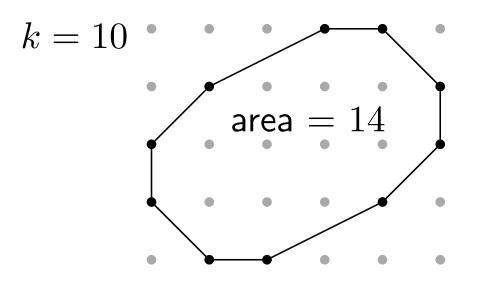
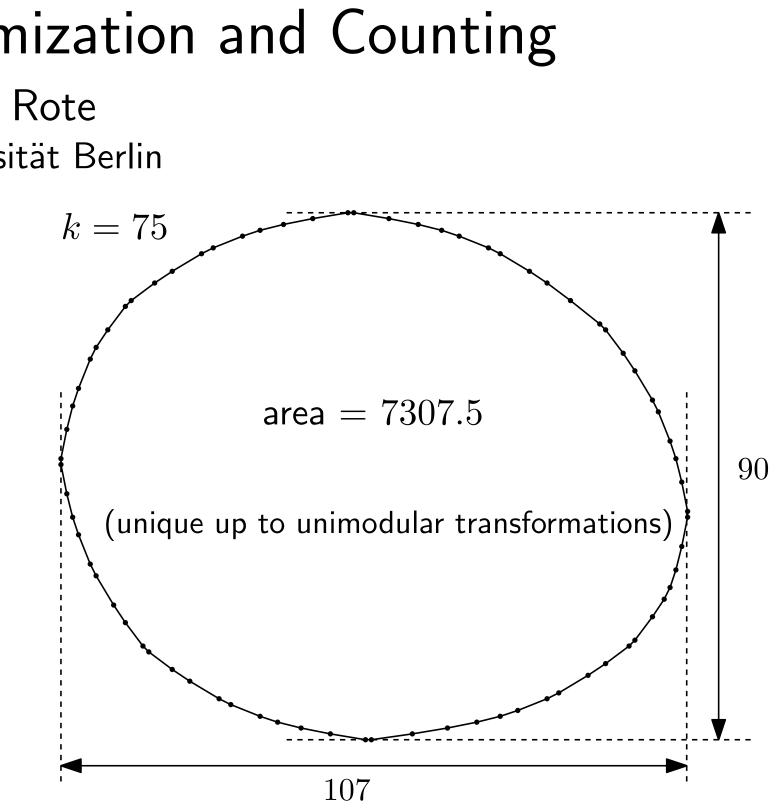
Lattice Polygons: Optimization and Counting Günter Rote Freie Universität Berlin

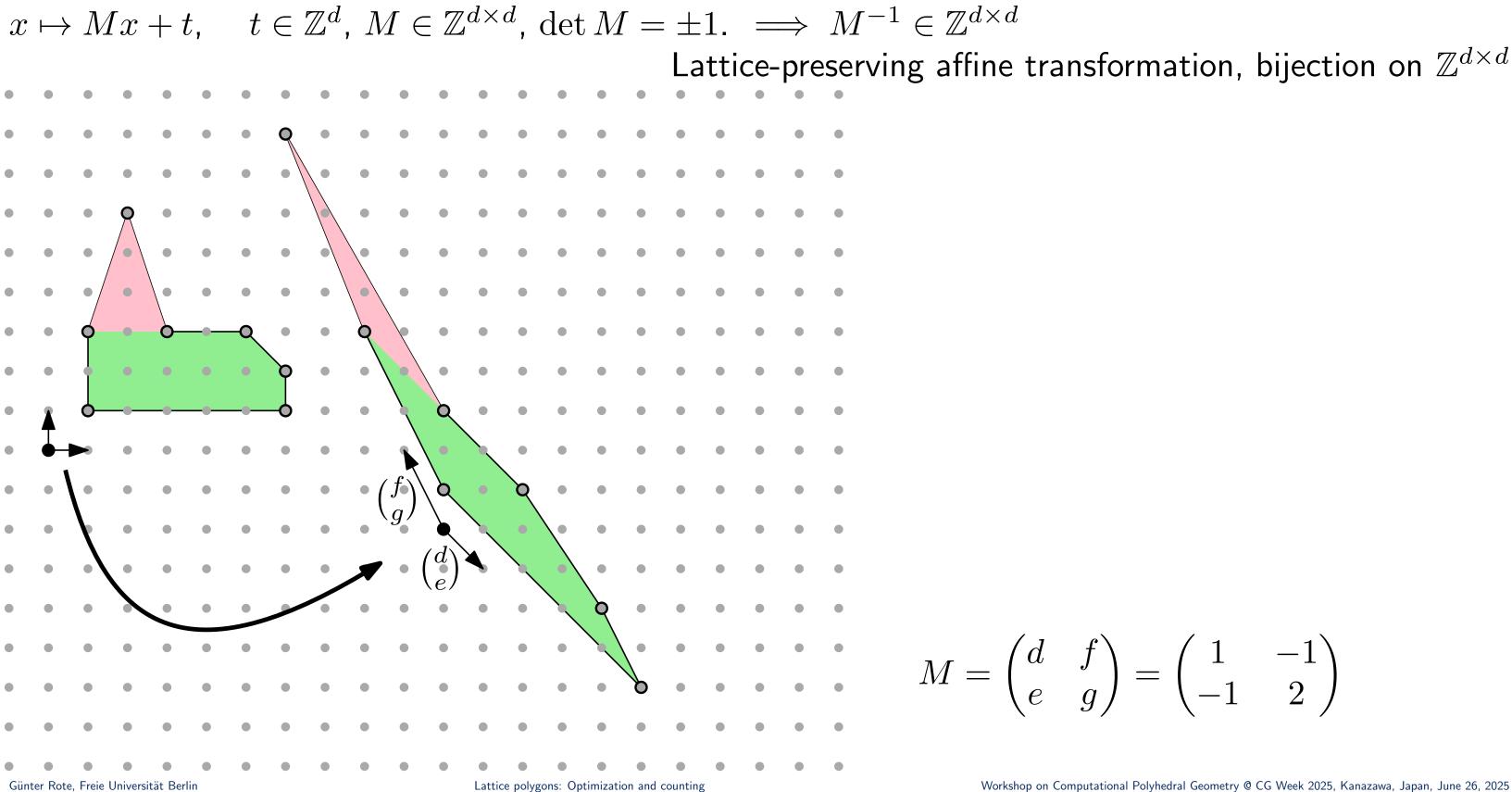
Minimum-area lattice k-gon [OEIS, A070911]



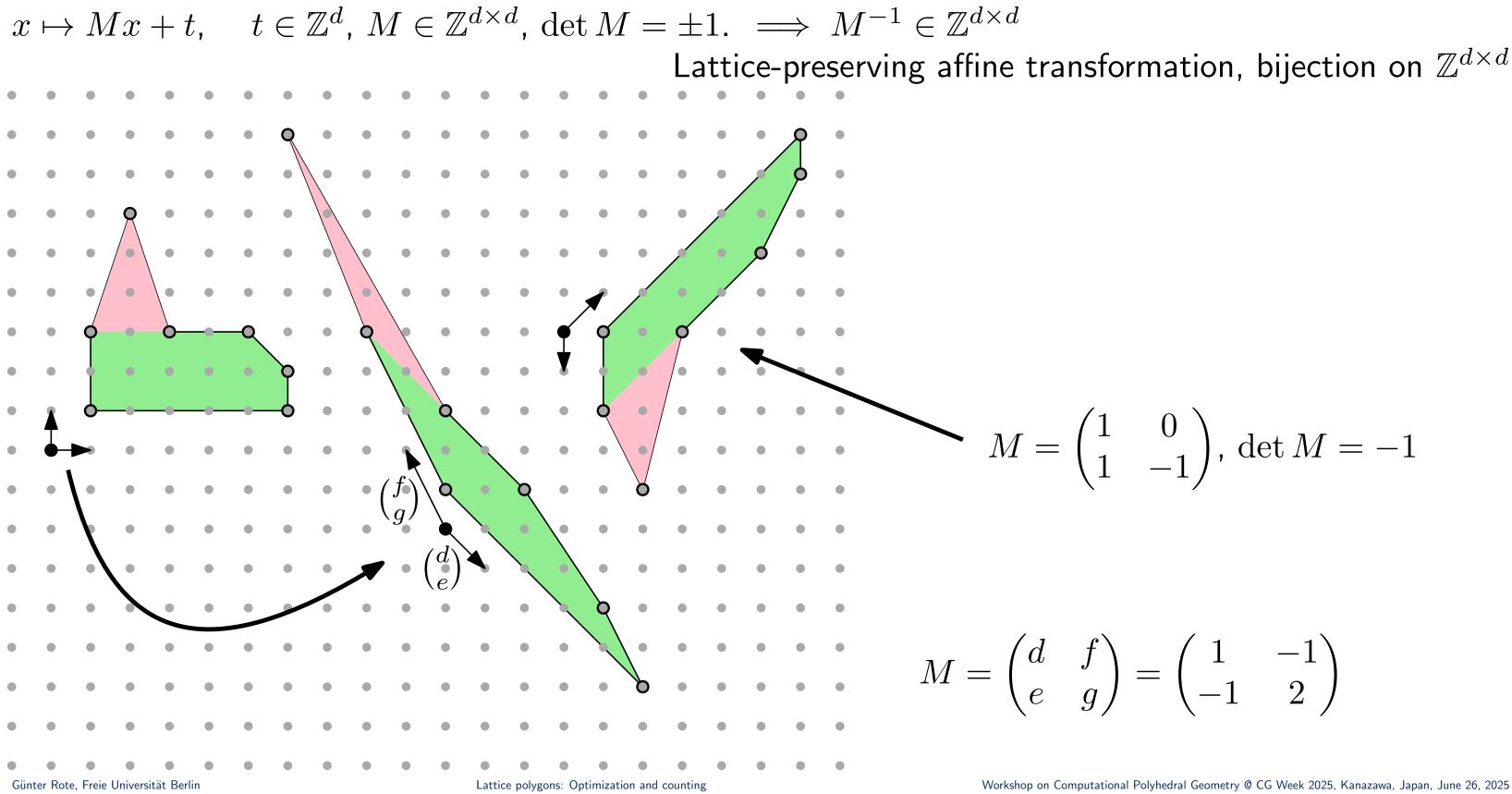
Bárány and Tokushige (2003): area $\sim Ck^3$ as $k \to \infty$, C algebraic. C = 0.0185067... (conjectured)



Unimodular transformations



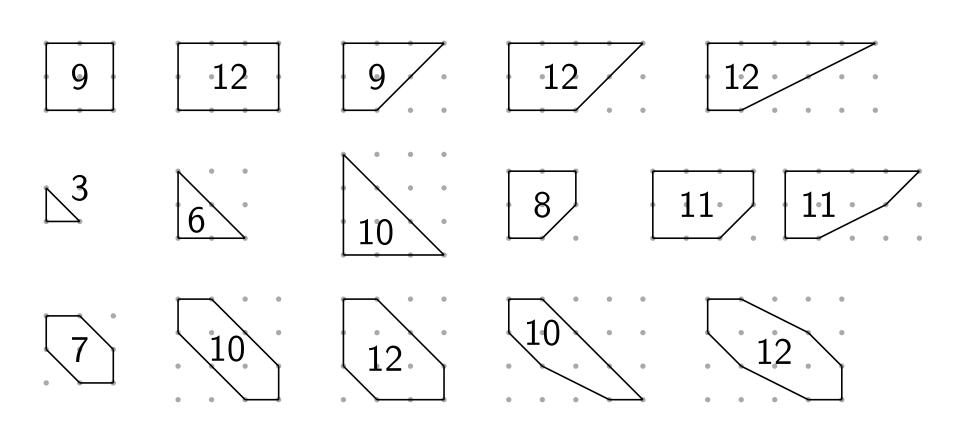
Unimodular transformations



Smooth polygons

"Finitely many smooth d-polytopes with n lattice points" (2015)

There are 41 equivalence classes of smooth lattice polygons with at most 12 lattice points.

