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Abstract: A heuristic for decomposing traffic matrices in TDMA satellite communication. With the 
time-division multiple access (TDMA) technique in satellite communication the problem arises to 
decompose a given n x n tramc matrix into a weighted sum of a small number of permutation 
matrices such that the sum of the weights becomes minimal. There are polynomial algorithms when 
the number of permutation matrices in a decomposition is allowed to be as large as n 2. When the 
number of matrices is restricted to n, the problem is NP-hard. In this paper we propose a heuristic 
based on a scaling technique which for each number of allowed matrices in the range from n to n 2 
allows to give a performance guarantee with respect to the total weight of the solution. As a 
subroutine we use new heuristic methods for decomposing a matrix of small integers into as few 
matrices as possible without exceeding the lower bound on the total weight. Computational results 
indicate that the method might also be practical. 

Key~ Words: Matrix decomposition problem, TDMA satellite communication, greedy heuristics, 
edge coloring, bottleneck assignment problem, voting systems, apportionment. 

1 Introduction 

1.1 Background and Description of the Problem 

In satellite communication, one satellite can serve several radio stations on 
earth. In order to allow signals to be sent from each radio station to each other 
radio station, the TDMA (time division multiple access) technique is used. At 
any instant, the satellite is set to a fixed switching mode: All radio stations 
transmit and receive data simultaneously, and the switching mode determines 
for each radio station the radio station which receives the data which the former 
transmits. In mathematical terms, a switching mode is a one-to-one mapping on 
the set of radio stations, i.e., a permutation. The satellite time-multiplexes regu- 
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lady between different switching modes in short intervals, according to a fixed 
cyclic schedule. 

The communication needs between the radio stations are given by a matrix 
T = (tij), the traffic matrix, t~j is the amount of information per time unit that 
has to be transmitted from the i-th to the j-th radio station. More information 
on the technical background can for example be found in Burkard (1985). We 
consider the problem of setting up a schedule for the satellite, i.e., a sequence of 
switching modes and a duration for each switching mode. Formally, the matrix 
decomposition problem can be stated as follows: 

Given an n x n matrix T = (tij) with nonnegative entries, find a decom- 
position of T, i.e., a sequence of permutation matrices p1, p2, . . . ,  pq 
and a sequence of nonnegative weights 11, 12 . . . . .  lq such that 

q 

T < ~ Ik Pk (elementwise) . (1) 
k = l  

The total duration d of the decomposition is given by 

d= ~ l  k . 
k = l  

The first goal in setting up a switching schedule is of course to keep the total 
duration as small as possible. On the other hand, every change of the switching 
mode incurs a certain overhead and loss of time. Therefore, the number of 
matrices, q, should not be too large. There is a trade-off between the two 
objectives, d and q. 

1.2 Related Results 

Inukai (1979) and Burkard (1985) have shown that the optimal total duration is 
equal to t*, the maximum row or column sum of the traffic matrix, but in general, 
a time-optimal decomposition may require up to n 2 - 2n + 2 matrices, which is 
too large for practical purposes. Burkard (1985) has also given an algorithm 
which takes O ( n  4)  steps and constructs a decomposition where the number q of 
matrices is at most n 2 - -  2n + 2, or, if T is an integer matrix, at most t*, which- 
ever number is smaller. 

It is clear that any decomposition must consist of at least n matrices, unless 
some entries in the traffic matrix are zero. Gopal and Wong (1985) and Rendl 
(1985) have shown that the problem of constructing a shortest decomposition 
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into at most n matrices is NP-complete. A closely related problem, which also 
tends to decompose the traffic matrix into few matrices, has been attacked by 
Ribeiro, Minoux, and Penna (1989). With a branch and bound procedure they 
could solve problems optimally for up to n = 15 cities, but their solution uses 
hours of CPU-time. 

Thus, it makes sense to look for heuristics. The currently best heuristic for 
decomposing into n matrices is due to Balas and Landweer (1983). Decomposing 
into a number q of matrices which is slightly larger than n has also been 
considered, for example by Lewandowski, Liu, and Liu (1983), who decompose 
into 2n matrices (which are given in advance), cf. also Burkard (1985), section 4. 
A more extensive review of results concerning the matrix decomposition prob- 
lem can be found in Burkard (1991). 

1.3 Results and Overview of the Present Paper 

In this paper (in section 2) we propose a simple and fast "scaling" heuristic for 
constructing a short schedule with a given upper bound Q on the number q 
of switching modes. (Thus we solve "problem 3" in the classification of Balas 
and Landweer (1983).) We can prove a relative error guarantee for the total 
duration d of the decomposition. The method is not applicable if Q = n or Q 
exceeds n only slightly. When Q is somewhat larger than n (of the order 2n or 3n), 
the error bound is still very crude, but it improves as the ratio of Q and n 
becomes larger. 

As a subproblem, we address the problem of decomposing a matrix under 
the constraint that the lower bound t* on the total duration has to be achieved; 
the number q of matrices remains as the objective function to be minimized. 
(This is "problem 1" in Balas and Landweer (1983).) The traffic matrices that we 
have in mind for this problem are matrices with small integer entries. Here we 
use two heuristics: one based on a bottleneck assignment problem and on 
matching techniques, and a more powerful one which solves maximum flow 
problems. 

As a side issue, we mention that one other subproblem that we have to solve 
has some interesting connections with voting systems. 

Section 3 describes an implementation of the proposed procedures and pre- 
sents the results of numerical experiments measuring the actual behavior of 
our heuristics (as opposed to the worst-case error guarantee). We compare our 
algorithm to the heuristic of Balas and Landweer (1983) for decomposing into 
only n matrices. 

The concluding section 4 discusses the merits of our heuristics and relates 
them to other algorithms from the literature. 

A preliminary version of this paper was presented at the 1988 Annual GAMM 
Conference in Vienna, and an extended abstract was published in Rote (1989). 
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2 The Heuristic 

G. Rote and A. Vogel 

Our algorithm is based on the simple idea of scaling the entries of the given 
traffic matrix and rounding them to small integers. A matrix with small integers 
will require a small number q of matrices for decomposition; theoretically, we 
will utilize the trivial upper bound t* on the number q of required permutation 
matrices. (Recall that t* is the maximum row or column sum of the traffic 
matrix.) 

Globally, the algorithm runs as follows: 
Input: A non-negative real n x n matrix T. 

(a) Choose some "unit" F > 0. 
(b) Round the entries of the matrix upwards to the next multiple of F: 

(c) Solve the matrix decomposition problem for the resulting matrix T (or 
equivalently, for the integer matrix (u~j):= (ftUF]) obtained by dividing 
through F). 

(d) The resulting decomposition can be adjusted downwards to compensate for 
the rounding up in step (b). 

