 4 1 1

2 2 2 1 1 4 1

2 2 2 1 1 1 4

The largest permutat ion matrix which we can remove is the identity matrix with
multiplicity 11 = 3. Continuing the decomposition gives a total of q = 11 matri-
ces, whereas lemma 4 guarantees an upper bound of 10 matrices. The example
is worked out in detail in the report Rote and Vogel (1990).

298 G. Rote and A. Vogel

2.6 Comparison of the Three Methods

Method I is by far the simplest and fastest, but its practical performance is not
far from the theoretical bound, and thus will usually be too weak for practical
purposes. It is used as a subroutine in method III.

Methods II and III are similar in spirit. Method III explicitly formulates the
problem of finding as many permutation matrices pk with a given value of Ik
as possible as a single problem. This can certainly be no worse than selecting
these matrices one by one as in method II, but it is usually better: If there are
many matrices with equal lk there are many possibilities for the first complete
matching. Method II chooses an arbitrary one, which remains fixed afterwards,
without regarding the effect on subsequent solutions. This is avoided in method
III. In this sense, method III is better at being greedy than method II.

3 Implementation of the Heuristics and Computational Results

We have programmed methods II and III and applied them to randomly gener-
ated test problems of various sizes in the range from n = 10 to n = 100. We have
tried to get approximately q ~ 2n matrices. We shall first describe our imple-
mentation and then report the computational results.

When discussing the quality of the solution of various methods and the effect
of different implementation decisions, we shall measure the quality of a solution
by the relative excess (d - t*)/t* of the total duration d over the lower bound t*.
This is an upper bound on the error of the heuristic relative to the optimal
solution; since we don't know the optimal solution, we take the lower bound t*.
Thus, when we say that the relative excess has decreased by 40~o, for example,
this would mean that an instance with t* = 100 which previously had a solution
with total duration d = 110 has now a solution with d = 106.

3.1 Step (a): Finding the "Unit" F

The theoretical derivations in section 2 used the bounds q < u* or q <
[(u* + n)/2] on the number q of generated matrices. In practice these bounds are
too pessimistic, and thus it makes no sense to try to achieve a specified value of
u* exactly. So we tried to achieve u* ~ M, where M is an input parameter of the
program which was determined experimentally. (M had to be taken between
about 20n and 70n to get q ~ 2n matrices, depending on n and on the method.)

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 299

We then computed F by the formula

F = ~ M - (n - 1) + ' (5)

which is the average between the lower and the upper bound for the correct
value of F (cf. section 2.2), and we set u~j := [tiflF]. We always accepted the
resulting value of u* and continued the computation with this value u*. In our
experiments, u* never deviated more than 1~ from the target value M except in
two instances, and we found this acceptable. In practice, when one is not satisfied
with the final resulting number q of matrices, one can go back to the beginning
and adjust F.

On the other hand, we did not simply accept the value F that we had: We tried
to reduce it as much as possible while still keeping the same u*. This F-correction
step was carried out by a method which is inspired by the methods described in
section 2, but simpler and more practical:

We select the maximum of all entries t~/uij. (This entry will be the first element
u~j which will increase to u~j + 1 as F decreases gradually.) If this element belongs
to a critical row or column (i.e., r~ = u* or cj = u*), u~j is not allowed to increase
and thus F must not decrease below t~j/u~j: We stop with this value as the value
of F. Otherwise we set u~j := u~j + 1, update r i and cj accordingly, and repeat the
whole procedure.

We can speed up this repeated search for the maximum by computing an
initial lower bound F 0 for F: Fo is the maximum of tii/uij over all elements in
critical rows and in critical columns. Elements t~j/u~i which are < Fo need not
be considered in the search for the maximum. Whenever we make a new row or
column critical we can try to raise Fo in order to further reduce the search effort.

We have implemented the search for a maximum among the set of entries
t~j/u~i as a sequential search in a linear list. This simple procedure was sufficient,
as the average effort for the F-correction step was always less than 59/o of the
total time for the heuristic. In many cases, the list which had to be searched for
a maximum was already empty initially, and thus the matrix U did not have to
be changed.