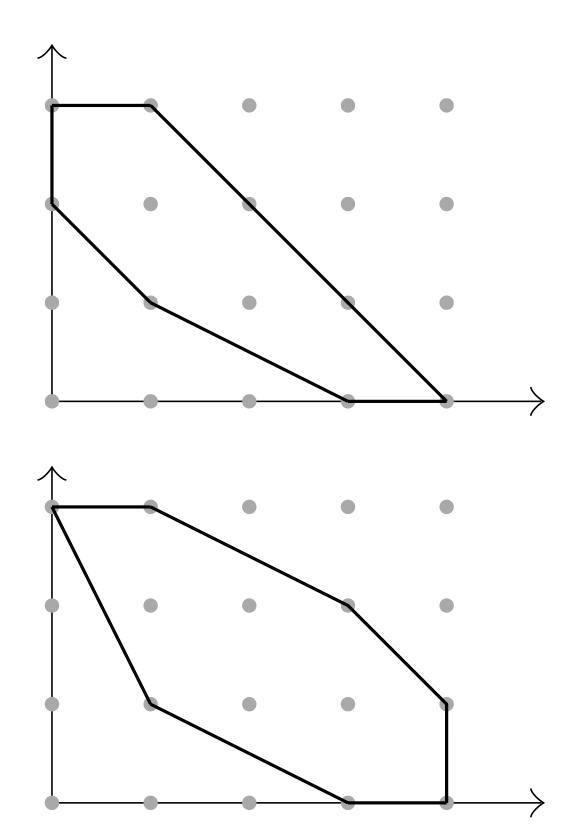


$$k = \#$$
vert
polyg

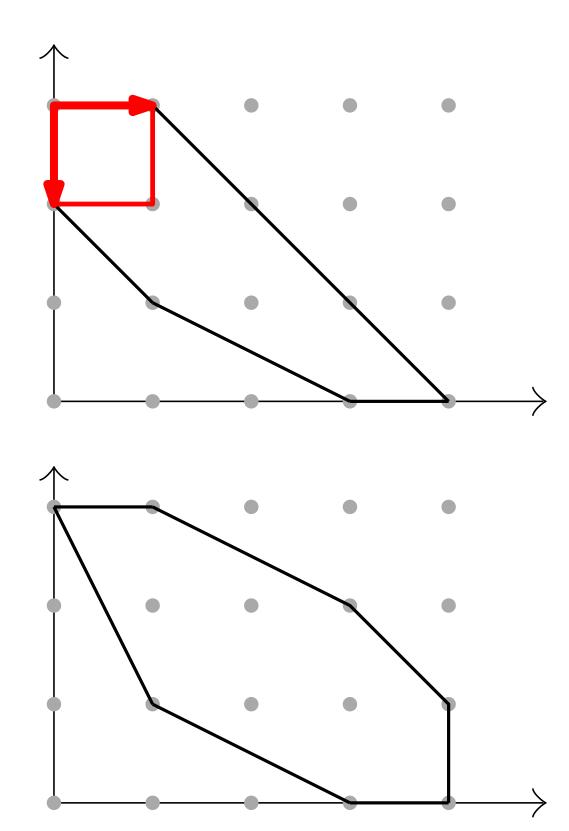
[Tristram Bogart, Christian Haase, Milena Hering, Benjamin Lorenz, Benjamin Nill, Andreas Paffenholz, Günter Rote, Francisco Santos, Hal Schenck 2015]

 $\frac{a}{b} \qquad (a,b) = \begin{cases} (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,9) \\ (2,2), (2,3), (2,4), (2,5), (2,6), (2,7), (2,8) \\ (3,3), (3,4), (3,5), (3,6), (3,7) \\ (4,4), (4,5), (4,6) \end{cases}$ b(5,5)

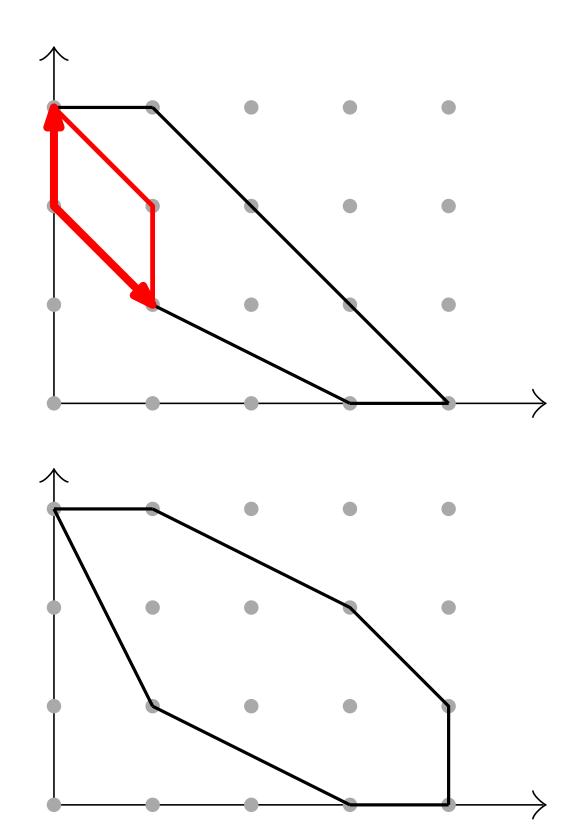
tices	3	4	5	6	7	8	
gons	3	30	3	4	0	1	-



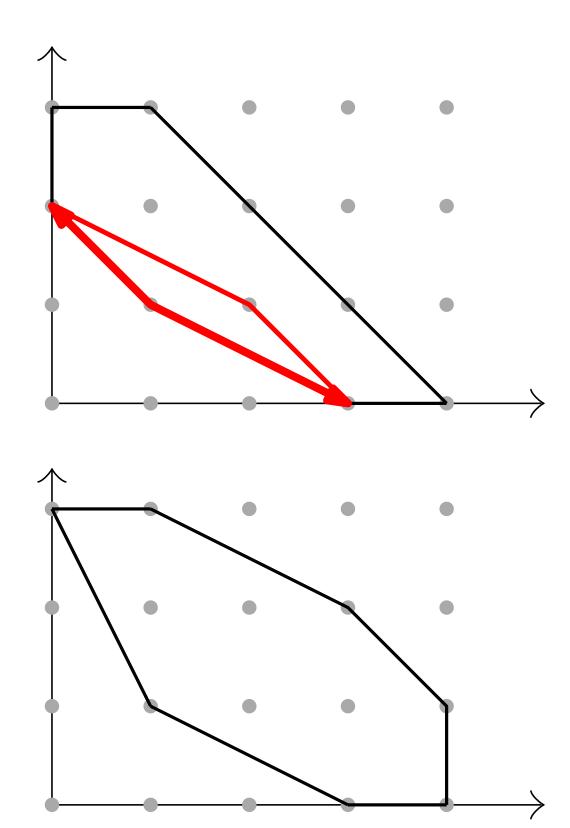
smooth polygons: Consecutive edge directions span a parallelogram of unit area.



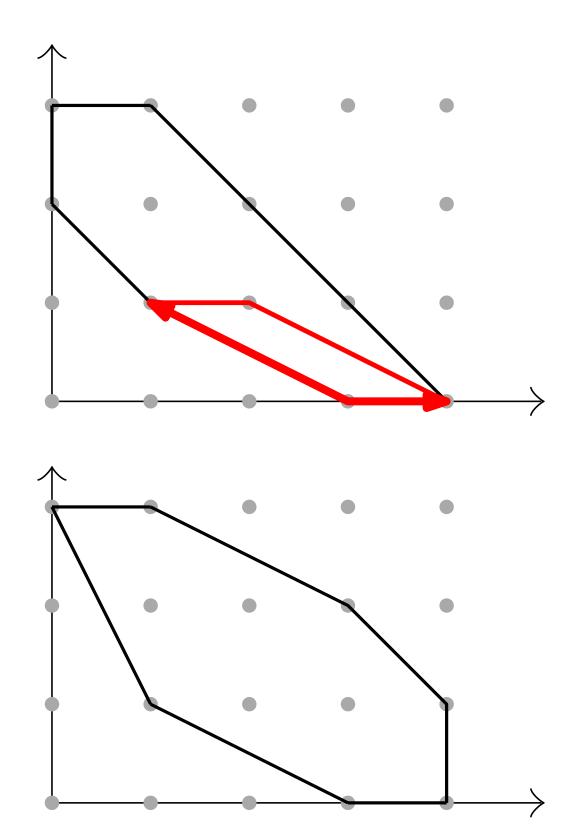
smooth polygons: Consecutive edge directions span a parallelogram of unit area.



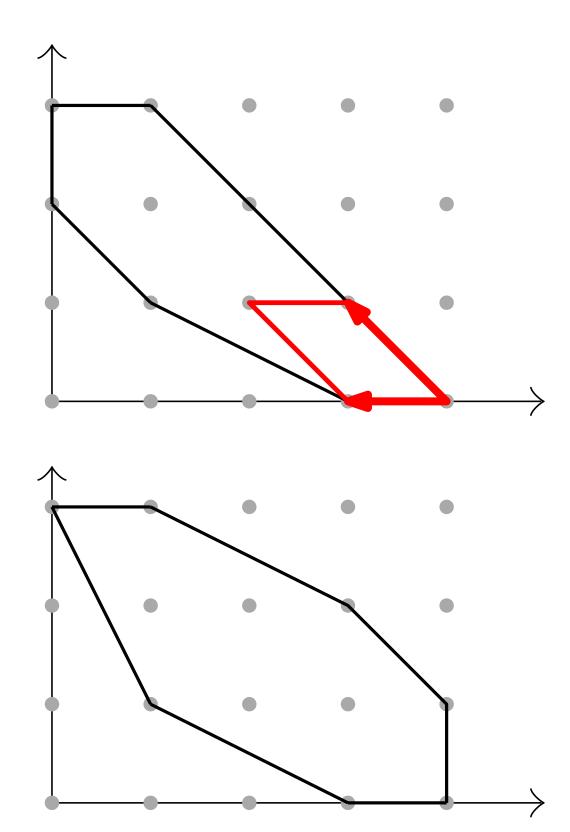
smooth polygons: Consecutive edge directions span a parallelogram of unit area.



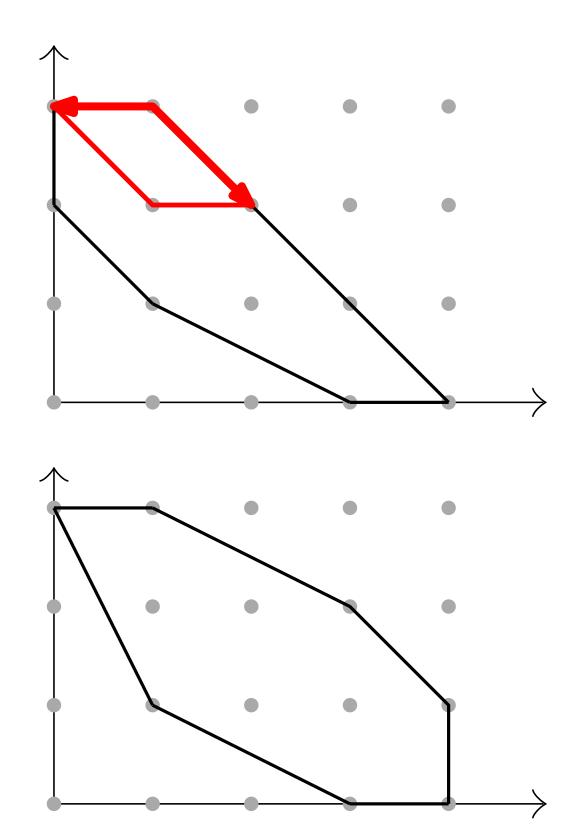
smooth polygons: Consecutive edge directions span a parallelogram of unit area.



