
Enumerating all connected subgraphs

Günter Rote

September 30, 2025

Redelmeier [7] described an algorithm for enumerating polyominoes, i.e., connected subsets of
squares in the square lattice.

More generally, this algorithm works for enumerating connected sets containing a specified root
vertex s0 in an arbitrary undirected graph G. We are given a threshold k and we wanto to enumerate
all connected graphs up to size k, or only those of size exactly k.

1 Redelmeier’s algorithm

The algorithm maintains a connected subset S ⊆ V , drawn black in Figure 1. The neigbors N are
the vertices in V \ S that are adjacent to some vertex of S. The remaining vertices V \ (S ∪N) are
the unseen vertices. They are not shown at all in Figure 1. The neigbors N are partitioned into the
excluded set X (gray) and the untried set U (white).

u

s0

N

S

UX

G

 unseen vertices

u u

Figure 1: Schematic drawing of the sets S,X,U , and branching according to the vertex u.

From this configuration, the algorithm will generate the set Ck(S,U) of all connected subsets (up
to the size limit k) that

1. contain S,

2. do not contain any vertex of X.

1

If |S| = n, or if the untried set U is empty, there is nothing else to do. Otherwise, the algorithm
picks an arbitrary untried vertex u ∈ U and partitions Ck(S,U) into two classes: those solutions that
contain u and those that don’t.

• In the first branch, u is moved from U to S, and in addition, all new neighbors of u (those that
were in the unseen set) are added to the untried set U .

• In the second branch, u is simply moved from U to X.

Both branches are treated recursively.
Figure 1 shows a spanning tree T of S ∪ N : Whenever a new neigbor v of u is added to U , we

make v a child of u. The resulting tree plays no role for the algorithm, but it helps to understand
the process. The graph G itself will have more edges, but they are not shown.

The general algorithm leaves the choice of u ∈ U open. Redelmeier proposed to organize U as
a stack and take u from the top of the stack. He points out that, with an implementation of the
stack as a linked list, this facilitates the management of the set U for recursive invocations: Instead
of copying U , it can be saved and restored in constant time.

However, this is also true when we organize U as a queue. In that case, we can get constant-time
operations even when impementing the queue in a fixed-size array. (See the prototype implementation
in Python in Appendix A.)

2 Enumerating spanning trees

We have seen that Redelmeier’s algorithm implicitly creates a spanning tree of S.
A connected set S has in general many spanning trees, but there are ways to associate a unique

spanning tree to S. One can take any spanning-tree algorithm, such as depth-first search (DFS) or
breadth-first search (BFS). The resulting spanning tree will in general depend on the order in which
the incident edges of a vertex are visited. Therefore, we will assume that the incident edges of each
vertex are given in a fixed order, in an adjacency list. 1 This defines a unique spanning tree TA(S)
for each connected set S, where A refers to some spanning-tree algorithm, possibly with specific
implementation details insofar as they affect the outcome.

This leads to the following approach for generating all connected sets S: We enumerate all span-
ning trees TA(S).

Depending on A, this leads to different algorithms. Details to be figured out.
It turns out that Redelmeier’s algorithm corresponds to two algorithms that are obtained in this

way, depending on the organization of the untried set U .
Organizing U as a stack corresponds to the algorithm “Quicksearch”, and organizing U as a

queue corresponds to BFS.
DFS leads to a different algorithm, which has not been investigated.
Quicksearch refers to the variation of BFS where the vertices to be explored are organized as a

stack instead of a queue. Knuth [4, Algorithm Q]2 termed this algorithm Quick digraph search.3

Maybe the BFS variant with a queue has advantages when it comes to shortcutting the final
levels of Redelmeier’s algorithm? One might want look at some typical configurations (S,U) that are
generated with some fixed size |S| (in the plane). (But higher dimensions might be different.)

The DFS algorithm has not been explored at all.

Theorem 1. For A = BFS and A = Quicksearch, when A is applied to the induced subgraph G[S]
with root s0, it produces the same tree as Redelmeier’s algorithm, with the appropriate discipline of
organizing U .

Proof. Algorithm A maintains a set R of vertices that need to be explored, either as a stack or as a
queue.

Consider some connected set S0 ⊆ V with |S0| ≤ n.
We consider two processes:

1We may allow the visiting order to depend on the incoming edge, e.g. in a plane graph
2see https://www-cs-faculty.stanford.edu/~knuth/sgb.html
3This is a popular trick question for students of graph algorithms: BFS involves a queue, whereas DFS implicitly

involves a stack, through recursion. Therefore, doesn’t the substition of a queue by a stack in BFS lead to DFS?

2

https://www-cs-faculty.stanford.edu/~knuth/sgb.html

• Following the branches of Redelmeier’s algorithm that lead to S0.