3.2 Step (c): the Decomposition

In step (c), we never used an explicit bottleneck assignment procedure. We rather
used the simple heuristic of assuring that no vertex is isolated, as discussed after
theorem 2 in section 2.3. This inexpensive starting procedure is used in published
codes for the bottleneck assignment problem, e.g. in Burkard and Derigs (1980),
chapter 2. As the results showed, we could thus reduce the number of graphs that

300 G. Rote and A. Vogel

were found to contain no matching to a small fraction. For finding matchings
we used the method of Hopcroft and Karp (1973).

In method III, step (c) contains maximum flow problems. For finding the
largest parameter value g for which the network of section 3.4 has a feasible flow,
we used the algorithm of Dinic, which is not the theoretically fastest, but which
has been regarded as the fastest in practice (of the traditional algorithms, at
least). With this algorithm we successively tested the values g = 1, 2, 3, 4, ... by
incrementally sending an additional unit of flow into each source vertex.

When we find that no feasible flow for some supply and demand value g exists
we have to undo the flow augmentations since the last "valid" flow (with supplies
and demands of value g - 1), because we need this flow pattern for decomposing
it into permutations (unless g = 1, of course, in which case we can throw away
the whole graph and decrease Ik by one.) We have solved this problem by storing
all flow changes in a list at the same time as we carry them out. The maximum
required length of this list, for 100 x 100 matrices, was 297 in all our test runs.
It is possible that other maximum flow algorithms would have improved our
running times, but as our primary goal was to investigate the quality of the
solutions, we did not try alternate implementations.

The decomposition of the flow pattern into matchings was not done by the
very fast edge coloring techniques as suggested in section 2.4, but by applying
the algorithm of Hopcroft and Karp g times in succession. The reason was that
we had already an implementation of this algorithm from method II. The
average computation time for this step in our implementation was always less
than 10 percent of the total computation time, which is tolerable for an experi-
mental implementation.

3.3 Step (d): Adjusting the Solution

Step (d) has not been discussed at all so far. Note that the performance of steps
(a)-(c) is mainly determined by M, since the total duration d after step (c) is Fu*;
and since u* ~ M, and F is given by (5), we have

(d- t*~t*
(n - 1)/2

M - (n - 1)

A minor influence comes from the F-correction in step (a), which improves F and
makes the quality a little better than the above estimation. The decomposition
method in step (c) has the strongest effect on the quality, but only indirectly, by
allowing a larger value of M.

Step (d) could be solved optimally as a.linear program with n I inequalities
and q variables 11, 12 lq, by just using formulation (1), where the matrices

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 301

p1, p2,..., pq, which are given as the output of step (c), determine the coefficient
matrix. The values 11, 12, . . . , lq which are given by step (c) play no role in this
process except possibly as a starting solution.

With this implementation, step (d) is actually not necessarily a "downward
adjustment" of the values lk, as described in section 2. In fact, it is nothing
but the original problem with a restricted set of permutation matrices.
(Lewandowski, Liu, and Liu (1983) and Burkard (1985) have considered the case
of 2n given permutation matrices which correspond to a pair of orthogonal
Latin squares. In this case the linear program has a special structure which can
be used.) We have tried the linear programming approach on a couple of
examples, using an experimental code for a numerically stable simplex algorithm
developed at our institute by Zhong-Liang Yu. However, the running times were
prohibitively high, and thus we did not pursue this direction further.

In our experiments we just used a simple approximation procedure: We
successively lower 11, 12, . . . , lq as much as possible while still maintaining the
relation ~,=1 Ik Pk > T. This procedure takes O(nq) steps. We also tried to run
through the lk'S in reverse order or in random order, but on the average the
natural order gave the best results. This simple implementation of step (d)
reduced the relative excess (d - t*)/t* by about fifty percent for n = 10 and by
about ten percent for n = 100. For method III, the reduction was only about five
percent for n = 100.

Let us finally discuss the mutual influence between step (d) and the F-
correction in step (b). One might wonder whether computing a smallest F which
gives a certain value of u* in step (a) is really necessary in view of step (d). Of
course, the total duration F" u* after step (c) decreases, but one might think that
step (d) might diminish the effect of computing the tightest F. A parallel series of
test runs which took F directly from (5) without subsequent correction showed
that the effect of the F-correction is reduced by step (d). In most cases the
F-correction step improved the duration a little; the improvement was smaller
for larger n: On the average, it reduced the relative excess of the duration over
the lower bound t* by one fifth for n = 10 and by one twentieth for n = 50. Only
in some rare cases did the solution with F-correction have a slightly longer
total duration than without it; thus, we report only the results of the runs with
F-correction.