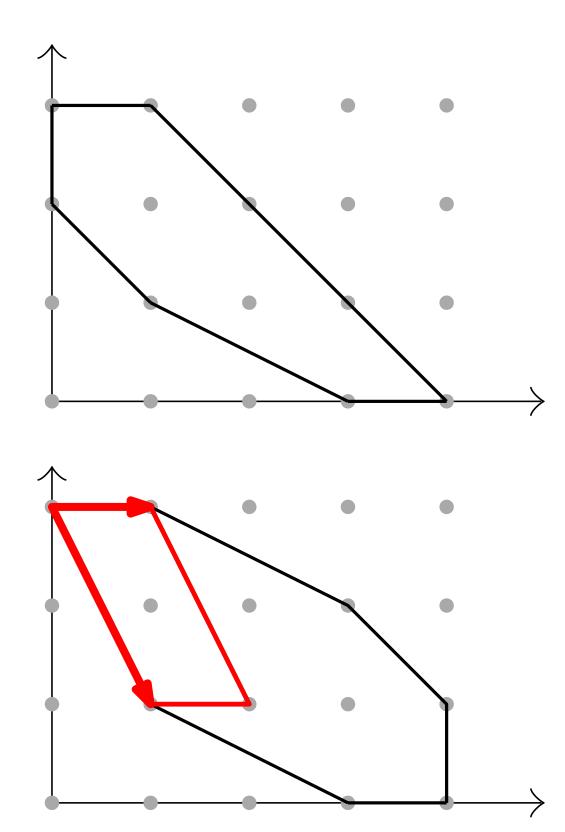
smooth polygons: Consecutive edge directions span a parallelogram of unit area.



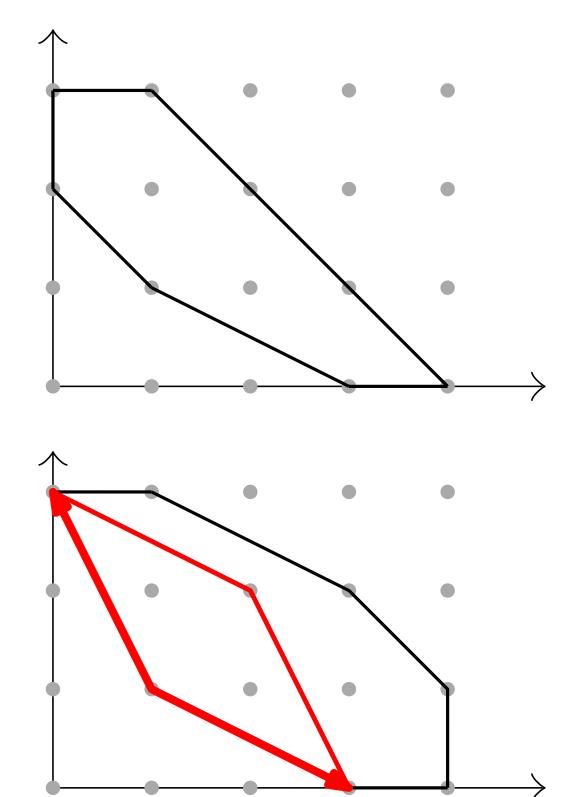
smooth polygons: Consecutive edge directions span a parallelogram of unit area.



smooth polygons: Consecutive edge directions span a parallelogram of unit area.



smooth polygons: Consecutive edge directions span a parallelogram of unit area.



smooth polygons: Consecutive edge directions span a parallelogram of unit area.

[*smooth d*-polytopes: All normal cones are unimodular: They are spanned (using nonnegative combinations) by d integer vectors (extreme rays) that generate (through integer combinations) all integer vectors.]

not smooth

Census of lattice polygons

V	A366409	A187015 ┥	 entries in the On-Line Encyclopedia of Integ
1	1	1	
2	1	2	
3	1	3	
4	3	7	
5	2	6	
6	4	13	
7	4	13	
8	6	27	For fixed d and V , there are finitely m
9	5	26	
10	7	44	lattice polytopes with volume V , up to
:	:		[Jeff L
196	66290	3413697413	
197	65105	3595811439	
198	69682	3791477384	
199	76718	3992454863	
200	78918	4208020815	all
:			# lattice polytopes with area $V/2$ [Balletti 202
297	1687247		
298	1779013		Gabriele Balletti. Enumeration of lattice polyto
299	1833242		
300	1842802	← #(smoo	th lattice polygons with area $V/2$ [Rote 2023]
I	reie Universität Berlin		Lattice polygons: Optimization and counting Workshop on Comput

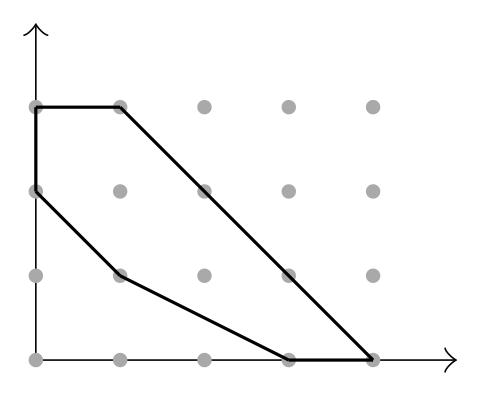
Lattice polygons: Optimization and counting

ger Sequences (OEIS)

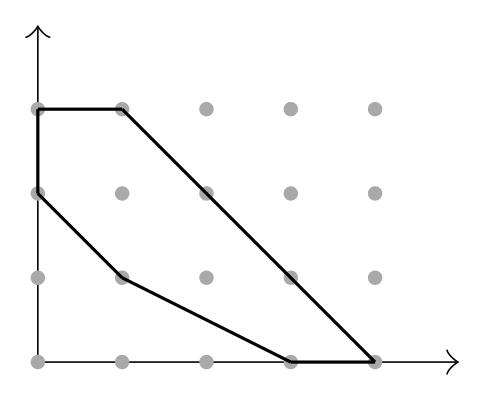
<u>many</u> d-dimensional to unimodular equivalence. Lagarias, Günter Ziegler 1991]

21 up to V = 50; Rote 2023] opes by their volume. (2021).

Census of lattice polygons



- k = 6 vertices
- B = 2 additional points on the *boundary*
- I = 2 interior lattice points
- n = k + B + I = 10 lattice points in total
- V/2 = (k+B)/2 + I 1 = 5 = area/"volume" (Pick's formula)



k=6 vertices

B = 2 additional points on the *boundary*

I = 2 interior lattice points

n = k + B + I = 10 lattice points in total

V/2 = (k+B)/2 + I - 1 = 5 = area/``volume'' (Pick's formula)

OEIS A322343: "Number of equivalence classes of convex lattice polygons of genus n." "genus" = I = number of interior points

	$= 6 \begin{bmatrix} # & \text{Every row contains five num} \\ # & \text{V, k, B, I, N} \\ # & \text{where N is the number of la} \\ # & \text{k vertices,} \\ # & \text{B lattice points on edges} \\ = 2 & \# & \text{I interior lattice points} \\ # & \text{and area V/2} \\ = k & \# & \text{among all lattice polygons} \\ 1 & 3 & 0 & 1 \\ 2 & 4 & 0 & 0 & 1 \\ 3 & 3 & 0 & 1 & 1 \\ 3 & 3 & 0 & 1 & 1 \\ 3 & 3 & 0 & 1 & 1 \\ 3 & 3 & 0 & 1 & 1 \\ \end{bmatrix}$
"genus" = $I =$ number of interior points	nts 3 4 1 0 1 :
	200 16 8 89 43 200 17 1 92 4088
	200 17 3 91 646
	200 17 5 90 11 200 18 0 92 26
Günter Rote, Ercie Universität Berlin	200 18 2 91 2

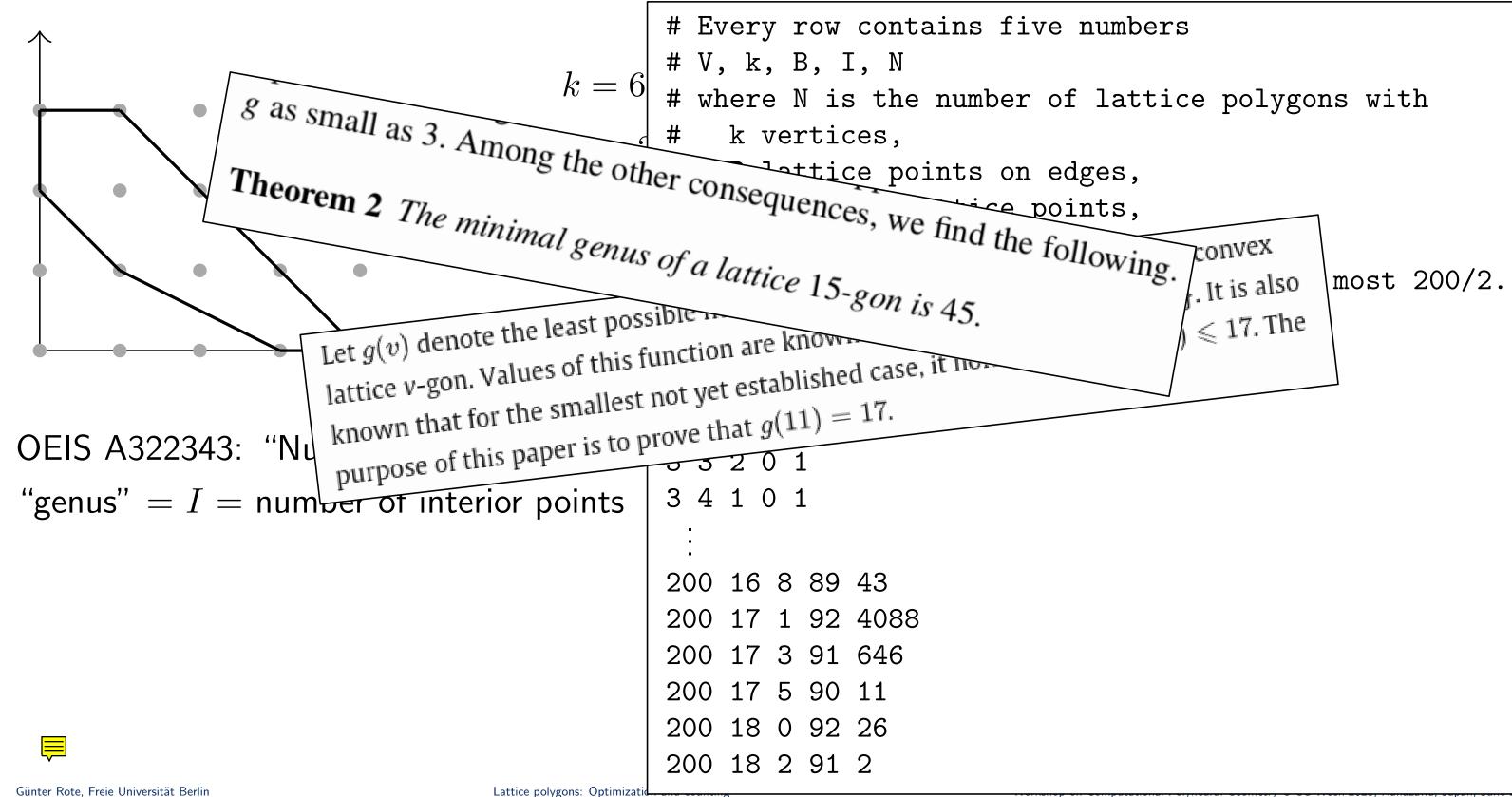
Lattice polygons: Optimizati

umbers

attice polygons with

- es,
- ,s,

with area at most 200/2.



