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Examglé: Consider the four state mouse whose program is described by:
S E q, N 1, N q3 N a4 : the essential states are a4 and q3 3
cne has V=3, H=1,s0 ¢=2,b=1, and Yo = o, - 1 . This

example yields the recurrence sequence whose initial fragment was given above. -

Discussion: One might compzre the prob*cm a2bove to the problem about the °

Collatz "evea—cdd" pame : define the function g by :

g(n) = if even n then n/2 else 3n+l fi ;

It is an open conjecture that for each n there exists a k such that °
iterating g for k times on input n will transform n into I :
% .

g (n) =1.

J.H. Conway has shown that some generalisation of this type of iterations

leads to:an undecidable problem. If on2 considers functions g defined by

g@) = a _ . q¥® Y by g q

where a; and bi are rational numbers selected in such a way that g(n)
is integral for each value of .n, then the problem of deciding whether
gk(n) = | for some k becomes undecidable; this holds even for the case
that all Si = 0 ; the preof uses an enceding of a Minsky machine, whose
register contents together with its memory state are encoded by exponents
in the prime factorisation of the argument n . (for this reductipn it is

even crucial that the bi are zero :).

The sequences arising out of the Mouse-in-first-Octant-problem are in one
aspect more restricted than the sequences considered by Conway = the multiplier
3; is a fixed number which is moreover larger than 1 ; however we have the
new effect of the finite memory (state qi) which influences the additive

terms bi » and vhich is in its turn determired by the residue class mod ¢

cof the sum of all previous values in the sequence. Will it still be

possible to encode a Minsky machine with these restricted tools ?

REFERENCES

L. Budach, problem 65, FCT-problem Book of Computing, Poznaii,Sep 1977

J.H. Conway, Unpredictable Iterations, in N.N. (=d.), Proceedings of the
1972 Numder Theory Conference, University of Colerado, Boulder, Colorado
Aug 14-18, 1972, Publ. Univ. of Coclorado (1973), pp. 49-52.

September 02 1980

54

Some remarks on

PCP(k) and related problems

by

Volker C 1 a u s (University of Dortmund, FRG)

1, Examples

and definitions

Cohsider the integer-valued matrix

M=

14 -9

Does there exist a power M" of M(n > 1)such that the right

upper element

43
M= = 71
-9

-42
M= | -72
-5

126 § 44

-43 8 N CAP I

5 =3 -37
25 -8
43 -13
s 4

of M" {s zero ? For testing we calculate:

w1
-2 s
2

and this gives us the right upper elements of"Mn
for n = 2,25:5:82

3, 5, =1,

The reader may verify that the right upper element of M

is zero.

=8, =1, 14, 8, '421.

14
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Let RU be the right upper element of a matrix. Our_example

belongs to the unsolved procblem of SKOLEM (1933):

Does there exist an algoPithm,which decides for every
natural number m and for every matrix over the integers i

MeZ"*™ of order m, whether there exists a power
M" of M(nx1) with RU(M") = 0?

The similar problem of KARPINSKI asks for positive right upper
elements (RU(M") >O), and is unsolved, too. The generalization
leads to problems (which I called NUGAMOR- and POGAMOR-problem
£13):
Does there exist an algorithm which decides for every
natural numbers k and m and for every set
M= {Ml,...,Mk}‘:Z"“m of k integer-valued matrices of
order m, whether there exists a sequence of indices
i15.0.51, (n2l) such that

is

RU(Hi -M ""'Mi ) = 0 (respectively greater zero).
1 &% a5 |

We abbreviate the restriction of this problem to fixed k and m
by NUG(m,k), resp. POG(m,k). Then NUG(m,1) is equal to the
SKOLEM-problem, &nd POG(m,1) to the KARPINSKI-problem. The
problems NUG(m,k) andPOG(m,k) turn out to be unsolvable for some
m and k, and therefore we'll ask for the limit between the

areas of decidability and undecidability (wi?h respect to the

parameters m and k). ) [

There are connections to the reachability problem (decide,
whether there exists an n such that Mhx = y for given vectors
x,ycIZm’l and matrix Mcézm’m), which were pointed out by
KARPINSKI. A related problem is the mortality-problem, which asks

..»i_ such that M, ... M, =0 (C51,061)., .
n 11 1n e

for indices 11,.

‘problem is unsolvable.