The quality of the solution produced depends first of all on the choice of F in 
step (a). The idea is to choose F so large that the matrix (ui~) consists of small 
integers and only few permutation matrices are needed for its duration-optimal 
decomposition in step (c), and so small that the error incurred in the rounding 
in step (b) is not too large. By choosing F appropriately, we will be able to 
give a performance guarantee for the quality of the solution produced by the 
heuristic. 

Step (c) is the heart of the algorithm. The principal goal of this step, a 
duration-optimal decomposition, is relatively easy to achieve, but we also want 
few matrices, since their number will be the number of matrices that the solution 
will have. We shall discuss three methods for carrying out this step. 

2.1 Method I - Simple and Fast: Edge Coloring 

Before giving more details, we will formulate a couple of lemmas about the 
heuristic as stated so far. The first lemma repeats the already mentioned bound 
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on q for matrices with small entries and gives a possible implementation of step 
(c). 

Lemma I: An integer n x n matrix U with maximum row and column sum u* can 
be decomposed into q = u* permutation matrices in time O(u*n log n). 

Proof." We restrict the problem to decomposition into "unit" permutation matri- 
ces, i.e., we allow only weights lk = 1 in (1). This problem is essentially an edge 
coloring problem for a bipartite multigraph with vertices ri and c~ (i = 1, . . . ,  n), 
with uij parallel edges between r~ and cj. An edge coloring of this graph is an 
assignment of colors to all edges such that no two edges of the same color share 
a common vertex. An edge coloring corresponds to a solution of our matrix 
decomposition problem: The edges of one color form a matching, and the 
corresponding n x n adjacency matrix can be (arbitrarily) filled to a complete 
permutation matrix to get formulation (1). The number of colors is the number 
q of permutation matrices. 

It is well known that, in a bipartite (multi-)graph, the number of colors 
required (the chromatic index) equals the maximum degree, which is equal to u* 
in our case. Cole and Hopcroft (1982) gave an algorithm to find an edge coloring 
with this minimum number of colors in time O(E log n), where E is the number 
of edges. They described their algorithm only for simple graphs, but it is straight- 
forward to extend it to multigraphs. In this case E has to count the edges by their 
multiplicities. The upper bound nu* for the total multiplicity of all edges yields 
the claimed time bound. �9 

The bound q < u* of lemma 1 is tight if and only if u* < , as is 

proved in the appendix of Rote and Vogel (1990). However, the bound of 
the following theorem 1, which relies on this lemma, will be surpassed by 
theorem 4 anyway, and therefore this fact is not so important in the context of 
this paper. 

The next lemma relates F and the quality of the solution. 

Lemma 2: I f  F is chosen as the smallest value such that u* < M, for some given 
value M > n, then the following relation holds between the maximum row and 
column sum Fu* of  the rounded-up matrix and the corresponding value t* of  the 
original matrix: 

M 
Fu* < �9 t* . 

- M - n + l  
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Proof." As Uix = rt,jlF], the following relation holds between t o and u~j: 

Fuij > tij > F(uij - 1) . (2) 

If we would decrease F by a small amount,  the maximum row and column sum 
of U would jump above M. For  definiteness, let us assume, w.l.o.g., that this new 
maximum would occur in row 1: Then the first row sum would jump from 
r 1 := ~ j  u U to r 1 + n I > M, where n~ is the number of elements in the first row 
with ttj = Fuli. Using the right side of (2) for the remaining n - nl elements of 
row 1, we can write: 

So we get the claimed bound for the maximum row and column sum of F.  U: 

M M 
u*F < M F -  ( M -  n + 1)F < t* �9 

M - n + l  M - n + l  

Theorem I: An n x n matrix T can be decomposed into a weighted sum of no more 
than Q permutation matrices (Q >_ n) with a total duration that is within a factor 
of  Q/(Q - n + 1) of the value t* that is obtainable without restriction on the 
number of matrices in the decomposition. The decomposition can be found in time 
O(Qn log n). 

Proof: It is clear that u* can be made < n by choosing F larger than the largest 
matrix entry; as we make F smaller and smaller, u* will increase. By choosing F 
as the smallest value which gives u* < Q (as in lemma 2 with M = Q) and 
running steps (b) and (c) we get the bound for the quality. Lemma 1 yields the 
bound for the time complexity of step (c). Step (b) is trivial, and the time bound 
for step (a) will follow from lemma 3 in the next section. (We do not use step (d) 
to achieve our performance guarantee.) �9 

2.2 How to Determine F: Proportional Voting Systems 

We want to find the smallest value F such that the maximum row or column 
sum of the matrix [tiJF] is at most some given value M. We can do this by 
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looking at each row and column individually, finding the smallest F such that 
the sum of [t~j/F] in this row or column is at most M, and taking the maximum 
of all those F's. To be specific, let us look at the first row of T. We look for the 
smallest F such that 

[ t l j / F ]  < M . 
j=l  

This problem occurs in another application, namely in proportional voting 
systems and the theory of apportionment: Given n parties and a number tij  of 
votes for each party, M seats of a parliament have to be distributed to the parties; 
or the M representatives in a parliament are to be allocated to n districts, where 
tlj  is now the number of inhabitants in each district. The above method of 
allocation is known as Huntington's method of the smallest divisor, cf. e.g. 
Woodall (1982): F is the quota for one seat, and u~j := [tUF] representatives are 
allocated to the j-th party or district. (A related voting system, which is widely 
used in European countries is the method of d 'Hondt  or Jefferson method, which 
allocates Ltij/F j seats.) 

Algorithmically, we proceed by setting up the following array: 

t i i ,  t i i /2,  t i i /3,  ti1/4 . . . .  

ti2, ti2/2, tiz/3, t12/4 . . . .  

t l , ,  t l , /2, t i , /3,  t i , /4  . . . .  

If some element txj is 0, this element does not contribute anything; otherwise 
the following holds: If F is between the (l - 1)-st and the/- th  entry in row j (or 
equal to the l-th entry) then [tlj/F] = l; in other words, [qi /F] is one plus the 
number of elements in the row which are greater than F. Therefore, 

~ [ t lJF]  = n' + the number of elements in the array which are > F , 
j=l  

where n' is the number of non-zero elements. Thus we are looking for the small- 
est F such that at most M - n' elements are larger, i.e., F is the (M - n' + 1)- 
largest element in the array. 

We can determine the k-largest element in an array with n sorted rows 
by a method due to Frederickson and Johnson (1982), which takes 
O(n-max{1, log(k/n)}) time. If k > n this complexity increases with k. But by 
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computing some simple bounds for F we can ensure that we need only find the 
k-largest element with k < n. 

An upper bound on F is given as follows: 

ff := rl 
M - - n + 1  ' 

where r 1 = ~,Y=I t l j ,  because 

[ tu / f f ]  < ~ ( t l j / f f  -t- 1) = r l / f f  -b n = (M - n + 1) + n = M + 1 , 
j= l  j = l  

and thus ~ [tlj/F ] ~ M.  
If we remove from each nonzero row j of the array the first [q j / f f ]  - 1 

elements, we effectively remove all elements which are larger than if, and their 
number is M := ~Y=I [ t l J F ]  - n', which is between M - 2n' + 1 and M - n'. 
Thus F, which is the (M - n' + 1)-largest element in the original array, is the 
k-largest element in the reduced array, where k = (M - n' + 1) - M is between 
1 and n. 