Quantitative (polygonal) Helly numbers for the integer lattice \mathbb{Z}^2

OEIS A298562: $g(\mathbb{Z}^2, m) =$ the maximum k such that there exists a lattice polygon with k vertices containing exactly m + k lattice points (in its interior or on the boundary)

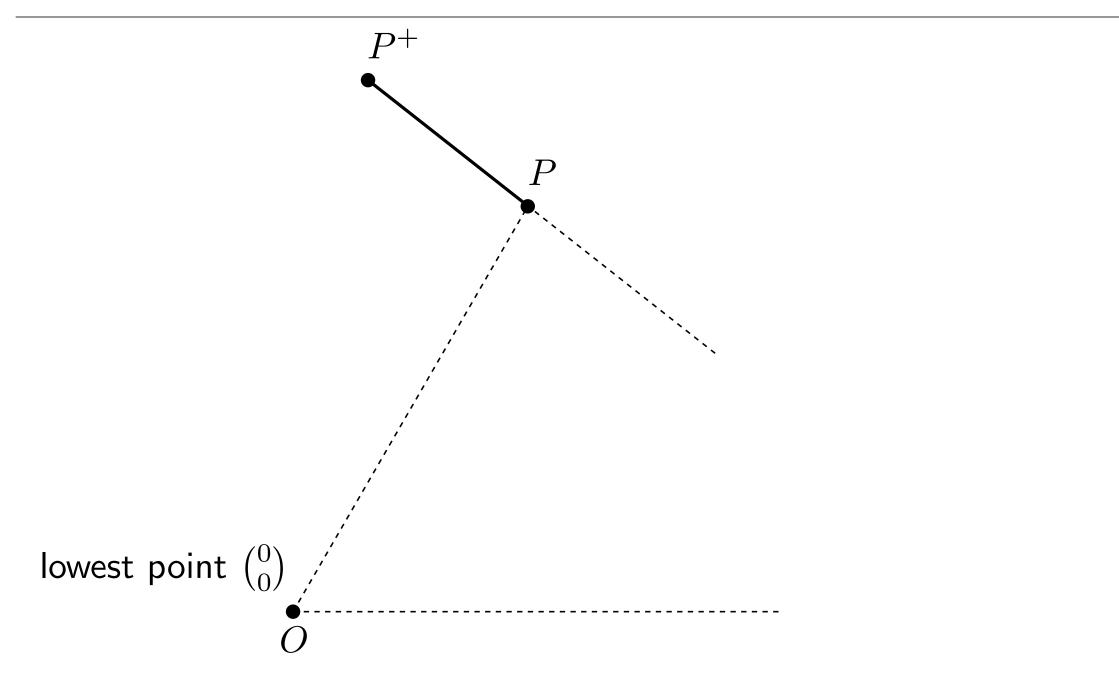
G. Averkov, B. González Merino, I. Paschke, M. Schymura, and S. Weltge, Tight bounds on discrete quantitative Helly numbers (2017). for $m \leq 30$.

m = B + I	m	$g(\mathbb{Z}^2,m)$	$m \mid$	$g(\mathbb{Z}^2,m)$	$m \mid$	$g(\mathbb{Z}^2,m)$
	0	4	10	10	20	12
	1	6	11	9	21	12
	2	6	12	9	22	11
	3	6	13	10	23	11
	4	8	14	10	24	12
	5	7	15	10	25	12
	6	8	16	10	26	12
	7	9	17	11	27	13
	8	8	18	11	28	12
	9	8	19	12	29	12

• • •

m	$g(\mathbb{Z}^2,m)$
191	23
192	23
193	23
194	23
195	23
196	23
197	23
198	23
199	24
200	23

Dynamic programming in two dimensions



Finding minimum area k-gons. David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger (1992)

<u>Counting</u> convex polygons in planar point sets.

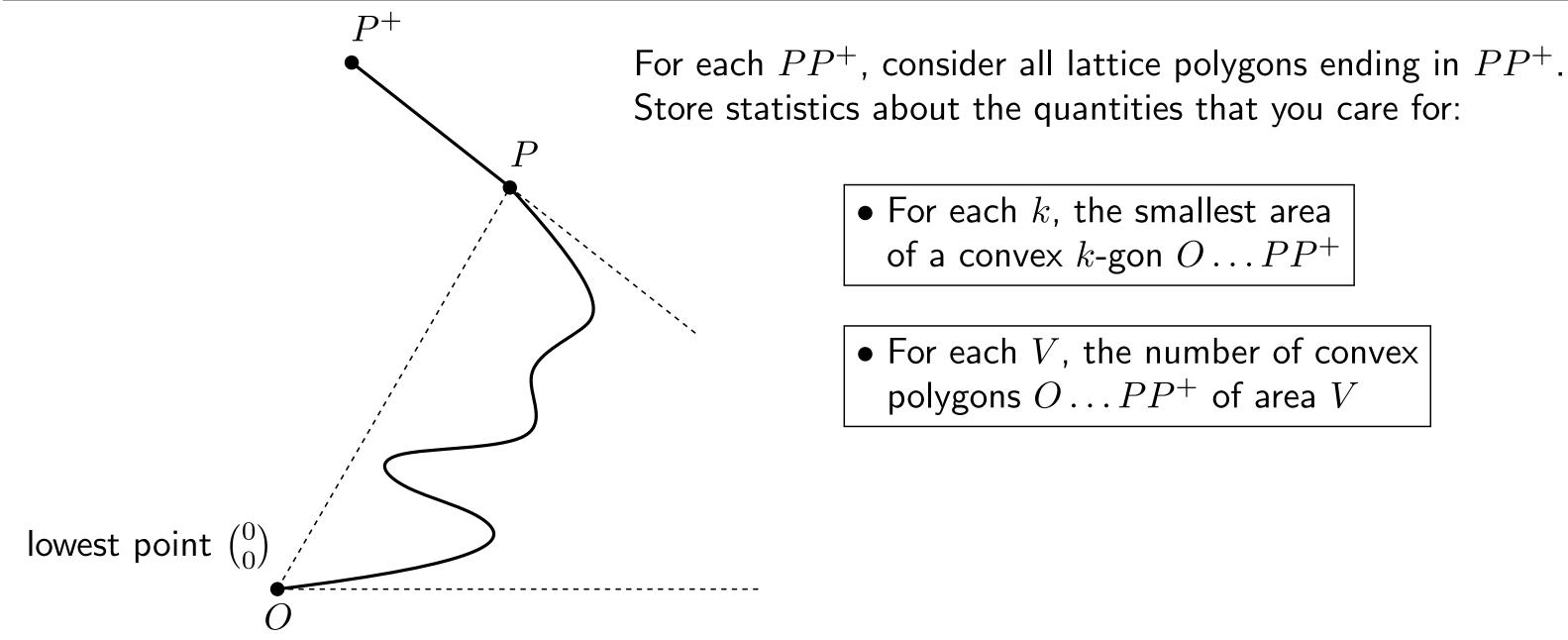
Joseph Mitchell, Günter Rote, Gopalakrishnan Sundaram, and Gerhard Woeginger (1995)

Günter Rote, Freie Universität Berlin

vs. Enumerating

$O(kN^3)$ time, $O(kN^2)$ space

Dynamic programming in two dimensions



Finding minimum area k-gons. David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger (1992)

<u>Counting</u> convex polygons in planar point sets.

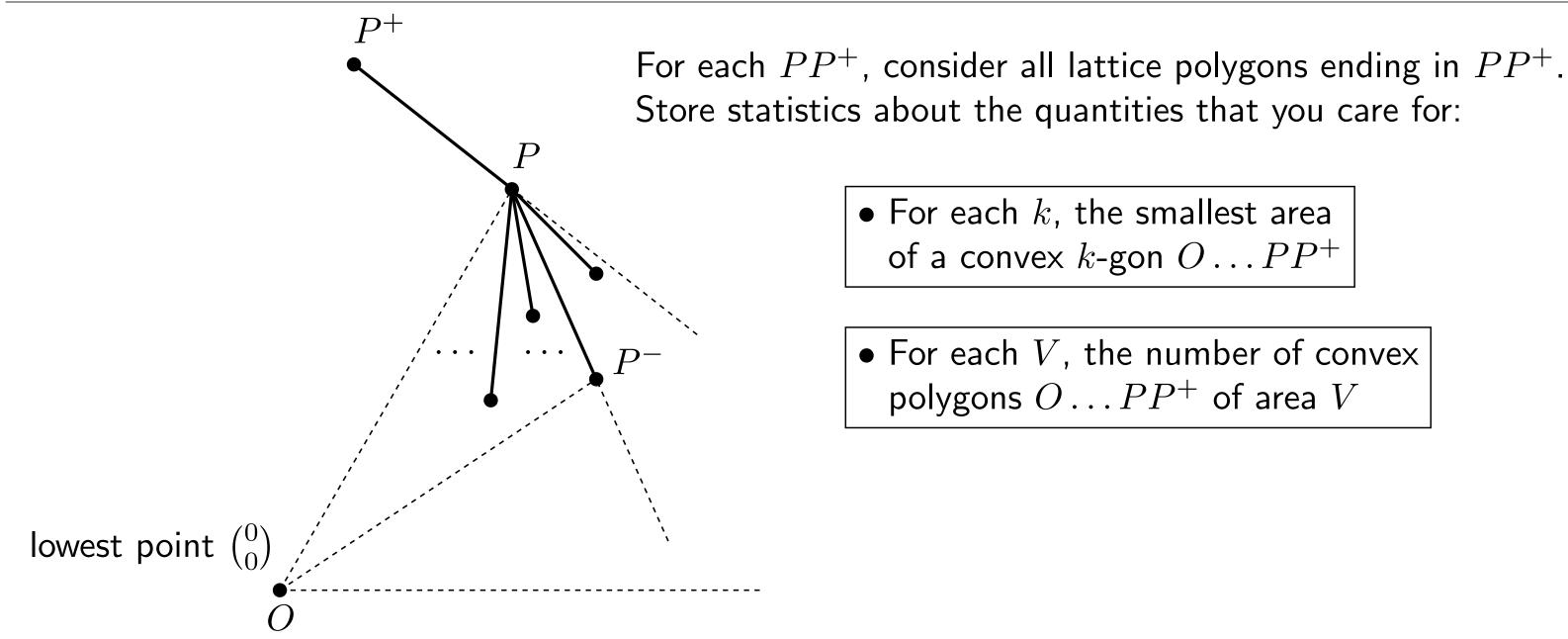
Joseph Mitchell, Günter Rote, Gopalakrishnan Sundaram, and Gerhard Woeginger (1995)

Günter Rote, Freie Universität Berlin

vs. Enumerating

$O(kN^3)$ time, $O(kN^2)$ space

Dynamic programming in two dimensions



Finding minimum area k-gons. David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger (1992)

<u>Counting</u> convex polygons in planar point sets.

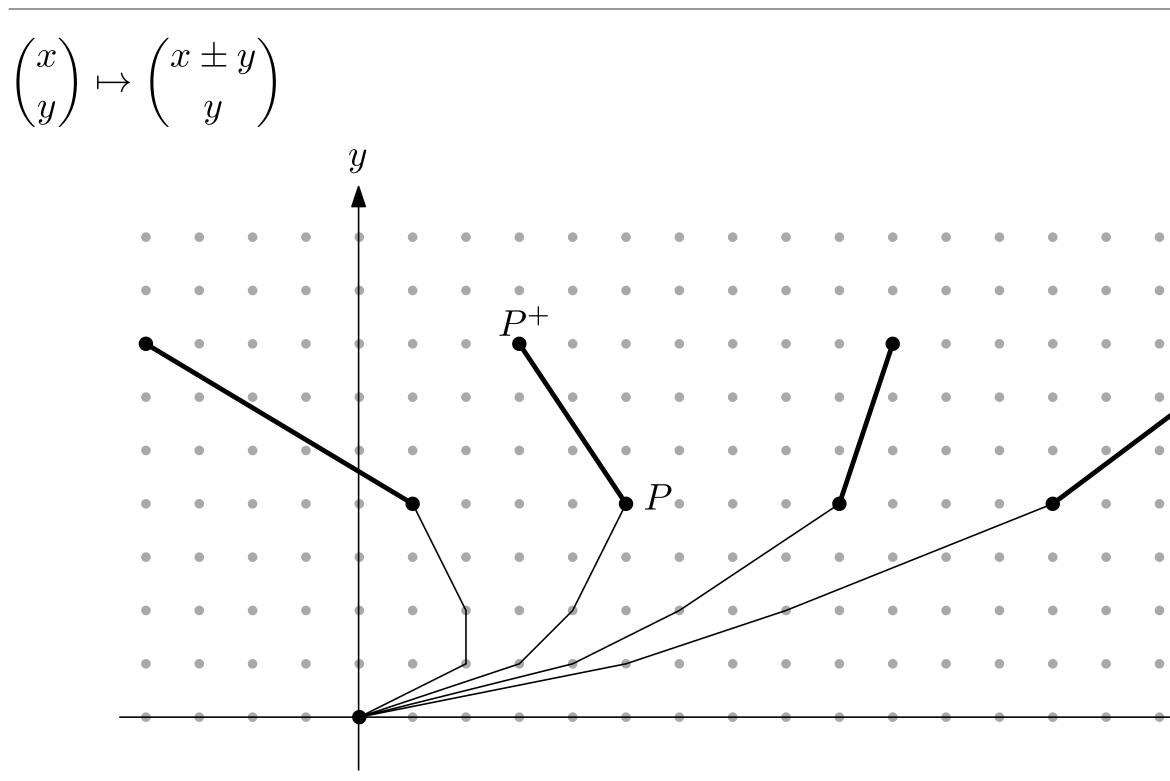
Joseph Mitchell, Günter Rote, Gopalakrishnan Sundaram, and Gerhard Woeginger (1995)