" Post's correspondence problem (PCP). Let X be en alphabet of
2 elements. The k-bounded PCP asks for an algorithm which decide:

S Uj Uy e.eaUy = Ve Ve oL..vs o We denote this problem by PCP(k).

2. PCP(10) is undecidable
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" The emptiness-problem for rational proSabilistic accepters

asks for an algorithm , which decides to every natural numbers

© k and m, to every rational number A , and to every rational

probabilistic acceptor 4 = (X,S,{P(x)|xeX},n,f) with an
k-elementary input-set X, an m-elementary set of states S, a

_rational probabilistic distribution = on the states, a 0-1-

vector of final states f,and k stochastic matrices P(xl),...,P(x;
cver the rational numbers of order m, whether the accepted

language L(.4,A) is empty or not. We abbreviate the restriction
of this problem to fixed m and k by EMPTY(m,%). In generai this

The undecidability is often proven by reducing the problem to

vor a fixed natural number k and for every k-elementary set
of pairs of words over X

*

Vo= f(ugsvy)seees(u vy )) e X" ox x*,

whether there is a correspondence,i.e. whether there exists a
sequence of indices il""’in (n21) such that

I "2 n % 12 1n

 We need a theorem of MATIJASEVIC ([4]) and a corollary.

Theorem 1: The wordproblem for semigroups over a 2-elementary

aiphabet is undecidable, even if it is restricted tc
3 relations.

For defining the equivalence of words the relation can be used
symmetrically. For carrying cver this result to Semi-Thue-systenm
(or grammars) every relation has to be read from left to

right and from right to left. Therefore, we get 6 productions
from the 3 relations.
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Corellary: There exists no algorithm which decides

"~ with a2t most 6 productions is undecidable.

Theorem 2: If the word problem for Semi-Thue-systems with

57 : U t 58

p attaches one g to every symbol on the right side and A on the

for every Semi-Thue-system U (or grammar) with 6 productions left side. To two given words U Sk dafiae
. H] o

over a3 2-elementary alphabet X and for every two words .
u,veX” whether u 3 v (if. v is derivable from u with ' 1

Y o= { (p(wy)sr(w,)) | for all w, = w,eP, }
respact to U)or not, (p(wy)sa(wy)) 1 2875

Tt v { (p(x)oA(x)) | for all xeX, }
This corollary says that the wordproblem for Semi-Thue-systems . , 2

v { (hms o BEA(UY))) » (o (h(¥¥))R(Y) » 8 (¥)) 3.

- If there exists a derivation with respect to U,
j preductions is undecidable, then PCP(j+4) is unsolvable. L : _
h(yuy) = h(yzyy) = h(yzyy) = h(yzpy)+> ...+ h(yz,y) = h(yvy),

Proof: Let Uy = (Xé,Po) be a Semi-Thue-system with the

2-elementary alphabet xo = {xl,xz} and the j-elementary set of . L

productions P = {u; = Viseeesty + vj} . Let yAbe a new . .' h(v)a(h(zgy))a(h(zyy))..a(h(z_1¥))A(h(zZ,))BR(Y)

symboi. ) : .

' is a correspondence of Y. Conversely, if there exists 2

Define Xp := X, u {y} and . Uy = (X;,P,), then for all , - correspondence, this must begin with h(y)A(h(Uy)) ... and
u,vexg: ! s - ' ' end with A(h(yvV))8h(y). The reader may verify that any

il & w.r.t.' U, <> yuy * YWy  wW.r.t. Ul' . : 'correspondence of Y defines a derivation from h(yuy) to

. h(yvy). It fcllows: :

Let Xi := {0,1}, and define a homomorphism h:XI -+ X; by . : h(yly) > h(yvy) w.r.t. U, <=> Y has a correspondence.

h(x;) = 01, h(x,) = 011, h(x4) = 0111, h is injective.

) By coding X3 into a 2-elementary alphabet and coding .
Let P2 = {h(ul) - h(vl),...,h(uj) - h(vj)} and

analogously, we get a set of j+4 pairs of words Y over

Up = (X,P5). Then we get for all u,stg: o o ' j. a 2-elementary alphabet such that:
yuy 3 yvy  wer.t. Up o <= h(yuy) # h(yvy)  w.r.t. Uy, o, ) ulv owrot. U, <=> Y has a correspcndence.
tet g be a new symbol, and X5 := X, v {g}. We define two ‘ P ) Hence, theorem 2 1is proven.

monomerphismus p,A:X] - X; by

p(x) = %8 and a(x) = gx for all XeX,.
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The proof is a variant of a proof given in [2].