The k-largest or the k-smallest element in an array with n sorted rows can be 
found in O(n) time, for k _< n, by the method of Frederickson and Johnson. Since 
we have to repeat the whole process 2n times (once for reach row and column) 
we get 

Lemma 3: For any given value M >_ n, the smallest value F such that the maximum 
row or column sum o f  the matrix [ t iJF] is <_ M can be found in O(n 2) time. �9 

A theoretically slower but simpler and more practical algorithm would select 
the k-largest element in O(k log n) time by putting the current element of each 
row in a priority queue and retrieving the elements of the array in sorted order. 
The resulting complexity of O(n 2 log n) would still by far be dominated by the 
time for step (c). As will be discussed in section 3, not even this level of sophisti- 
cated data structures was needed for our computational experiments. 

2.3 Method I I  - Greedy: Bottleneck Assignment 

The fast solution of step (c) by using edge coloring techniques yields a decompo- 
sition into u* permutation matrices, but there is no way to adapt this algorithm 
to use fewer matrices. In practice, we would like to have an algorithm which uses 
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as few matrices as possible, because this would allow us to choose F smaller than 
indicated by the worst-case bound of theorem 1, yielding a larger value of u* and 
thus losing less in the rounding-up of step (b). 

We try to reduce q by the following greedy strategy: We select the f i r s t  
weighted permutation matrix 11P~ in such a way that the maximum row and 
column sum of the remaining traffic matrix max(U - l i P  ~, 0) is reduced by as 
much as possible. This will reduce the bound u* on the number (and, hopefully, 
also the actual number) of further matrices which will be needed in the decompo- 
sition. We continue this strategy with the remaining matrix until we are done. 

Let us now discuss how to determine p1 and 11. We denote the i-th row sum 
and the j-th column sum by r~ and cj, respectively. For keeping the total dura- 
tion of the decomposition within u*, the maximum row and column sum of U 
must be reduced by 11 when the matrix min(l~P 1, U) is subtracted. This can be 
formulated as follows: 

If P~} = 1 then r ~ -  min{ll, u,j}  <_ u* - l~ and cj - min{l 1, uq}  <_ u* - l~ . 

Since ri < u* and cj <_ u*, this is equivalent to 

If px = 1 then rl - -  Uij <-- U* - -  1 1  and cj - ulj <_ u* - 11 , 

or in other terms: 

If p.i.,j=l then l l _ < u i j + ( u * - m a x { r i ,  cj}) . (3) 

Let us interpret this formula. For cr i t i ca l  rows (and columns), i.e., rows with 
ri = u*, 11 must be < uij. Non-critical rows and columns have some s lack  u* - ri 
or u * - c j ,  respectively, which allows to weaken this inequality for their 
elements: The smaller of the row slack and the column slack for each element 
can be added to the bound uij. 

Now, for given 11, a possible permutation matrix corresponds to a complete 
matching in a bipartite graph with n + n nodes, whose edges are given by the 
above conditions. The maximum value of/1 can be found by solving a bottleneck 
assignment problem whose cost matrix is given by the right side of (3). 

After determining P1 and 11, min(l~P 1, U) is subtracted from U. p2 and 12 are 
determined by the same procedure for the remaining matrix, and so on. 

E x a m p l e  1: Consider the matrix 

16 15 14 

1 4 1 3 5 6 1  U =  15 8 6 1 

16 5 4 7 
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We have u* = 16, and the row and column sums are given beside the matrix. 
Now, let us try 11 = 7, i.e., we want to reduce u* to 9. We cannot take the element 
5 of the first row, because then c2 could only be reduced to 10. However, we are 
allowed to take the element 6 of the first row, although it is smaller than l~ = 7: 
Both its row and its column have a slack of 2, and thus it would be sufficient to 
reduce this element by ll - (u* - max{r~, c3}) = 5, and u~3 > 5. So we finally 
get the following pattern of allowed elements: 

6 i1 
This matrix contains no permutation matrix. But if we try I 1 = 6, we get the 
following pattern of allowed elements: 

6 

in which the underlined elements form a matching. The matrix given by the 
right side of (3) is obtained by adding to each entry of U the minimum of the 
corresponding row slack and column slack: 

0 1 2 

[ !  5 ! 1 4 6  + 02 [ i  1 i l l  01 = [ !  6 i 1 4 7  

The row and column slacks are written adjacent to the second matrix, and each 
entry of that matrix is equal to the minimum of its respective slacks. The feasible 
entries for a given value of 11 are just those entries which are > 11 in the last 
matrix. 

Now, as the largest possible value of 11 is 6, and the first permutation matrix 
is as indicated above, the first step in the decomposition is as follows: 

10 10 8 

[ i  5 i 1 4 6  = [ i  5 i l 0 0  +1099 [ 3  0 ! 1 2 5  46 
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Indeed, the maximum row and column sum of the last matrix has decreased by 
ll = 6. Computing again the cost matrix for the bottleneck assignment problem, 
we get 

0 0 2  

[ i  0 i 1 4 6  + 011 [ i  0 i l 0 0  = [ i  0 ! 1 6 4  

The bottleneck assignment (of value 12 = 5) is indicated by the underlined 
elements. Thus, the second matrix can be subtracted: 

Ii~ 11 I i ~  0 5 + I i ~  4 1 
Continuing this process, we get 

I i ~  41 11 I i ~  o 2 + I i ~  2~ + I I~  0~ o 1 
Thus, we have q = 5 matrices with (ll, 12, 13, 14, 15) = (6, 5, 2, 2, 1). - �9 

Example 2: A typical sequence of lk 'S  , which arose in a randomly generated test 
example, a 10 x 10 matrix with u* = 51, was as follows: 

7 7 6 6 5 4 3 2 2 2 1 1 1 1 1 1 1  

with q = 17 matrices. 

The fastest known algorithm for the bottleneck assignment problem is due to 
Gabow and Tarjan (1988) and takes O(nS/Zx/~ n) time. This has to be multi- 
plied by the number q of matrices to get a total complexity of O(QnS/Zx/~g n) 
for method I I .  

The above example exhibits two properties of the sequence 11, 12 . . . . .  lq: 

- The sequence is decreasing (in the order in which it is generated); 
- There are no gaps between successive values, and near the end of the sequence, 

the small numbers occur repeatedly. 
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The first property is clear: If we had I k < lk+ 1 then, by exchanging lkP k and 
lk+lP k+l in the summation ~,=1 lk Pk > U, we see that we could as well have 
taken pk+l  before p k  and thus 1 k is not the true value of the k-th bottleneck 
assignment problem. The second property is not necessarily true but it is typical. 
It certainly depends on the size of the matrix elements. But these elements are 
scaled down to small integers in step (b) before we apply the decomposition; 
thus, even if gaps appear, they can be expected to be small. 