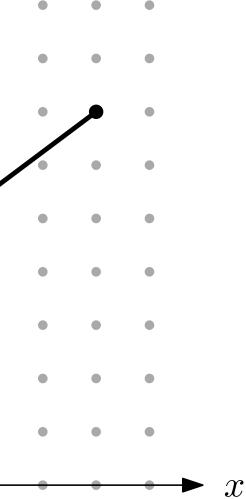
Günter Rote, Freie Universität Berlin

vs. Enumerating

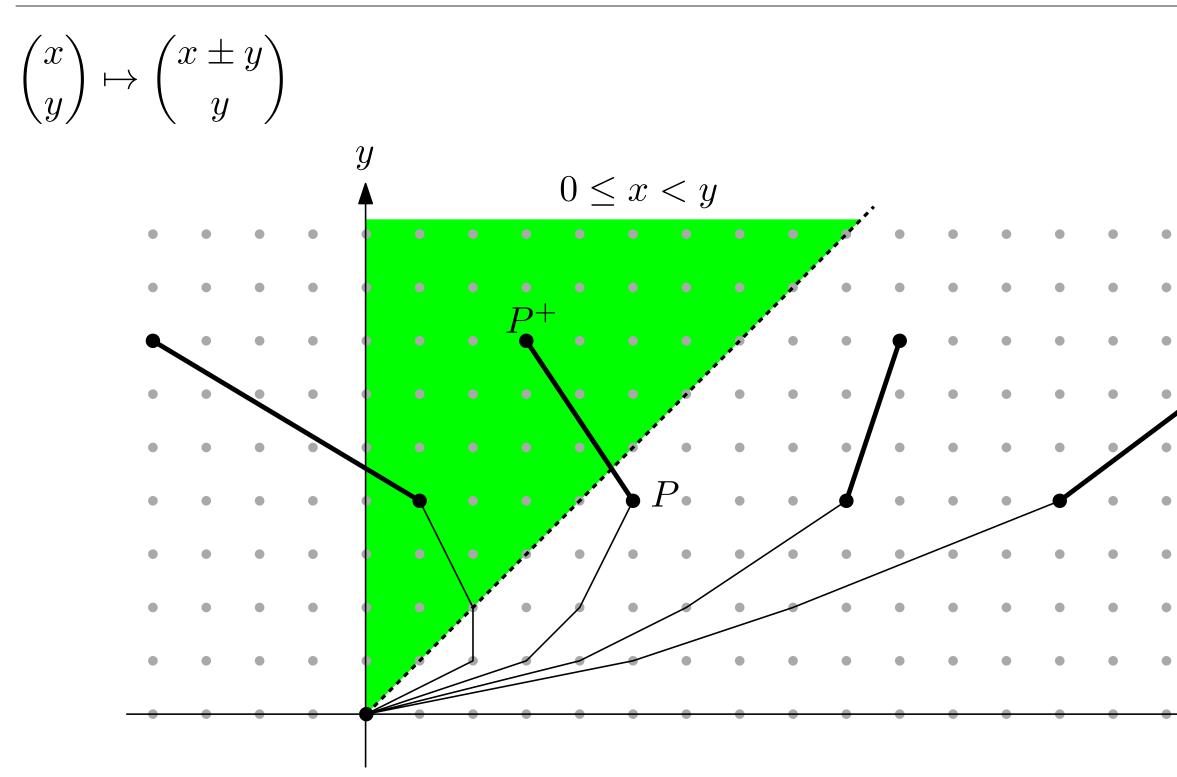
$O(kN^3)$ time, $O(kN^2)$ space

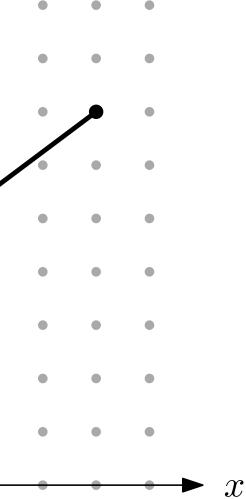
Normalize by horizontal shearings





Normalize by horizontal shearings





Upper bound for the height of smallest k-gons

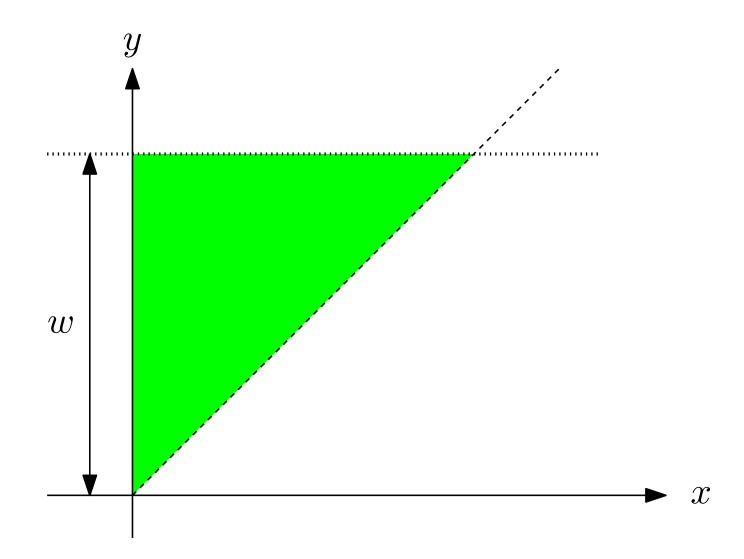
Lemma:

- A convex lattice polygon P of lattice width w has area at least $w^2/3$. $\frac{3}{8}w^2$
- [If k is even, P can be assumed to be centrally symmetric, and then it has area at least $w^2/2$.]

L. Fejes Tóth, E. Makai jr. (1974), F. Cools, A. Lemmens (2017)

Lattice width $w \to A$ unimodular transformation brings P into the strip $0 \le y \le w$.

If a k-gon of area V is found: \rightarrow terminate as soon as $y > \sqrt{3V}$



$\frac{3}{8}w^2$ t has area at least $w^2/2$.] F. Cools, A. Lemmens (2017) $\leq y \leq w$.

Upper bound for the height of smallest k-gons

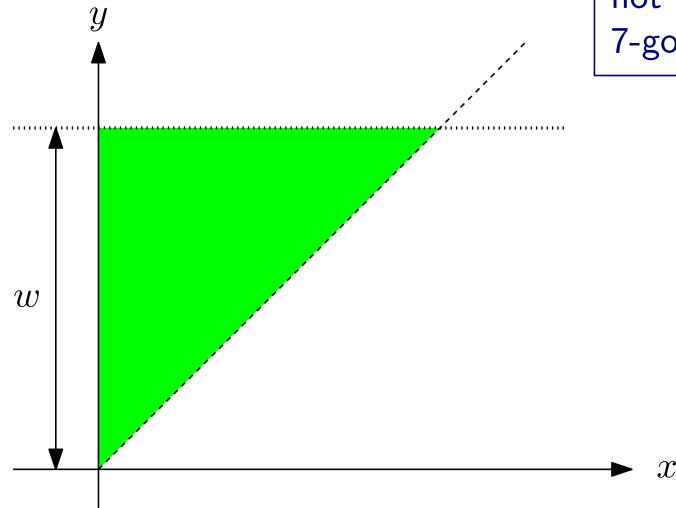
Lemma:

- A convex lattice polygon P of lattice width w has area at least $w^2/3$. $\frac{3}{8}w^2$
- [If k is even, P can be assumed to be centrally symmetric, and then it has area at least $w^2/2$.]

L. Fejes Tóth, E. Makai jr. (1974), F. Cools, A. Lemmens (2017)

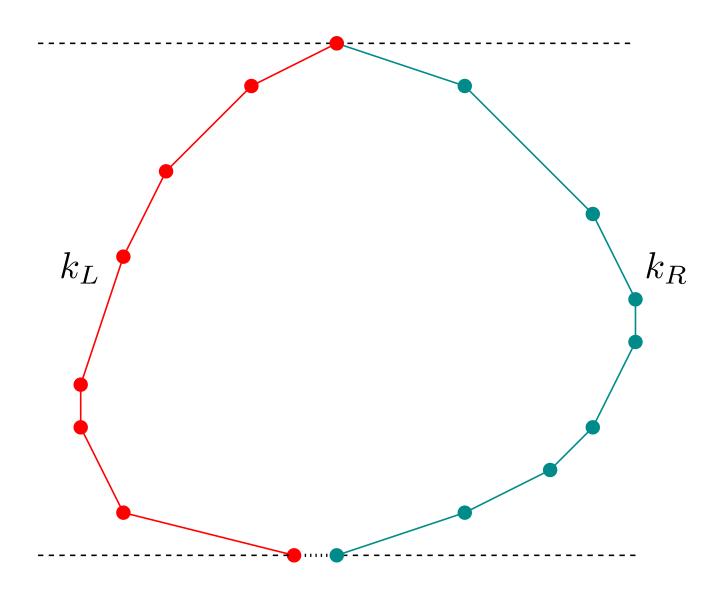
Lattice width $w \to A$ unimodular transformation brings P into the strip $0 \le y \le w$.