• Algorithm A, applied to the subgraph G[S0]. We have to assume that the adjacency lists in
G[S0] are obtained from those of G by simply omitting the neighbors that are not in S0, without
perverting the order of the remaining elements.

We claim that we can coordinate to two processes so that the following invariants are maintained:

• The list R of Algorithm A is a sublist of the list U of Redelmeier’s algorithm; more precisely,
R = U ∩ S0. The common elements appear in the same order.

• The constructed spanning subtree of Algorithm A coincides with the spanning tree T of Re-
delmeier’s algorithm restricted to the vertices of S0.

Both algorithms remove a vertex from the top of a stack or from the beginning of a queue. The
difference is that the respective list (stack or queue) R in Algorithm A contains only a subset of the
vertices of the corresponding list U in Redelmeier’s algorithm (namely, the subset U ∩ S0).

Suppose Redelmeier’s algorithm picks a vertex u ∈ U .
If u /∈ S0, Redelmeier’s algorithm follows the branch where u is not included in S. The vertex u

is simply removed from U , while Algorithm A does nothing. The invariants are maintained.
If u ∈ S0, the new neighbors of u are added to U , and edges to the parent node u are added to T .

Algorithm A does the same thing, but only for those neighbors that are in S0. The elements are
inserted in the same order at the same end of the list (top of the stack or end of the queue). The
invariants are maintained.

With the help of this connection between Redelmeier’s algorithm and spanning-tree algorithms,
we might be able to answer the following question:

Given S and U , does the configuration (S,U) arise in Redelmeier’s algorithm?

Or in a better formulation:

Given S, in which configuration (S,U) is S generated in Redelmeier’s algorithm?

3 Other work

3.1 Komusiewicz and Sorge

Komusiewicz and Sorge [6, Section 3.1] give an algorithm for connected subgraph enumeration that
is somewhat different.

It can be cast into the framework of Redelmeier’s algorithm in the following way:

1. The sets X ⊔ U = N are not explicitly represented. Instead, the algorithm maintains a subset
W ⊆ S, and then X := N(W) \ S, and U := N \X. (The set S is called P in [6].)

2. The algorithm selects the vertex v of lowest index in S \ W , according to some numbering
of the vertices, and adds u to W . It will now determine the fate of the vertices in the set
Q := N(v) \ (X ∪ S). (Note that these are not the “new neighbors” of Redelmeier’s algorithm,
but some subset of U .)

3. The algorithm generates 2|Q| branches by distributing Q to X and S in all possible ways.
(Formally, this is done by adding to S each of the 2|Q| subsets M of Q. The complementary
subset Q \M is thereby implicitly added to X.)

References

[1] Khaled Elbassioni. A polynomial delay algorithm for generating connected induced subgraphs
of a given cardinality. Journal of Graph Algorithms and Applications, 19(1):273–280, Jan. 2015.
doi:10.7155/jgaa.00357.

3

https://doi.org/10.7155/jgaa.00357

[2] Shant Karakashian, Berthe Y. Choueiry, and Stephen G. Hartke. An algorithm for generating
all connected subgraphs with k vertices of a graph. Technical Report UNL-CSE-2013-0005, De-
partment of Computer Science and Engineering, University of Nebraska–Lincoln, 2013. URL:
https://consystlab.unl.edu/Documents/StudentReports/TR-UNL-CSE-2013-0005.pdf.

[3] Zahra Razaghi Moghadam Kashani, Hayedeh Ahrabian, Elahe Elahi, Abbas Nowzari-Dalini, El-
naz Saberi Ansari, Sahar Asadi, Shahin Mohammadi, Falk Schreiber, and Ali Masoudi-Nejad.
Kavosh: a new algorithm for finding network motifs. BMC Bioinformatics, 10:Article number
318, 2009. doi:10.1186/1471-2105-10-318.

[4] Donald E. Knuth. Combinatorial Algorithms, Part 4, volume 4D of The Art of Computer Pro-
gramming. Addison-Wesley, 2027+. In preparation. Draft of Section 7.4.1.2, “Depth-first search”
at https://cs.stanford.edu/~knuth/fasc12a.ps.gz, version January 1, 2025.

[5] Christian Komusiewicz and Frank Sommer. Enumerating connected induced subgraphs: Improved
delay and experimental comparison. Discrete Applied Mathematics, 303:262–282, 2021. Combined
Special Issue: 1) 17th Cologne–Twente Workshop on Graphs and Combinatorial Optimization
(CTW 2019); Guest edited by Johann Hurink, Bodo Manthey 2) WEPA 2018 (Second Workshop
on Enumeration Problems and Applications); Guest edited by Takeaki Uno, Andrea Marino.
doi:10.1016/j.dam.2020.04.036.