3.4 Computational Results

For method II, we created matrices of various sizes n, whose elements were
uniform random numbers selected from the range {1, 2 ,100}. The results,
which are shown in table 1, are the averages of 100 instances for each size n. M
is the desired value of u* which was given as input to the program. As mentioned
in section 3.1, the actual value of u* fluctuates very little about M.

302 G. Rote and A. Vogel

Table 1. Computational results of method II. Average results of 100 matrices each, with entries in the
range 1-100

n M q failures

10 220 20.10 (18-23)
15 340 30.39 (28-33)
20 450 40.61 (39-43)
30 700 60.27 (58-63)
40 1050 80.68 (77-85)
50 1400 100.81 (98-104)
60 1750 120.47 (115-124)
80 2600 160.34 (156-165)

100 3900 201.77 (196-208)

time

4.8 0.20
4.6 0.55
3.7 1.16
2.2 3.40
2.0 7.57
1.2 14.07
0.9 23.51
0.6 53.09
0.7 100.57

(d - t *) / t * (d - t *) / t *
(B&L)

1.007% 7.84%
1.328% 7.86%
1.480% 5.13%
1.648% 5.47%
1.596% 4.09%
1.504% 2.68%
1.460% 2.36%
1.375% 2.62%
1,121% 1.78%

The values which characterize the quality of the solution are q, number of
matrices in the decomposition, and the total duration d. As mentioned above,
we chose M in such a way that q would be about 2n. The table, which also
includes the range of values q that appeared in the 100 instances, shows that q
is quite stable. The variation of q is still much larger than the variation of u*,
and it is mostly due to step (c).

The sixth column shows the second factor of the quality, the total duration,
normalized in terms of the relative excess, in order to make the results compara-
ble for different types of matrices. For contrast, the last column contains the
results of the heuristic of Balas and Landweer (1983) for decomposing into only
q = n matrices. Of course, this is not a fair comparison because this heuristic
solves a more restricted problem. Still, one can see how much may be gained in
total duration by allowing more than n matrices. Balas and Landweer (1983)
also report that a variation of their algorithm for q = 2n matrices achieved
an average relative excess of 2.19% on random 20 x 20 matrices of the same
kind as we used. In this case, with 1.48%, our algorithm is clearly superior.
Note the peak of the relative excess at n = 30. We have no explanation for this
phenomenon.

The fifth column shows the CPU-t ime in seconds. The programs were written
in PASCAL and run on a DEC VAX 11/785 computer. The average times grow
slower than O(n3), which is much better than the behavior of O(n 3"5+~) predicted
by theorem 2.

The column entitled "failures" shows the number of unsuccessful trials, i.e., the
number of graphs in which no matching was found. Thus, the total number of
matching problems solved is q plus the number of failures. This number was
often zero, and the maximum of all instances (of method II) decreased from 15
for n = 10 to 4 for n = 100. (For method III, the situation was similar.) The small
numbers in this column, especially for larger n, show that the simple rule of
decreasing lk until the graph has no isolated vertices is a sufficient substitute for
the bottleneck assignment algorithm, at least for the random examples which we

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 303

Table 2. Computational results of method III (the maximum flow method). Average results of 100
matrices each, with entries in the range 1-1000

n M q flows failures time (d - t *) / t *

10 350 20.15 (17-22) 20.6 5.1
15 520 29.74 (27-32) 24.5 3.4
20 720 39.48 (36-42) 29.2 2.5
30 1200 59.59 (56-62) 38.0 1.5
40 1800 80.04 (75-86) 46.8 1.0
50 2500 100.39 (96-105) 55.3 0.6
60 3200 119.86 (114-126) 63.3 0.6
80 5000 160.28 (154-166) 78.8 0.3