If a k-gon of area V is found: \rightarrow terminate as soon as $y > \sqrt{3V}$

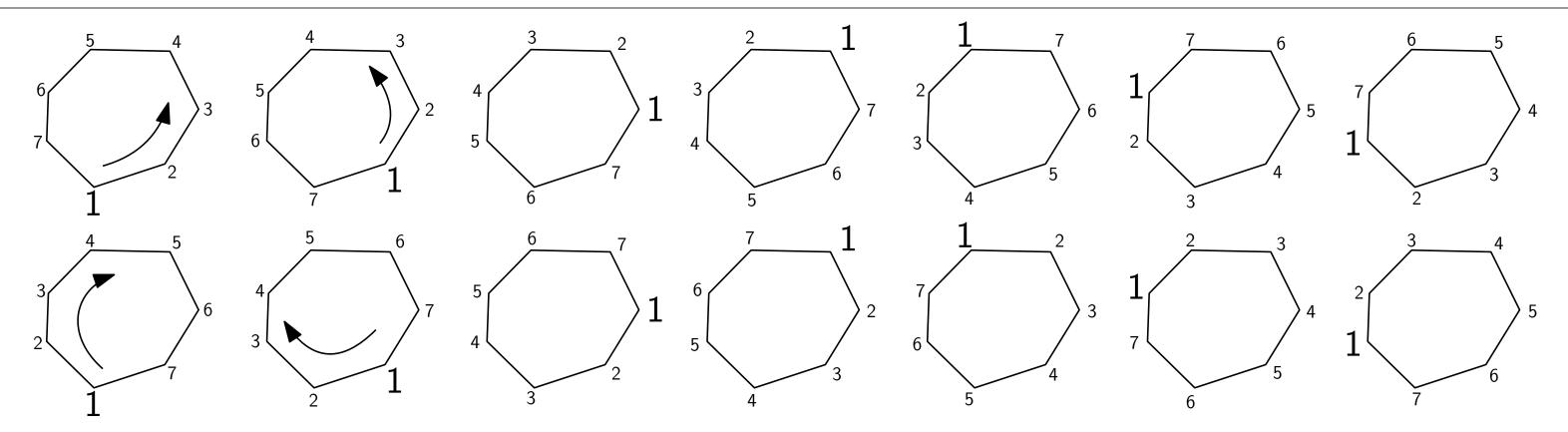




Putting together the solution

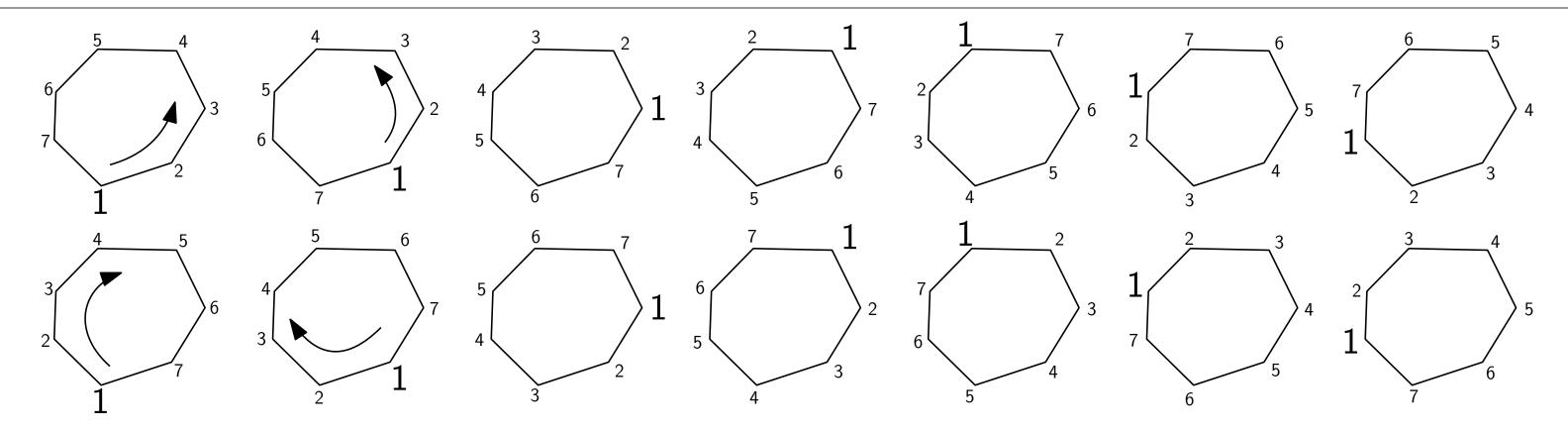


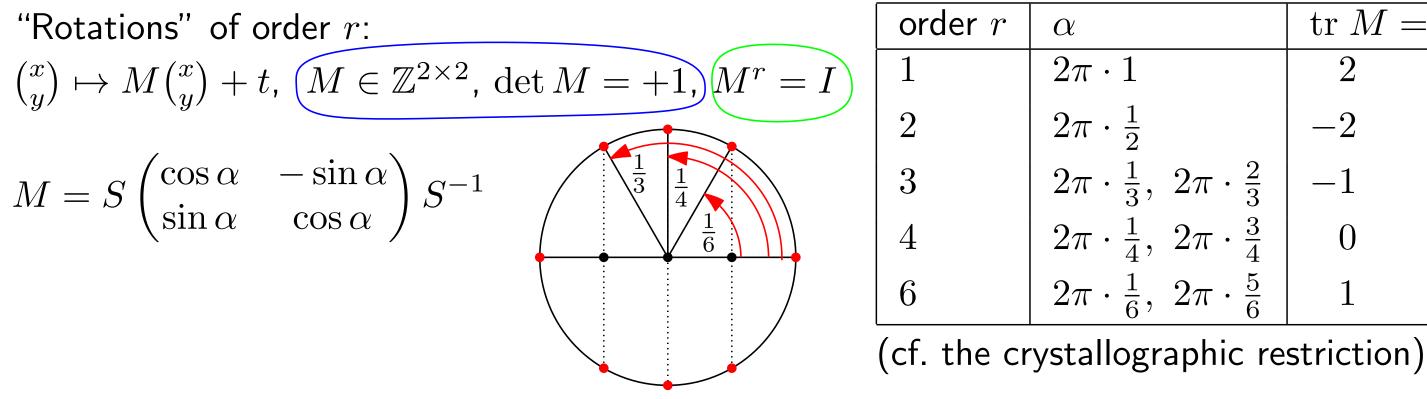
OPEN QUESTION: Can we assume that $|k_L - k_R| \leq 1$?



Dihedral group D_{2k} of order 2k: k "rotations" and k "reflections" $g \in D_{2k}$ Burnside's lemma:

$$\#\text{orbits} = \frac{1}{|D_{2k}|} \sum_{g \in D_{2k}} \#(\text{polygons fixed by } g)$$

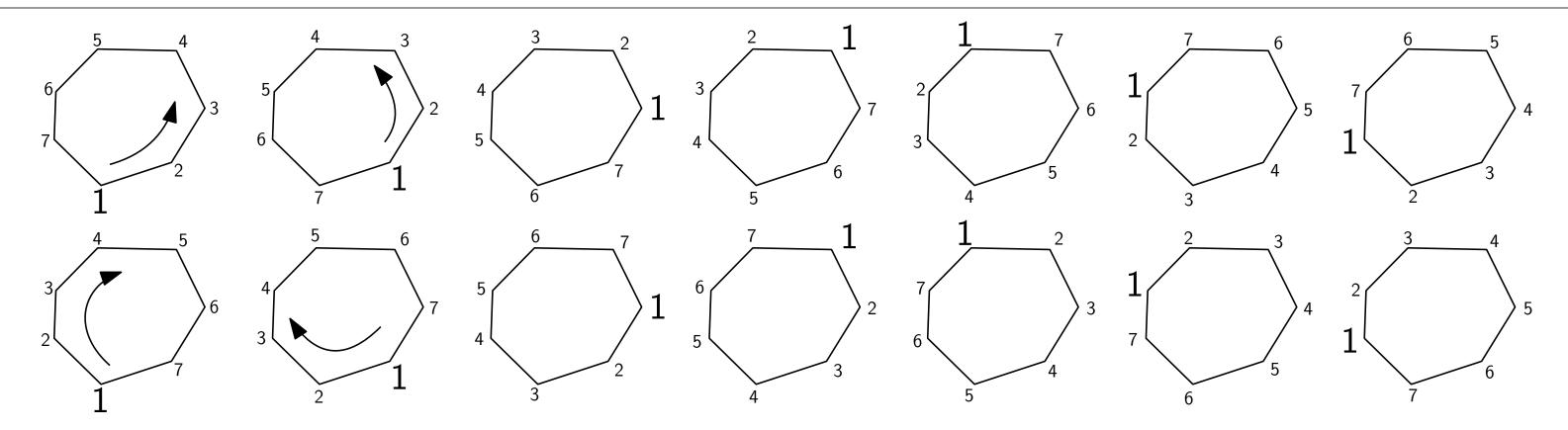


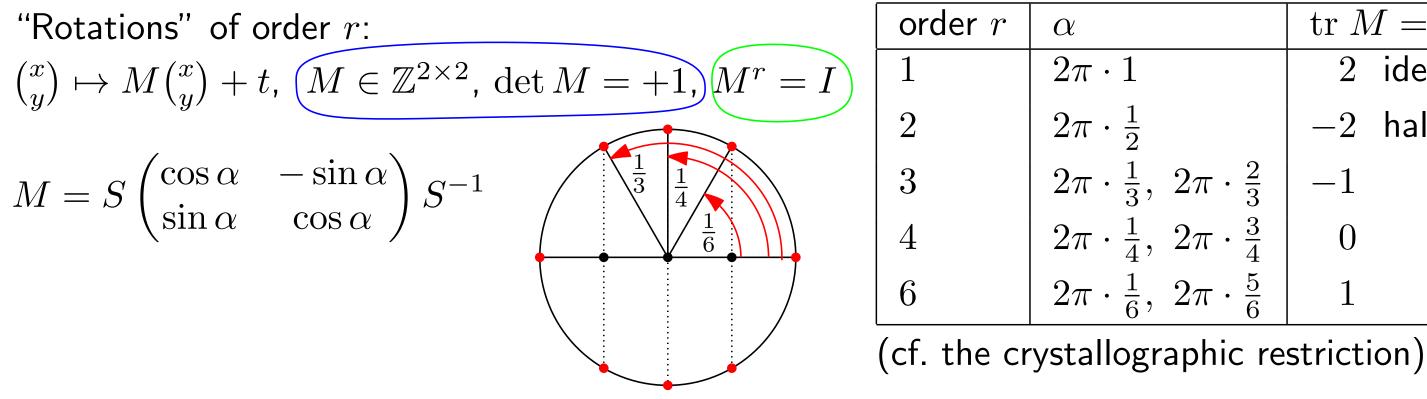


Günter Rote, Freie Universität Berlin

Lattice polygons: Optimization and counting

	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
	2
	-2
$2\pi \cdot \frac{2}{3}$	-1
$2\pi \cdot \frac{3}{4}$	0
$2\pi \cdot \frac{5}{6}$	1
	<u>````</u>



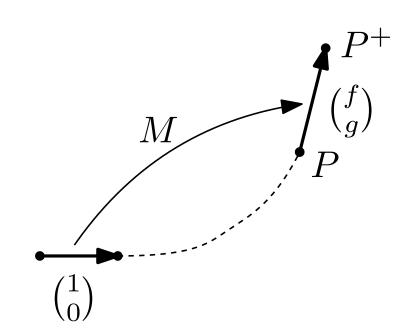


Günter Rote, Freie Universität Berlin

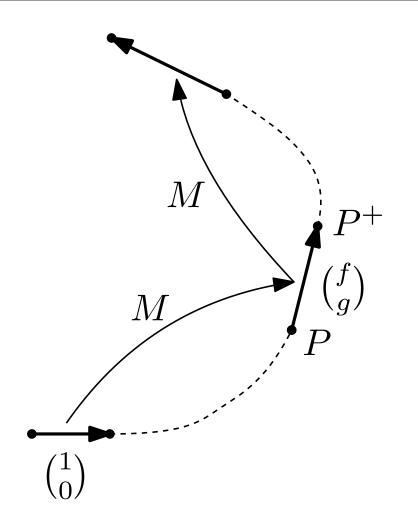
Lattice polygons: Optimization and counting

	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
	2 identity
	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
$2\pi \cdot \frac{2}{3}$	-1
$2\pi \cdot \frac{3}{4}$	0
$2\pi \cdot \frac{5}{6}$	1

$$M {1 \choose 0} = {f \choose g}$$
 Can this map be iterated so that $M^r = I$?



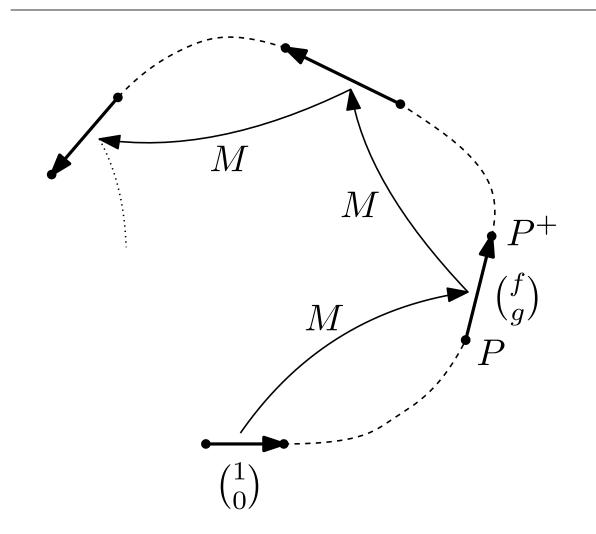
order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi \cdot \frac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	-1
4	$2\pi \cdot \frac{1}{4}, \ 2\pi \cdot \frac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1



$$M\binom{1}{0} = \binom{f}{g}$$

Can this map be iterated so that $M^r = I$?