[6] Christian Komusiewicz and Manuel Sorge. An algorithmic framework for fixed-cardinality opti-
mization in sparse graphs applied to dense subgraph problems. Discrete Applied Mathematics,
193:145–161, 2015. doi:10.1016/j.dam.2015.04.029.

[7] D. Hugh Redelmeier. Counting polyominoes: Yet another attack. Discrete Mathematics,
36(2):191–203, 1981. doi:10.1016/0012-365X(81)90237-5.

[8] Shanshan Wang, Chenglong Xiao, and Emmanuel Casseau. Algorithms with improved delay for
enumerating connected induced subgraphs of a large cardinality. Information Processing Letters,
183:106425, 2024. doi:10.1016/j.ipl.2023.106425.

A Redelmeier’s algorithm with a queue

1 """

2 Redelmeier's algorithm with the untried set organized as a queue.

3 Prototype implementation.

4 The queue is implemented as an array.

5 """

6 from collections import defaultdict

7

8 nmax = 10

9 PRINT_SOLUTIONS = False

10

11 queuelength = nmax * 3 + 10 # polyomino plus neighbors plus safety buffer

12 Q = [0] * queuelength

13 occupied_or_adjacent = defaultdict(bool)

14 count = defaultdict(int)

15

16 for x in range(nmax):

17 occupied_or_adjacent[x,-1] = occupied_or_adjacent[-x,0] = True

18 # lower border and starting cell

19

20 polyomino = defaultdict(str)

21

22 def construct(stackbegin, stackend, n):

23 """Current polyomino has n cells.

24 UNTRIED points are stored in Q[stackbegin] ... Q[stackend-1]."""

25 count[n] += 1

4

https://consystlab.unl.edu/Documents/StudentReports/TR-UNL-CSE-2013-0005.pdf
https://doi.org/10.1186/1471-2105-10-318
https://cs.stanford.edu/~knuth/fasc12a.ps.gz
https://doi.org/10.1016/j.dam.2020.04.036
https://doi.org/10.1016/j.dam.2015.04.029
https://doi.org/10.1016/0012-365X(81)90237-5
https://doi.org/10.1016/j.ipl.2023.106425

26 if PRINT_SOLUTIONS:

27 polyomino[0,0]="S" # mark the start position

28 print_grid(polyomino, text = f" {n=}, number {count[n]}")

29 print()

30 if n>=nmax:

31 return

32 for i in range(stackbegin, stackend):

33 #print(f"{n=} {i=} {stackbegin}:{stackend} {Q[stackbegin:stackend]}",)

34 #print_grid(occupied_or_adjacent)

35 x,y = Q[i]

36 # include the cell (x,y):

37 polyomino[x,y] = "X" # needed only for printing

38 #occupied_or_adjacent[x,y] = "S" # helpful for debugging

39 new_neighbors = [nbr for nbr in ((x-1,y),(x,y-1),(x+1,y),(x,y+1))

40 if not occupied_or_adjacent[nbr]]

41 for k,nbr in enumerate(new_neighbors):

42 occupied_or_adjacent[nbr]=True

43 Q[stackend+k] = nbr

44

45 # recursive call:

46 construct(i+1, stackend+len(new_neighbors), n+1)

47

48 for nbr in new_neighbors:

49 occupied_or_adjacent[nbr]=False # undo the mark; nbr becomes "unseen"

50 polyomino[x,y] = " " # needed only for printing

51 #occupied_or_adjacent[x,y] = True # reset the debugging marker

52

53 def print_grid(GRID, text=""):

54 # print the pattern represented in the dictionary GRID

55 xmin = min(x for x,y in GRID.keys())

56 xmax = max(x for x,y in GRID.keys())

57 ymin = min(y for x,y in GRID.keys())

58 ymax = max(y for x,y in GRID.keys())

59 pattern = [["." for _ in range(1+xmax-xmin)] for _ in range(1+ymax-ymin)]

60 for (x,y),letter in GRID.items():

61 if letter is False:

62 letter = " "

63 elif letter is True:

64 letter = "X"

65 pattern[ymax-y][x-xmin]=letter

66 print("\n".join("".join(l) for l in pattern)+text + f", {xmin}<=x<={xmax}, {ymin}<=y<={ymax}")

67

68 Q[0] = (0,0) # The starting square (0,0) is put on the queue

69 construct(0, 1, 0) # start the enumeration

70 for i,val in sorted(count.items()):

71 print(f"{i:2} {val:6}") # results

72

5

	Redelmeier's algorithm
	Enumerating spanning trees
	Other work
	Komusiewicz and Sorge

	Redelmeier's algorithm with a queue