100 7000 200.25 (192-208) 93.5 0.3

0.87
2.18
4.49

12.68
27.49
51.31
84.62

193.25
361.22

0.598~
0.870~
0.993~
1.014~o
0.962%
0.884~
0.847~
0.743%
0.683~

tried. This is in accordance with the theory of random graphs, where it is known
that the probability that the procedure which we used produces a graph which
has a perfect matching converges to 1 as n goes to infinity, see Bollobfis and
Thomason (1985) or the book of Boll0b~is (1985), theorem VII.l, p. 158. This
result holds under the assumption that the matrix elements are drawn indepen-
dently at random from the same distribution. It is therefore not directly applica-
ble to our algorithm because we repeatedly modify the matrix and destroy
independence even if it was satisfied for the initial matrix. When we compare our
failure rates with the empirical results of Bollob/Ls and Thomason (1985), table
7, p. 60, we see that we have in fact much fewer failures than might be expected
from carrying over these results in a straightforward way. One reason which
accounts for this discrepancy is that our matrix entries as defined by (3) are small
integers by construction. Thus, whenever we decrease the threshold Ik by 1, a
whole bunch of new edges comes into the graph. This means that we usually end
up with more edges than if we would add edges strictly one by one in random
order, as prescribed by the model of Bollobfis and Thomason.

Table 2 shows the results of method III, the maximum flow method. Since
method III is more successful in achieving a small number of matrices, we could
allow as larger value of u* (see the second column). Since this u* would be of the
same order of magnitude as t* for matrices with entries in the range 1-100, we
generated the entries between 1 and 1000. As M is chosen larger, we may expect
an improvement over method II (cf. the remarks at the beginning of section 3.3).
The last column confirms that this is indeed true. Note again the mysterious
peak of the relative excess about n = 30. The column entitled "flows" gives the
number of flow problems which had to be solved, including the unsuccessful
ones. One determination of the maximum value of g for which the network has
a feasible flow is counted as one flow problem. For large n, the number of flow
problems is clearly smaller than the number q of matrices.

The algorithm takes longer than method II by a factor of about 3.5. This is
caused by the greater overhead for building the more complicated network and
for the maximum flow algorithm.

304 G. Rote and A. Vogel

Table 3. The effect of the range of the matrix entries t u on the relative excess with method III. The
results are averages of hundred 50 • 50-matrices with M = 2500

range of values for t~j q

1-100 99.84
1-1000 100.39
1-10000 100.30

flows failures time (d - t *) / t *

54.87 0.69 52.22 0.827~o
55.30 0.59 52.49 0.884~o
55.32 0.71 52.30 0.890~

Table 4. Method III applied directly to the matrix T. Average results of 100 matrices each

entries in the range 1-1000

10 27.90 (24-33)
15 42.64 (38-47)
20 56.84 (53-62)
30 85.36 (81-93)
40 113.33 (108-120)
50 140.42 (135-146)
60 166.65 (162-172)
80 217.98 (210-225)

100 267.19 (261-276)

failures time

112.36
97.71
55.31
23.32
14.37
9.23
6.73
4.13
3.23

3.65
7.45

10.52
22.21
43.88
78.95

126.62
282.10
516.13

entries in the range 1-10000

32.76 (25-39)
51.33 (45-59)
69.21 (62-76)

105.51 (100-111)
140.95 (137-147)
175.41 (169-181)
209.55 (199-218)
275.20 (267-283)
338.01 (328-346)

failures time

1102.67
956.10
570.96
243.63
159.66
95.46
69.91
36.51
27.37

26.41
47.30
51.31
63.35
96.15

138.65
202.68
403.20
730.12

We suspected that the good performance of the methods might perhaps be due
to the small range of integer values from which the elements of the traffic matrix
were taken. Thus we ran a series of test runs with 50 x 50 matrices with entries
f rom various ranges. The results, which are presented in table 3, show that there
is at most a small influence on the relative excess. The other parameters are also
quite unaffected by the range.

Since method I I I was so successful in getting few matrices we also tried it
directly on the generated matrices T, wi thout intermediate scaling. This always
leads to a decomposi t ion with optimal duration. The results are presented in
table 4. We can see that the number of matrices depends on the size of the matrix
elements, a l though perhaps to a lesser extent than might be expected. This shows
clearly that the scaling approach is definitely a good idea to keep the number of
matrices low.