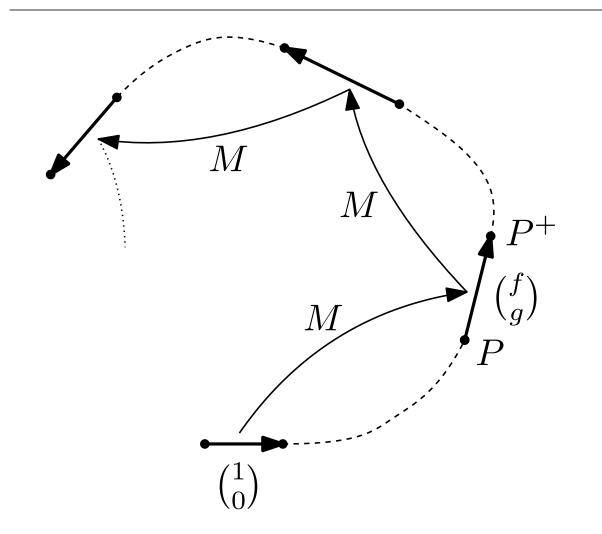
order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi \cdot \frac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	-1
4	$2\pi \cdot \frac{1}{4}, \ 2\pi \cdot \frac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1



$$M\binom{1}{0} = \binom{f}{g}$$

Can this map be iterated so that $M^r = I$?

order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi \cdot \frac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	-1
4	$2\pi \cdot \frac{1}{4}, \ 2\pi \cdot \frac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1

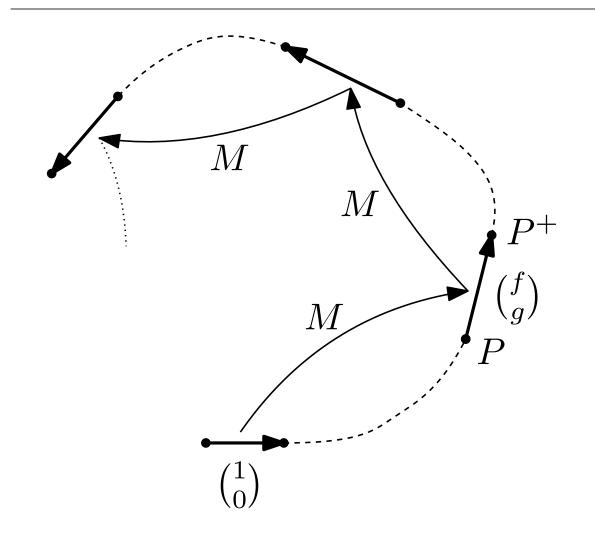


$$M\binom{1}{0} = \binom{f}{g}$$

Can this map be iterated so that $M^r = I$?

$$M = \begin{pmatrix} f & \cdot \\ g & \cdot \end{pmatrix}$$

order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi \cdot \frac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	-1
4	$2\pi \cdot \frac{1}{4}, \ 2\pi \cdot \frac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1



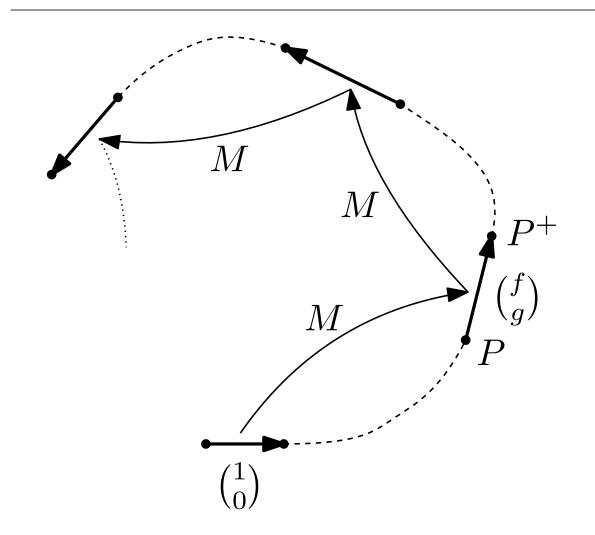
$$M\binom{1}{0} = \binom{f}{g}$$

Can this map be iterated so that $M^r = I$?

$$M = \begin{pmatrix} f \\ g \end{pmatrix} \quad \text{tr } M = -1, 0,$$

order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi\cdotrac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	-1
4	$2\pi \cdot \frac{1}{4}, \ 2\pi \cdot \frac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1

,+1 (three possibilities)



$$M\binom{1}{0} = \binom{f}{g}$$

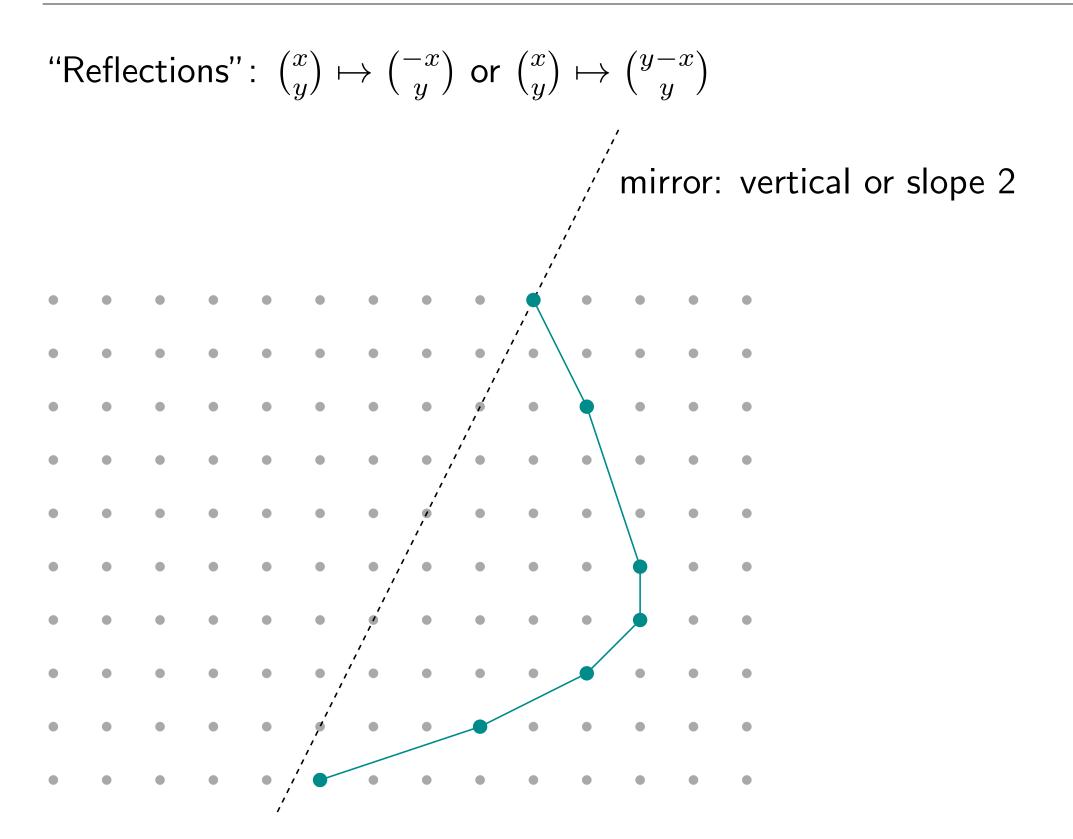
Can this map be iterated so that $M^r = I$?

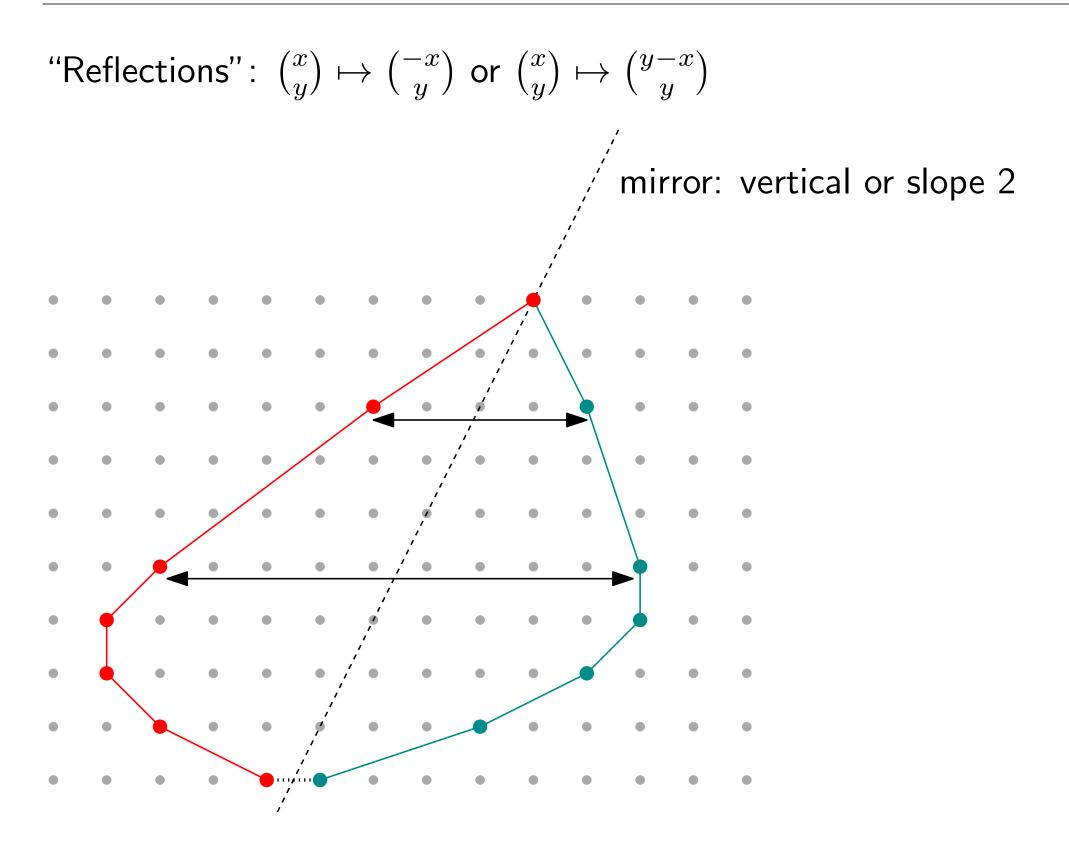
$$M = \begin{pmatrix} f \\ g \\ g \end{pmatrix} \quad \text{tr } M = -1, 0,$$

order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi \cdot \frac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	-1
4	$2\pi \cdot \frac{1}{4}, \ 2\pi \cdot \frac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1

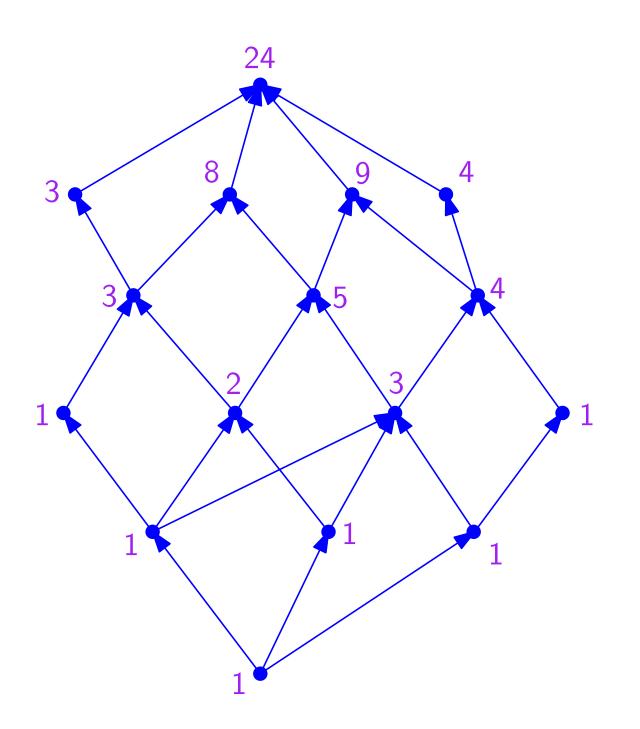
$M \in \mathbb{Z}^{2 \times 2}!$

+1 (three possibilities)