These observations suggests a different approach: Test for successive values of 
I k in decreasing order, starting with an upper bound L, on 11, e.g., the largest 
matrix entry. Each test amounts to finding a complete bipartite matching. For 
this purpose, we can use the procedure of Hopcroft and Karp (1973), which 
requires O(n 5/2) steps. After a successful test, we get a new solution matrix pk,  

and, after reducing U, we can try the same value lk again. If we don't find a 
complete matching, we reduce l k by 1 and try again. In this case, we can take the 
maximum matching from the previous iteration as a starting solution. 

Thus, there will be q successful tests and at most f, unsuccessful tests. Thus, 
we get a total complexity of O((q + L)nS/2). E can be bounded by u*, but it is 
usually much smaller. We could get L by solving one initial bottleneck assign- 
ment problem to compute 11. Thus we can state the complexity of method II: 

Theorem 2: Method II can be carried out in O((q + ll)n 5/2) time or in 
O(q lx~ n" n 5/2) time. �9 

In our computational experiments we have additionally reduced l k in each 
step, if necessary, in order to ensure that the graph defined by (3) has no isolated 
vertices. This was sufficient to eliminate most of the unsuccessful tests, see 
section 3.4. Therefore, it would not have paid off to use Gabow and Tarjan's 
method for the bottleneck assignment problem, and we have only used the 
Hopcroft and Karp algorithm in our implementation of method II. 

It is interesting to compare our approach to the heuristic of Balas and 
Landweer (1983) (also proposed in Gopal and Wong (1985)), who also use the 
bottleneck assignment problem as a subroutine in their algorithm. However, 
they minimize the largest entry uij among the remaining entries, whereas we 
maximize the smallest entry of a modified matrix in each step. Thus, in a certain 
sense, our approach is opposite to that of Balas and Landweer: We find the 
largest part in the decomposition first, whereas they start with the smaller parts. 

2.4 Method I I I -  Even Greedier: Maximum Network Flow 

The sequence of example 2 shows that many matrices p k  belong to a group of 
equal I k values. By solving a maximum flow problem on a suitably defined graph, 
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we can try to determine all permutation matrices pk which belong to a group of 
equal Ik'S simultaneously. Instead of looking for one permutation pk with a given 
value of lk we try to find as m a n y  as possible. A sum of g matchings corresponds 
to a flow in a bipartite network with n + n vertices where each row node has a 
supply of g units and each column node has a demand of g units. 

In order to determine capacities we have to make the following consider- 
ations: An entry ( i , j )  which is used in a permutation pk  can "use up resources" 
of two kinds: 

- It can reduce u u by lk (in case u u > Ik). 
- It can also reduce the slacks u* - r~ and u* - Q of the row and column to 

which it belongs. 

We have to model these two kinds of resources by two kinds of arcs (cf. figure 
1). The network has two nodes for each row i: A regular source node r i and a 
"slack" node ~i. Similarly, there is a sink node cj and a column slack node ~j for 
each column j. For  each entry u u we have now two arcs: There is a "direct" arc 
from ri to Q of capacity luu/lg j .  This capacity counts how often a permutation 
may use the entry u u in the first way, i.e., by reducing u u. In addition, there is a 
"pseudo-arc" from ~ to ?j of infinite capacity. Using this arc corresponds to using 
an entry in the second way, i.e., reducing the slacks u* - r~ and u* - cj by Ik. This 
usage is restricted by the capacities of the "slack" arcs from h to f~ of capacity 
[.(u* - -  ri)/lk. 1 and from ~j to Q of capacity L(u* - cj)/lkJ, which precede and 
follow the pseudo-arc. 

It is easy to see that a flow in this network which satisfies a constant supply 
and demand of value g at each source and sink vertex, respectively, corresponds 

| 

L(,.,* - . . .  i ( - 3  

c )/tkl 

Fig. 1. The network for the max imum flow problem (initial version). From the middle level, only two 
representative arcs are shown. 
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to a set of g permutation matrices with weight I k which can be continued to a 
duration-optimal solution. (Equation (3) would suggest to use a bipartite graph 
with n + n nodes and a capacity of L(u* + uij - max{r~, @ ) i l k ]  for each arc (i , j) .  
An example showing that this would not lead to the correct result is contained 
in the report Rote and Vogel (1990).) 

In addition to the two uses of an entry that have been discussed, there is also 
a "mixed" use of an entry ( i , j )  by a permutation pk: When I k > Uij but u~j ~ 0, 
this reduces both  u o and  the slacks u* - rg and u* - cj. However, we cannot 
model this in our network without getting fractional capacities. Thus, as we have 
defined the network so far, it is possible that there is not even a single matching 
(i.e., a flow with 9 = 1) in the network although one should exist according to 
criterion (3) which was used in method II. 

Therefore we make the following modification: 

Whenever u* - ri < Ik, we set the capacity of the slack arc (r~, P~) to 1 
instead of 0, but at the same time we eliminate all arcs out of ~ for 
which uij > lk or uq + u* -- r i < I k. 

We do the same for all columns. In this way we have ensured that, if an entry u~j 
should be usable by criterion (3), then there is a way to send at least one unit of 
flow from ri to cj: If uq > lk then we can use the direct arc; otherwise we can use 
the corresponding pseudo-arc. If the above modification is carried out for a node 
?~, only one of the arcs ff~, ?j) out of ~i can be used in a feasible flow, reducing the 
slack of row i and possibly the entry u w There is no parallel direct arc (r~, cj) with 
positive capacity that would also decrease ugj. 

We can even allow some more arcs, as follows: 

When we set the capacity of the slack arc (r~, fi) to 1 instead of 0, we 
eliminate only those arcs out of ~ for which (u;j mod Ik) + u* -- r~ < Ik, 
(and similarly for the columns). 

This rule will clearly not eliminate more edges than the former rule. Here the 
remainder (uij mod Ik), which cannot be "used up" by the flow on the direct edge 
(ri, c~) of capacity LuUlk.l, is put together with the slack u* - r~ to see whether a 
total of Ik can be reached. 

Let us now summarize method III to find permutation matrices of weight I k 
into which we can decompose the matrix: We set up the network as described 
above and look for the largest value of g such that a flow satisfying all supplies 
and demands of value g exists. This value g is the number of permutation 
matrices that we get. To find these matrices, we have to decompose the flow that 
we have found into "permutation flows". When we add up the flow on each arc 
and its corresponding pseudo-arc and interpret this as the multiplicity of an edge 
(r~, cj) we get a bipartite multi-graph which is regular of degree g. This graph can 
be decomposed into g complete matchings, for example by the coloring tech- 
niques of Cole and Hopcroft (1982), which we used in method I. 
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If g > 0, we have to try the same value of I k again, since we may have missed 
some "mixed usage" of a matrix entry. If we got g = 0, the next weight Ik must 
be smaller. 