The numbers in table 4 are in accordance with experiments of Inukai (1979)
who reports that his heuristic produces an average of about q = 30 matrices for
hundred randomly generated 10 x i0 problems with integer entries in the range
0-1000. Balas and Landweer (1983) ment ion that they could achieve an average
relative excess of 1.44~ for q = 3n matrices and 0 .89~ for q = 5n matrices in the
decomposi t ion of r andom 20 x 20 matrices with entries in the range 1-100.
With our algori thm we could get to the lower bound t* (i.e., achieve 0~o) with at
most 3n matrices in 98 out of 100 runs and in all cases with less than 5n matrices,
even with entries in the range 1-1000.

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 305

As the number of unsuccessful tests shows, the simple ideas that worked so
well in the runs of tables 1 and 2 to keep the number of failures low were no
longer sufficient, particularly for smaller n. In the examples of table 4, there were
large gaps between successive weights Ik, which were not always bridged by the
simple rule of ensuring that the graph has no isolated vertices; using faster
bottleneck assignment algorithms would have speeded up these runs.

4 Conclusion

The heuristics of sections 2.3 and 2.4 for duration-optimal decomposition
(methods II and III) were introduced as subroutines inside a scaling heuristic.
However, the computational results reported in section 3 encourage us to believe
that they are interesting in their own right.

We could have simplified our algorithms a lot by filling up the traffic matrix
to constant row and column sum. For example, in method II, the cost matrix
of the bottleneck assignment problem would just be U itself; in method III,
we would not have to double the number of nodes and arcs of the network.
Whereas this approach would be satisfactory from a theoretical point of view
(cf. section 2.5 of Burkard (1985)) it amounts to giving away some freedom that
is inherent in the problem. Our algorithms take this freedom into account in
the form of column and row slacks and take advantage of it to obtain better
solutions.

Our approach is greedy since it tries to minimize the total number of matrices
by removing large matrices out of the traffic matrix. This is similar in spirit to
earlier heuristic algorithms for duration-optimal decomposition by Inukai
(1979), algorithm TSA-2, and by Ito, Urano, Muratani, and Yamaguchi (1977).
(For the latter algorithm, see also Inukai (1978).) On the other hand, we solve
the individual steps of the greedy algorithm, i.e., maximizing the weight of the
next matrix in the decomposition, optimally. This is in contrast with the other
mentioned algorithms, where there was no clear formulation of an objective
function for the corresponding steps, which were solved in an ad-hoc greedy-
type manner.

Suppose that we have chosen to implement step (d) by linear programming.
Then, after the matrices pk and the durations lk have been determined in steps
(a)-(c), we can actually forget the values Ik. Thus one can look at the whole
procedure from a different viewpoint: Steps (a)-(c) appear as a preprocessing
phase in which the restricted set of matrices p1 Pq is selected from the set of
all permutation matrices for the "actual" optimization phase in step (d). With
this in mind, it makes no sense to insist that steps (a)-(c) yield a feasible solution
at all; on might for example try different rounding schemes in step (b), like
rounding to the nearest integer, or rounding downwards, or other "voting

306 G. Rote and A. Vogel

schemes", cf. Woodall (1986), Petit and T6rouanne (1990), or Balinski and
Young (1982). The only restriction is that no positive entry is rounded to zero.

We remark that, having implemented the linear programming formulation of
step (d), we were tempted to apply column generation techniques to add further
matrices to the decomposition, quite similar to Minoux (1986) (cf. also Ribeiro,
Minoux, and Penna (1989); these two papers solve a version of the problem
which is different from ours). However, since these ideas do not fit into the
context of this paper and since the computational experiments have been very
limited so far, we only mention them here.

The heuristics and exact algorithms proposed in the literature have solved
three types of variations of the matrix decomposition problem:

- decomposition into only n (or even fewer) weighted permutation matrices, so
that each entry in the traffic matrix is covered by only one permutation, see
Balas and Landweer (1983) or Gopal and Wong (1985). The problem treated
by Ribeiro, Minoux, and Penna (1989) is also similar;

- duration-optimal decomposition, e.g., Inukai (1979), Burkard (1985);
- decomposition with a small set (usually about 2n) of permutation matrices

which are given in advance, see Lewandowski, Liu, and Liu (1983).