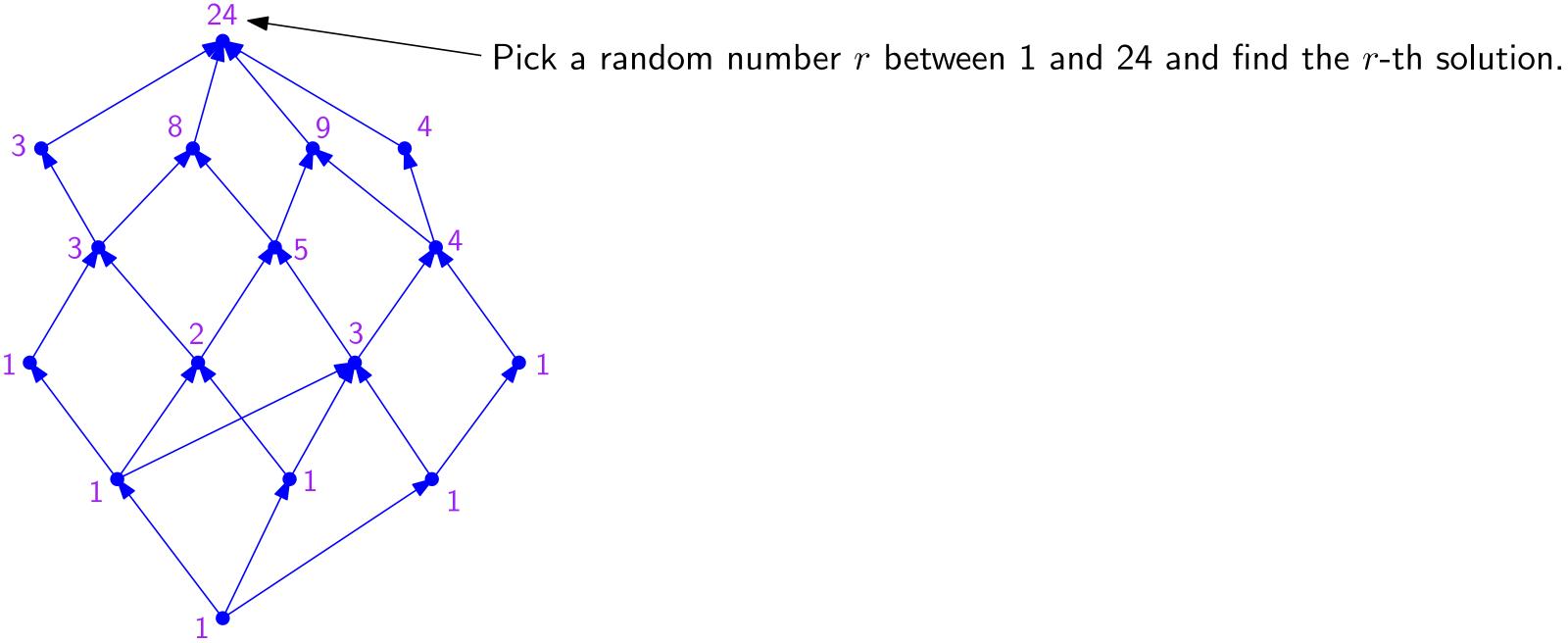




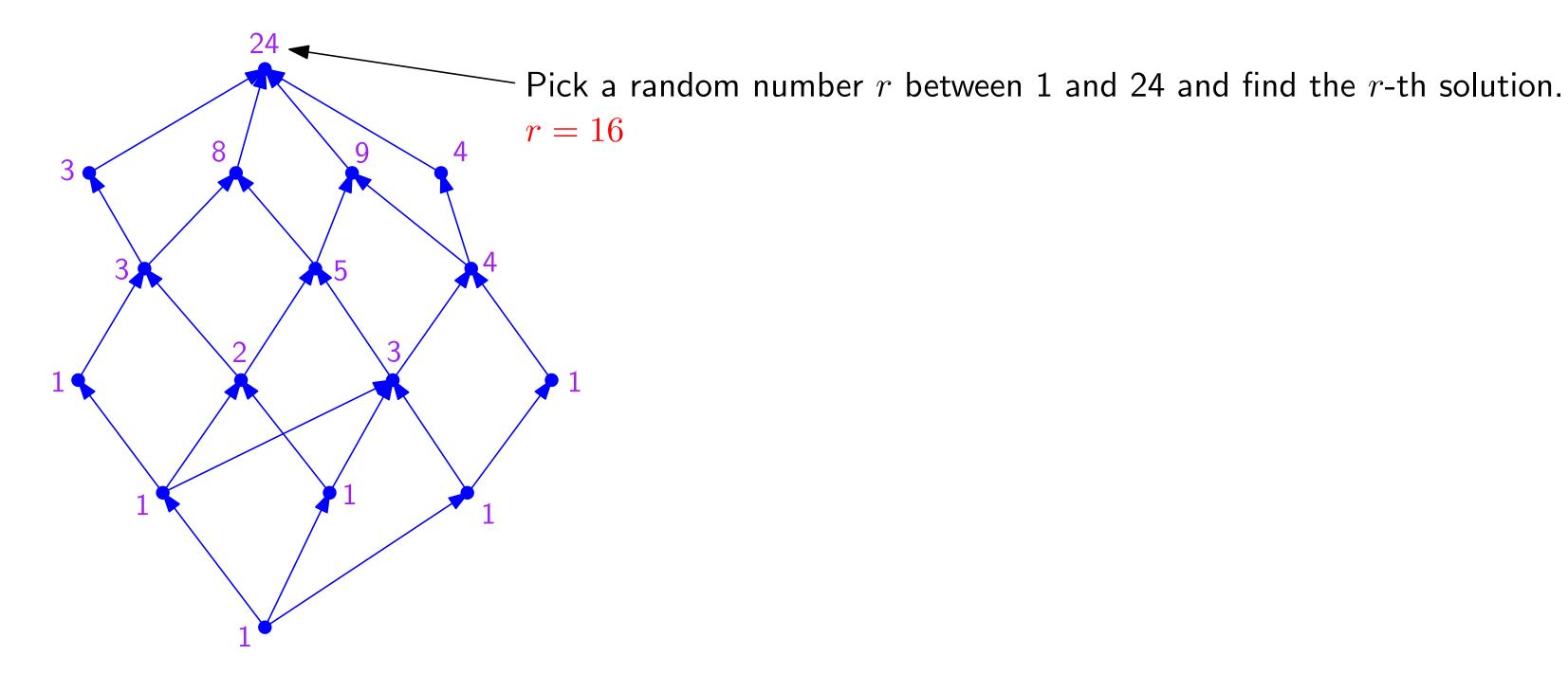
nodes \equiv subproblems \equiv edges PP^+ Abstract model as a directed acyclic graph: source-sink paths \equiv solutions \equiv polygons



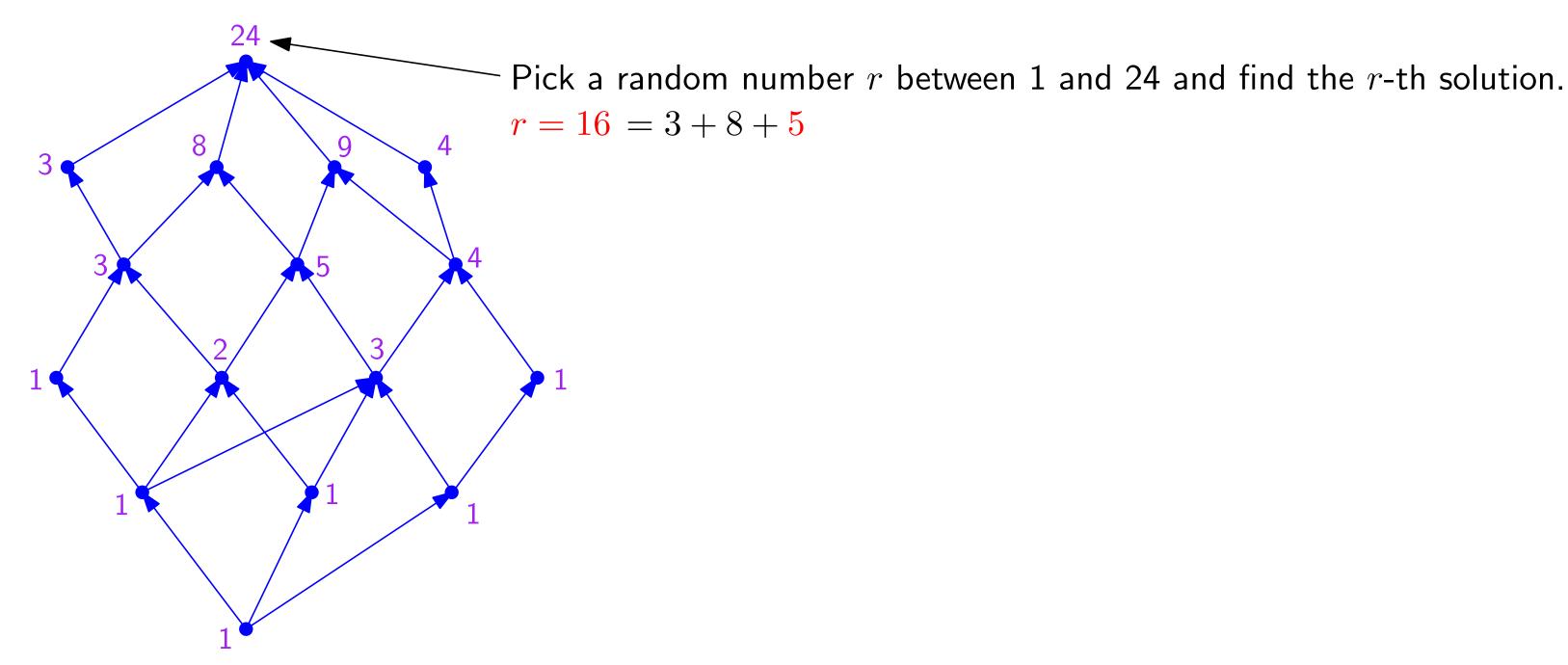
Abstract model as a directed acyclic graph: nodes \equiv subproblems \equiv edges PP^+ source-sink paths \equiv solutions \equiv polygons



Abstract model as a directed acyclic graph: nodes \equiv subproblems \equiv edges PP^+ source-sink paths \equiv solutions \equiv polygons



Abstract model as a directed acyclic graph: nodes \equiv subproblems \equiv edges PP^+ source-sink paths \equiv solutions \equiv polygons

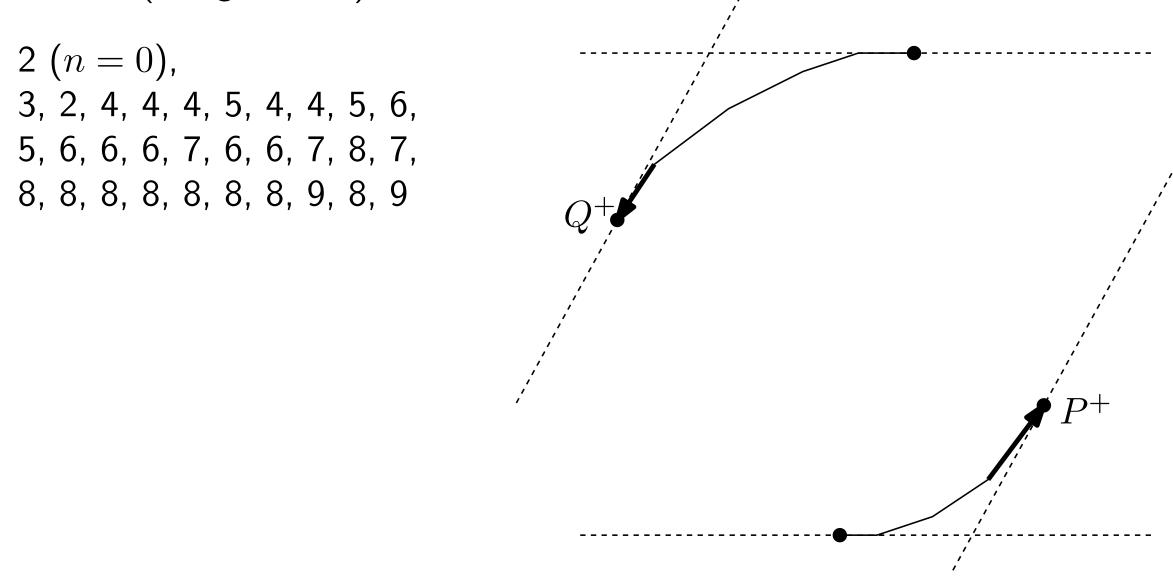


nodes \equiv subproblems \equiv edges PP^+ Abstract model as a directed acyclic graph: source-sink paths \equiv solutions \equiv polygons

Pick a random number r between 1 and 24 and find the r-th solution. r = 16 = 3 + 8 + 53 Find the 5-th solution leading to this node.

Taking the lattice width into account?

OEIS A322348: Maximal lattice width of a convex lattice polygon containing I lattice points in its interior ("of genus I").



cf. F. Cools, A. Lemmens (2017): Characterization of *minimal* polygons with given lattice width.