Example 2 (continued): For  the same data as above, this improved algorithm 
yields only 15 matrices instead of 17, with the following weight sequence: 

(7 7) (6) (6) (5) (4) (3 3) (2 2) (2) (1 1 1 1) 

Here, each parenthesis groups together all lk'S which were obtained in one suc- 
cessful run of the maximum flow algorithm. There was one unsuccessful run, 
with l k = 4. �9 

One possible strategy to search for the maximum value of g is exponential 
search: Try the values g = 1, 2, 4, 8, 16 . . . .  until g is found to be too large, and 
continue with binary search. In section 3, we shall describe the method that we 
have implemented. 

In theory, we may still be unlucky and find g = 1 or g = 0 at every step; thus, 
method III may yield no savings with respect to method II. For  dense graphs 
(with O(n 2) edges), computing a maximum flow takes O(n a) time in the worst 
case. In this time we can also afford to solve the bottleneck assignment problem 
to ensure that we never get g = 0; the number of flow problems is at most the 
number q of matrices, and we get the following upper time bound: 

Theorem 3: Method I I I  can be carried out in O(qn 3) time. [] 

The fastest implementation of method III would probably be a hybrid meth- 
od. Initially, use the maximum matching algorithm of Hopcroft and Karp (1973). 
Before repeated values of Ik'S can be expected to appear, switch to the maximum 
flow techniques with some kind of exponential search for the correct value ofg. 

2.5 Theoretical Implications of  Method I I I  

As a consequence of the maximum flow heuristic, we can improve the bound of 
theorem 1. The following lemma is a variation of lemma 1. It has the additional 
assumption that no matrix element is 0, but this assumption is only technical 
and is not needed in the final theorem. 

Lemma 4: A positive integer n • n matrix U with maximum row and column sum 
u* can be decomposed into at most F(u* + n)/2] weighted permutation matrices. 
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Proof: First we "fill up" U by enlarging some entries so that all row and column 
sums become equal. This is always possible as the problem of finding the correct 
integer numbers to add to the entries of U is just a transportation problem. 

Then we set up the network for the flow problem as described above, for the 
weight 11 = 2. Since all slacks are zero, slack nodes and pseudo-arcs can be 
ignored. By the max-flow-min-cut theorem, a flow satisfying all supplies and 
demands exists if and only if the following cut condition is satisfied for all subsets 
X of nodes: 

total supply in X - total demand in X < capacity of the cut (X, _~) . (4) 

Here, the cut (X, X) consists of all arcs going from a node in X to a node not in 
X, and its capacity is the sum of the capacities of these arcs. 

Now let X = R w C be an arbitrary node set, where R =_ {rl, rz . . . . .  r,} and 
C ~_ {ca, c2 . . . . .  c.} are the row nodes and the column nodes of X. We denote 
their complements by R = {rl, rz . . . . .  r.}\R and C" = {cl, r . . . . .  c,}\C. As the 
supply of each row node and the demand of each column node is 9, (4) can be 
written as follows: 

g I R l - g l C l  ~ c ( X , X ) : =  ~ ~ L u , j / 2 3  . (4') 
ri~R cj~C 

The right side can be bounded as follows: 

R -- 2 R 

Now we use the positivity assumption, adding 

(n - IRI)" ICI - Z ~ % ~ 0 
g c 

to the last expression. We get 

c(X,X)>~" u i j - ~ c % - l R l . n + l R l ' l C l + n ' l C l - l R l ' l C l  

= ~' u i j -  ~ ~ u , j -  n'(lRI - [CI) 
RuR C 

1 u* - n 
= ~-{[R[.u* - [ C [ ' u *  - n.([R] -[C[)} = ( [ R [ -  [ C [ ) ' ~  
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Thus, ifg < (u* - n)/2 the cut condition is certainly fulfilled for all cuts; therefore 
we can find at least g > I_(u*- n)/2J permutation matrices with weight 2, 
reducing u* to u* - 2g. The total number of matrices is now 

1 
Lemma 4 has the additional assumption that no matrix entries are zero. To 

apply it, we have to run the heuristic with the modification that, in step (b), zeros 
are rounded upwards to 1. Lemma 2 is still true because relation (2) also holds 
for t~i = 0 and u~ = 1. 

Theorem 4: An n x n matrix T can be decomposed into a weighted sum of  no more 
than Q permutation matrices (Q >_ n) with a total duration that is within a factor 
of (Q - n/2)/(Q - n + 1/2) of the value t* that is obtainable without restriction on 
the number of  matrices in the decomposition. The decomposition can be found in 
time O(n 3 q- Qn log n). 

Proof: We choose F as the smallest value such that u* < 2Q - n, where U is now 
defined by u o. := max { [tiJF], 1 }. Lemma 2 with M = 2Q - n and lemma 4 give 
the result. As for the running time, we have one maximum flow problem and two 
applications of the edge-coloring procedure of lemma 1. �9 

Note that in the theorem we start with 11 = 2 and not with the largest possible 
ll as in methods II and III. The following matrix shows that this is indeed 
necessary for achieving the claimed bound. 

" 3 1 1 2 2 2 2  

1 3 1 2 2  2 2  

1 1 3 2 2 2 2 

2 2 2 4 1 1 1 

2 2 2 1 4 1 1 

2 2 2 1 1 4 1 

2 2 2 1 1 1 4 

The largest permutat ion matrix which we can remove is the identity matrix with 
multiplicity 11 = 3. Continuing the decomposition gives a total of q = 11 matri- 
ces, whereas lemma 4 guarantees an upper bound of 10 matrices. The example 
is worked out in detail in the report Rote and Vogel (1990). 
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2.6 Comparison of the Three Methods 

Method I is by far the simplest and fastest, but its practical performance is not 
far from the theoretical bound, and thus will usually be too weak for practical 
purposes. It is used as a subroutine in method III. 

Methods II and III are similar in spirit. Method III explicitly formulates the 
problem of finding as many permutation matrices pk with a given value of Ik 
as possible as a single problem. This can certainly be no worse than selecting 
these matrices one by one as in method II, but it is usually better: If there are 
many matrices with equal lk there are many possibilities for the first complete 
matching. Method II chooses an arbitrary one, which remains fixed afterwards, 
without regarding the effect on subsequent solutions. This is avoided in method 
III. In this sense, method III is better at being greedy than method II. 

3 Implementation of the Heuristics and Computational Results 

We have programmed methods II and III and applied them to randomly gener- 
ated test problems of various sizes in the range from n = 10 to n = 100. We have 
tried to get approximately q ~ 2n matrices. We shall first describe our imple- 
mentation and then report the computational results. 