Our bottleneck assignment heuristic and the maximum flow heuristic fall into
the second category. The scaling approach, however, allows to control the
number of matrices used, and thus it closes the gap between algorithms of the
first kind, which produce few matrices, and algorithms of the second kind, which
produce too many matrices, without having the restrictions of the third type of
algorithms.

R e f e r e n c e s

Balas E, Landweer PR (1983) Traffic assignment in communication satellites. Operations Research
Letters 2:141-147

Balinski ML, Young HP (1982) Fair Representation - Meeting the Ideal of One Man, One Vote. Yale
University Press, New Haven and London

Bollobhs B (1985) Random Graphs. Academic Press
Bollob~ts B, Thomason A (1985) Random graphs of small order. Random Graphs '83: First Poznafi

Seminar on Random Graphs, August 1983, (M. Karoflski and A. Rucifiski, eds.), Ann. Discr. Math.,
vol. 28, North-Holland, pp. 47-97

Burkard RE (1985) Time-slot assignment for TDMA-systems. Computing 35:99-112
Burkard RE (1991) Time division multiple access systems and matrix decomposition. Proceedings of

the Fourth European Conference on Mathematics in Industry (ECMI 4), (H. Wacker and W.
Zulehner, eds.), B. G. Teubner, Stuttgart, and Kluwer Academic Publishers, Dordrecht, pp. 35-46

Burkard RE, Derigs U (1980) Assignment and Matching Problems. Solution Methods with FOR TRAN-
Programs. Lecture Notes in Economies and Mathematical Systems, vol. 184, Springer-Verlag

A Heuristic for Decomposing Traffic Matrices in TDMA Satellite Communication 307

Cole R, Hopcroft J (1982) On edge coloring bipartite graphs. SIAM J. Computing 11:540-546
Frederickson GN, Johnson DB (1982) The complexity of selection and ranking in X + Y and

matrices with sorted columns. J. Computer and System Sciences 24:197-208
Gabow HN, Tarjan RE (1988) Algorithms for two bottleneck optimization problems. J. Algorithms

9:411-417
Gopal IS, Wong CK (1985) Minimizing the number of switchings in an SS/TDMA system. IEEE

Trans. Comm. COM-33:497-501
Hopcroft JE, Karp RM (1973) An n 5/2 algorithm for maximum matching in bipartite graphs. SIAM

J. Computing 2:225-231
Inukai T (1978) Comments on 'Analysis of a switch matrix for an SS/TDMA system'. Proc. IEEE

66:1669-1670
Inukai T (1979) An efficient SS/TDMA time slot assignment algorithm. IEEE Trans. Comm. COM-

27:1449-1455
Ito Y, Urano Y, Muratani T, Yamaguchi M (1977) Analysis of a switch matrix for an SS/TDMA

system. Proc. I E EE 65:411-419
Lewandowski JL, Liu JWS, Liu CL (1983) SS/TDMA time slot assignment with restricted switching

modes. IEEE Trans. Comm. COM-31 : 149-154
Minoux M (1986) Optimal traffic assignment in a SS/TDMA frame: a new approach by set covering

and column generation. RAIRO Recherche Op~rationelle/Operations Research 20:273-286
Petit JL, T6rouanne E (1990) A theory of proportional representation. SIAM J. Discrete Math.

3:116-139
Rendl F (1985) On the complexity of decomposing matrices arising in satellite communication. Oper.

Res. Lett. 4:5-8
Ribeiro CC, Minoux M, Penna MC (1989) An optimal column-generation-with-ranking algorithm

for very large scale set partitioning problems in traffic assignment. European J. Operational
Research 41 : 232-239

Rote G (1989) Eine Heuristik f/ir ein Matrizenzerlegungsproblem, das in der Telekommunikation
via Satelliten auftritt (Kurzfassung). Z A M M . Z. angew. Math. Mech. 69:T29-T31

Rote G, Vogel A (1990) A heuristic for decomposing traffic matrices in TDMA satellite communica-
tion. Report 1990-73, Technische Universifiit Graz, Institut fiir Mathematik, February 1990

Tarjan RE (1983) Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia 1983

Woodall DR (1986) How proportional is proportional representation? Math. lntelligencer 8(4):36-
46

Received: April 1990
Revised version received: November 1992