When discussing the quality of the solution of various methods and the effect 
of different implementation decisions, we shall measure the quality of a solution 
by the relative excess (d - t*)/t* of the total duration d over the lower bound t*. 
This is an upper bound on the error of the heuristic relative to the optimal 
solution; since we don't  know the optimal solution, we take the lower bound t*. 
Thus, when we say that the relative excess has decreased by 40~o, for example, 
this would mean that an instance with t* = 100 which previously had a solution 
with total duration d = 110 has now a solution with d = 106. 

3.1 Step (a): Finding the "Unit" F 

The theoretical derivations in section 2 used the bounds q < u* or q < 
[(u* + n)/2] on the number q of generated matrices. In practice these bounds are 
too pessimistic, and thus it makes no sense to try to achieve a specified value of 
u* exactly. So we tried to achieve u* ~ M, where M is an input parameter of the 
program which was determined experimentally. (M had to be taken between 
about 20n and 70n to get q ~ 2n matrices, depending on n and on the method.) 
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We then computed F by the formula 

F = ~ M - (n  - 1) + ' (5)  

which is the average between the lower and the upper bound for the correct 
value of F (cf. section 2.2), and we set u~j := [tiflF]. We always accepted the 
resulting value of u* and continued the computation with this value u*. In our 
experiments, u* never deviated more than 1~ from the target value M except in 
two instances, and we found this acceptable. In practice, when one is not satisfied 
with the final resulting number q of matrices, one can go back to the beginning 
and adjust F. 

On the other hand, we did not simply accept the value F that we had: We tried 
to reduce it as much as possible while still keeping the same u*. This F-correction 
step was carried out by a method which is inspired by the methods described in 
section 2, but simpler and more practical: 

We select the maximum of all entries t~/uij. (This entry will be the first element 
u~j which will increase to u~j + 1 as F decreases gradually.) If this element belongs 
to a critical row or column (i.e., r~ = u* or cj = u*), u~j is not allowed to increase 
and thus F must not decrease below t~j/u~j: We stop with this value as the value 
of F. Otherwise we set u~j := u~j + 1, update r i and cj accordingly, and repeat the 
whole procedure. 

We can speed up this repeated search for the maximum by computing an 
initial lower bound F 0 for F: Fo is the maximum of tii/uij over all elements in 
critical rows and in critical columns. Elements t~j/u~i which are < Fo need not 
be considered in the search for the maximum. Whenever we make a new row or 
column critical we can try to raise Fo in order to further reduce the search effort. 

We have implemented the search for a maximum among the set of entries 
t~j/u~i as a sequential search in a linear list. This simple procedure was sufficient, 
as the average effort for the F-correction step was always less than 59/o of the 
total time for the heuristic. In many cases, the list which had to be searched for 
a maximum was already empty initially, and thus the matrix U did not have to 
be changed. 

3.2 Step (c): the Decomposition 

In step (c), we never used an explicit bottleneck assignment procedure. We rather 
used the simple heuristic of assuring that no vertex is isolated, as discussed after 
theorem 2 in section 2.3. This inexpensive starting procedure is used in published 
codes for the bottleneck assignment problem, e.g. in Burkard and Derigs (1980), 
chapter 2. As the results showed, we could thus reduce the number of graphs that 
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were found to contain no matching to a small fraction. For finding matchings 
we used the method of Hopcroft and Karp (1973). 

In method III, step (c) contains maximum flow problems. For finding the 
largest parameter value g for which the network of section 3.4 has a feasible flow, 
we used the algorithm of Dinic, which is not the theoretically fastest, but which 
has been regarded as the fastest in practice (of the traditional algorithms, at 
least). With this algorithm we successively tested the values g = 1, 2, 3, 4, ... by 
incrementally sending an additional unit of flow into each source vertex. 

When we find that  no feasible flow for some supply and demand value g exists 
we have to undo the flow augmentations since the last "valid" flow (with supplies 
and demands of value g - 1), because we need this flow pattern for decomposing 
it into permutations (unless g = 1, of course, in which case we can throw away 
the whole graph and decrease Ik by one.) We have solved this problem by storing 
all flow changes in a list at the same time as we carry them out. The maximum 
required length of this list, for 100 x 100 matrices, was 297 in all our test runs. 
It is possible that other maximum flow algorithms would have improved our 
running times, but as our primary goal was to investigate the quality of the 
solutions, we did not try alternate implementations. 

The decomposition of the flow pattern into matchings was not done by the 
very fast edge coloring techniques as suggested in section 2.4, but by applying 
the algorithm of Hopcroft and Karp g times in succession. The reason was that 
we had already an implementation of this algorithm from method II. The 
average computation time for this step in our implementation was always less 
than 10 percent of the total computation time, which is tolerable for an experi- 
mental implementation. 

3.3 Step (d): Adjusting the Solution 

Step (d) has not been discussed at all so far. Note that the performance of steps 
(a)-(c) is mainly determined by M, since the total duration d after step (c) is Fu*; 
and since u* ~ M, and F is given by (5), we have 

(d- t*~t* 
( n -  1)/2 

M - ( n  - 1) 

A minor influence comes from the F-correction in step (a), which improves F and 
makes the quality a little better than the above estimation. The decomposition 
method in step (c) has the strongest effect on the quality, but only indirectly, by 
allowing a larger value of M. 

Step (d) could be solved optimally as a.linear program with n I inequalities 
and q variables 11, 12 . . . . .  lq, by just using formulation (1), where the matrices 
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p1, p2,..., pq, which are given as the output of step (c), determine the coefficient 
matrix. The values 11, 12, . . . ,  lq which are given by step (c) play no role in this 
process except possibly as a starting solution. 

With this implementation, step (d) is actually not necessarily a "downward 
adjustment" of the values lk, as described in section 2. In fact, it is nothing 
but the original problem with a restricted set of permutation matrices. 
(Lewandowski, Liu, and Liu (1983) and Burkard (1985) have considered the case 
of 2n given permutation matrices which correspond to a pair of orthogonal 
Latin squares. In this case the linear program has a special structure which can 
be used.) We have tried the linear programming approach on a couple of 
examples, using an experimental code for a numerically stable simplex algorithm 
developed at our institute by Zhong-Liang Yu. However, the running times were 
prohibitively high, and thus we did not pursue this direction further. 

In our experiments we just used a simple approximation procedure: We 
successively lower 11, 12, . . .  , lq as much as possible while still maintaining the 
relation ~,=1 Ik Pk > T. This procedure takes O(nq) steps. We also tried to run 
through the lk'S in reverse order or in random order, but on the average the 
natural order gave the best results. This simple implementation of step (d) 
reduced the relative excess (d - t*)/t* by about fifty percent for n = 10 and by 
about ten percent for n = 100. For method III, the reduction was only about five 
percent for n = 100. 

Let us finally discuss the mutual influence between step (d) and the F- 
correction in step (b). One might wonder whether computing a smallest F which 
gives a certain value of u* in step (a) is really necessary in view of step (d). Of 
course, the total duration F" u* after step (c) decreases, but one might think that 
step (d) might diminish the effect of computing the tightest F. A parallel series of 
test runs which took F directly from (5) without subsequent correction showed 
that the effect of the F-correction is reduced by step (d). In most cases the 
F-correction step improved the duration a little; the improvement was smaller 
for larger n: On the average, it reduced the relative excess of the duration over 
the lower bound t* by one fifth for n = 10 and by one twentieth for n = 50. Only 
in some rare cases did the solution with F-correction have a slightly longer 
total duration than without it; thus, we report only the results of the runs with 
F-correction. 

3.4 Computational Results 

For method II, we created matrices of various sizes n, whose elements were 
uniform random numbers selected from the range {1, 2 . . . .  ,100}. The results, 
which are shown in table 1, are the averages of 100 instances for each size n. M 
is the desired value of u* which was given as input to the program. As mentioned 
in section 3.1, the actual value of u* fluctuates very little about M. 
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Table 1. Computational results of method II. Average results of 100 matrices each, with entries in the 
range 1-100 

n M q failures 

10 220 20.10 (18-23) 
15 340 30.39 (28-33) 
20 450 40.61 (39-43) 
30 700 60.27 (58-63) 
40 1050 80.68 (77-85) 
50 1400 100.81 (98-104) 
60 1750 120.47 (115-124) 
80 2600 160.34 (156-165) 

100 3900 201.77 (196-208) 

time 

4.8 0.20 
4.6 0.55 
3.7 1.16 
2.2 3.40 
2.0 7.57 
1.2 14.07 
0.9 23.51 
0.6 53.09 
0.7 100.57 

(d  - t * ) / t *  (d  - t * ) / t *  
(B&L) 

1.007% 7.84% 
1.328% 7.86% 
1.480% 5.13% 
1.648% 5.47% 
1.596% 4.09% 
1.504% 2.68% 
1.460% 2.36% 
1.375% 2.62% 
1,121% 1.78% 

The values which characterize the quality of the solution are q, number of 
matrices in the decomposition, and the total duration d. As mentioned above, 
we chose M in such a way that q would be about  2n. The table, which also 
includes the range of values q that appeared in the 100 instances, shows that q 
is quite stable. The variation of q is still much larger than the variation of u*, 
and it is mostly due to step (c). 

The sixth column shows the second factor of the quality, the total duration, 
normalized in terms of the relative excess, in order to make the results compara-  
ble for different types of matrices. For  contrast, the last column contains the 
results of the heuristic of Balas and Landweer (1983) for decomposing into only 
q = n matrices. Of course, this is not a fair comparison because this heuristic 
solves a more restricted problem. Still, one can see how much may be gained in 
total duration by allowing more than n matrices. Balas and Landweer (1983) 
also report that a variation of their algorithm for q = 2n matrices achieved 
an average relative excess of 2.19% on random 20 x 20 matrices of the same 
kind as we used. In this case, with 1.48%, our algorithm is clearly superior. 
Note the peak of the relative excess at n = 30. We have no explanation for this 
phenomenon. 

The fifth column shows the CPU-t ime in seconds. The programs were written 
in PASCAL and run on a DEC VAX 11/785 computer. The average times grow 
slower than O(n3), which is much better than the behavior of O(n 3"5+~) predicted 
by theorem 2. 

The column entitled "failures" shows the number of unsuccessful trials, i.e., the 
number of graphs in which no matching was found. Thus, the total number of 
matching problems solved is q plus the number of failures. This number was 
often zero, and the maximum of all instances (of method II) decreased from 15 
for n = 10 to 4 for n = 100. (For method III,  the situation was similar.) The small 
numbers in this column, especially for larger n, show that the simple rule of 
decreasing lk  until the graph has no isolated vertices is a sufficient substitute for 
the bottleneck assignment algorithm, at least for the random examples which we 
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Table 2. Computational results of method III (the maximum flow method). Average results of 100 
matrices each, with entries in the range 1-1000 

n M q flows failures time (d  - t * ) / t *  

10 350 20.15 (17-22) 20.6 5.1 
15 520 29.74 (27-32) 24.5 3.4 
20 720 39.48 (36-42) 29.2 2.5 
30 1200 59.59 (56-62) 38.0 1.5 
40 1800 80.04 (75-86) 46.8 1.0 
50 2500 100.39 (96-105) 55.3 0.6 
60 3200 119.86 (114-126) 63.3 0.6 
80 5000 160.28 (154-166) 78.8 0.3 

100 7000 200.25 (192-208) 93.5 0.3 

0.87 
2.18 
4.49 

12.68 
27.49 
51.31 
84.62 

193.25 
361.22 

0.598~ 
0.870~ 
0.993~ 
1.014~o 
0.962% 
0.884~ 
0.847~ 
0.743% 
0.683~ 

tried. This is in accordance with the theory of random graphs, where it is known 
that the probability that the procedure which we used produces a graph which 
has a perfect matching converges to 1 as n goes to infinity, see Bollobfis and 
Thomason (1985) or the book of Boll0b~is (1985), theorem VII.l, p. 158. This 
result holds under the assumption that the matrix elements are drawn indepen- 
dently at random from the same distribution. It is therefore not directly applica- 
ble to our algorithm because we repeatedly modify the matrix and destroy 
independence even if it was satisfied for the initial matrix. When we compare our 
failure rates with the empirical results of Bollob/Ls and Thomason (1985), table 
7, p. 60, we see that we have in fact much fewer failures than might be expected 
from carrying over these results in a straightforward way. One reason which 
accounts for this discrepancy is that our matrix entries as defined by (3) are small 
integers by construction. Thus, whenever we decrease the threshold Ik by 1, a 
whole bunch of new edges comes into the graph. This means that we usually end 
up with more edges than if we would add edges strictly one by one in random 
order, as prescribed by the model of Bollobfis and Thomason. 

Table 2 shows the results of method III, the maximum flow method. Since 
method III is more successful in achieving a small number of matrices, we could 
allow as larger value of u* (see the second column). Since this u* would be of the 
same order of magnitude as t* for matrices with entries in the range 1-100, we 
generated the entries between 1 and 1000. As M is chosen larger, we may expect 
an improvement over method II (cf. the remarks at the beginning of section 3.3). 
The last column confirms that this is indeed true. Note again the mysterious 
peak of the relative excess about n = 30. The column entitled "flows" gives the 
number of flow problems which had to be solved, including the unsuccessful 
ones. One determination of the maximum value of g for which the network has 
a feasible flow is counted as one flow problem. For large n, the number of flow 
problems is clearly smaller than the number q of matrices. 

The algorithm takes longer than method II by a factor of about 3.5. This is 
caused by the greater overhead for building the more complicated network and 
for the maximum flow algorithm. 
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Table 3. The effect of the range of the matrix entries t u on the relative excess with method III. The 
results are averages of hundred 50 • 50-matrices with M = 2500 

range of values for t~j q 

1-100 99.84 
1-1000 100.39 
1-10000 100.30 

flows failures time (d  - t * ) / t *  

54.87 0.69 52.22 0.827~o 
55.30 0.59 52.49 0.884~o 
55.32 0.71 52.30 0.890~ 

Table 4. Method III applied directly to the matrix T. Average results of 100 matrices each 

entries in the range 1-1000 

10 27.90 (24-33) 
15 42.64 (38-47) 
20 56.84 (53-62) 
30 85.36 (81-93) 
40 113.33 (108-120) 
50 140.42 (135-146) 
60 166.65 (162-172) 
80 217.98 (210-225) 

100 267.19 (261-276) 

failures time 

112.36 
97.71 
55.31 
23.32 
14.37 
9.23 
6.73 
4.13 
3.23 

3.65 
7.45 

10.52 
22.21 
43.88 
78.95 

126.62 
282.10 
516.13 

entries in the range 1-10000 

32.76 (25-39) 
51.33 (45-59) 
69.21 (62-76) 

105.51 (100-111) 
140.95 (137-147) 
175.41 (169-181) 
209.55 (199-218) 
275.20 (267-283) 
338.01 (328-346) 

failures time 

1102.67 
956.10 
570.96 
243.63 
159.66 
95.46 
69.91 
36.51 
27.37 

26.41 
47.30 
51.31 
63.35 
96.15 

138.65 
202.68 
403.20 
730.12 

We suspected that the good  performance of the methods might  perhaps be due 
to the small range of  integer values from which the elements of  the traffic matrix 
were taken. Thus we ran a series of  test runs with 50 x 50 matrices with entries 
f rom various ranges. The results, which are presented in table 3, show that  there 
is at most  a small influence on the relative excess. The other parameters  are also 
quite unaffected by the range. 

Since method  I I I  was so successful in getting few matrices we also tried it 
directly on the generated matrices T, wi thout  intermediate scaling. This always 
leads to a decomposi t ion with optimal duration. The results are presented in 
table 4. We can see that the number  of  matrices depends on the size of  the matrix 
elements, a l though perhaps to a lesser extent than might  be expected. This shows 
clearly that  the scaling approach  is definitely a good  idea to keep the number  of 
matrices low. 

The numbers  in table 4 are in accordance with experiments of Inukai  (1979) 
who reports that  his heuristic produces an average of about  q = 30 matrices for 
hundred randomly  generated 10 x i0 problems with integer entries in the range 
0-1000.  Balas and Landweer  (1983) ment ion that  they could achieve an average 
relative excess of  1.44~ for q = 3n matrices and 0 .89~ for q = 5n matrices in the 
decomposi t ion of r andom 20 x 20 matrices with entries in the range 1-100. 
With our  algori thm we could get to the lower bound  t* (i.e., achieve 0~o) with at 
most  3n matrices in 98 out  of  100 runs and in all cases with less than 5n matrices, 
even with entries in the range 1-1000. 
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As the number of unsuccessful tests shows, the simple ideas that worked so 
well in the runs of tables 1 and 2 to keep the number of failures low were no 
longer sufficient, particularly for smaller n. In the examples of table 4, there were 
large gaps between successive weights Ik, which were not always bridged by the 
simple rule of ensuring that the graph has no isolated vertices; using faster 
bottleneck assignment algorithms would have speeded up these runs. 

4 Conclusion 

The heuristics of sections 2.3 and 2.4 for duration-optimal decomposition 
(methods II and III) were introduced as subroutines inside a scaling heuristic. 
However, the computational results reported in section 3 encourage us to believe 
that they are interesting in their own right. 

We could have simplified our algorithms a lot by filling up the traffic matrix 
to constant row and column sum. For example, in method II, the cost matrix 
of the bottleneck assignment problem would just be U itself; in method III, 
we would not have to double the number of nodes and arcs of the network. 
Whereas this approach would be satisfactory from a theoretical point of view 
(cf. section 2.5 of Burkard (1985)) it amounts to giving away some freedom that 
is inherent in the problem. Our algorithms take this freedom into account in 
the form of column and row slacks and take advantage of it to obtain better 
solutions. 

Our approach is greedy since it tries to minimize the total number of matrices 
by removing large matrices out of the traffic matrix. This is similar in spirit to 
earlier heuristic algorithms for duration-optimal decomposition by Inukai 
(1979), algorithm TSA-2, and by Ito, Urano, Muratani, and Yamaguchi (1977). 
(For the latter algorithm, see also Inukai (1978).) On the other hand, we solve 
the individual steps of the greedy algorithm, i.e., maximizing the weight of the 
next matrix in the decomposition, optimally. This is in contrast with the other 
mentioned algorithms, where there was no clear formulation of an objective 
function for the corresponding steps, which were solved in an ad-hoc greedy- 
type manner. 

Suppose that we have chosen to implement step (d) by linear programming. 
Then, after the matrices pk and the durations lk have been determined in steps 
(a)-(c), we can actually forget the values Ik. Thus one can look at the whole 
procedure from a different viewpoint: Steps (a)-(c) appear as a preprocessing 
phase in which the restricted set of matrices p1 . . . . .  Pq is selected from the set of 
all permutation matrices for the "actual" optimization phase in step (d). With 
this in mind, it makes no sense to insist that steps (a)-(c) yield a feasible solution 
at all; on might for example try different rounding schemes in step (b), like 
rounding to the nearest integer, or rounding downwards, or other "voting 
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schemes", cf. Woodall (1986), Petit and T6rouanne (1990), or Balinski and 
Young (1982). The only restriction is that no positive entry is rounded to zero. 

We remark that, having implemented the linear programming formulation of 
step (d), we were tempted to apply column generation techniques to add further 
matrices to the decomposition, quite similar to Minoux (1986) (cf. also Ribeiro, 
Minoux, and Penna (1989); these two papers solve a version of the problem 
which is different from ours). However, since these ideas do not fit into the 
context of this paper and since the computational experiments have been very 
limited so far, we only mention them here. 

The heuristics and exact algorithms proposed in the literature have solved 
three types of variations of the matrix decomposition problem: 

- decomposition into only n (or even fewer) weighted permutation matrices, so 
that each entry in the traffic matrix is covered by only one permutation, see 
Balas and Landweer (1983) or Gopal and Wong (1985). The problem treated 
by Ribeiro, Minoux, and Penna (1989) is also similar; 

- duration-optimal decomposition, e.g., Inukai (1979), Burkard (1985); 
- decomposition with a small set (usually about 2n) of permutation matrices 

which are given in advance, see Lewandowski, Liu, and Liu (1983). 

Our bottleneck assignment heuristic and the maximum flow heuristic fall into 
the second category. The scaling approach, however, allows to control the 
number of matrices used, and thus it closes the gap between algorithms of the 
first kind, which produce few matrices, and algorithms of the second kind, which 
produce too many matrices, without having the restrictions of the third type of 
algorithms. 
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