Coilary: PCP(10) is unsolva?le

To my knowledge, k = 10 is the best proven bound of
undecidabiiity of PCP(k). PCP(1l) is solvable. For k = 2,3,...,9
the question is open, but because of the investigations of
K.CULIK, J.KARHUMAKI and others it is supposed that PCP(2) is..
go]vab]e, but PCP(3) is not.

(Rémark: fhe morta]ity-p}oblém for 12 3»3-matrices is undecidable.
Use the proof of [5].) '

3. Related probiems

let X = {1,2} be the 2-elementary alphabet and let

g:x" - Ho be the 3-adic interpretation of every word over X.
g is injective, but no homonorphism. Then, the mapping
v

*

X" 0 XX w 207 detined by

1 g(v)  g(u) - g(v) \ ;A
¥(u,v) = o alvl  glul_ 3|Y|
0 0 3lul

is an injective homomorphism (|u| denotes the length of u).
Therefore PCP(k) can be transformed into NUG(3,k): Using another
injective homomorphism PCP(k) can be transformed into POG(7,k).
By combining the matrices and adding a suitable permutation
matrix several results can be derived, for example ([1]):

NUG(3,10), NUG(32,2), NUG(6,6),
P0G{7,10),P0G(70,2), POG(14,5).

R g+ o s —

50

This theorem is based on the unsolvability of PCP(10), and
will be automatically sharpened, if the corollary of theorem
2 wiil be.

There is a strong connection between EMPTY(m,k) and POG(m,k).

Inspecting the proof of TURAKAINEN([7]) carefully one gets

Lemma: If POG(m,k) is unsolvable, then so is EMPTY(m+2,k).
If EMPTY(m,k) is unsolvable, then so is POG(m+1l,k).

Therefore, EMPTY(9,10), EMPTY(72,2),... are unsolvable.

Though, we do not know anything about POG(2,k), it has been
proven that EMPTY(2,k) is solvable ([1]).

4. Remarks to Skoiem's problem

The proof for the undecidability of NUG(32,2) uses two matrices
M and Q, where Q is a permutation-matrix and M contains the
whole information of PCP(10) for a given Y. It secems impossible
to enumerate all products of M and Q with one single matrix,
i.e., this proof might be not applicable to SKOLEM's problem.

The SKOLEM-problem is equivalent to the question, whether there
exists a zero in a sequence of numbers defined by a linear
recursive equation. Let M be an integer-valued matrix of order
m with the characteristic polyncmiél

m o1 i i :
p(x) = x* - a;x , and let b; = RU(M') for i30. Then the

- i=0
sequence bl’bz’b3"" is characterized by bo = 0, bI""’mel
and m-1

Bygy ™ ! oy bj+i for all jxC,
i=0

because M is a root of p. Conversely, from
bo = O,bl,...,bm_l.ao,.l.,am one can construct an integer-

valued matrix M of order m such that: bj =0 <= RU(Mj) = 0.

Because of the linearity we may be full of hope that SKOLEM's

e e o g . e ]
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problem is solvable, though we know the sclution only’

in the case m = 2.

2 .
Another characterization uses the eigenvalues of M and gives
the result, that SKOLEM's problem becomes only difficult if
there exist at least two eigenvalues of the same absolute

vaelue. Investigations on the languages
L(M) = {|RU(MI) = 0} = {1}

yield that these languages coincide with the regular languages

*

|n

over an l-letter alphabet. But this connection is not constructive

(until today, [31).

Anybody, who wants to get a feeling of the problem, may calculate
the exponent n, for which RU(M") = 0 holds with respect to

the matrix

113 113 1469
M o= 1938 0,  -7910
442 113 113
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A NOTE ON ITERATING INVERSE HOMOMORPHISMS

Matthins Jantzen

. Pachbereich * 18

- Univ, Hamburg
Schltiterstr. 70
D-2000 Hamburg 13

We all know that DOL languages can be defined nicely by
iterating some homomorphism h : X‘——% X‘ bn an axiom weXx®,

The DOL 1language L then is
%)

L 3= Uhi(w) R

i=0

Now, thinking backwards,we may define languages of the form

. (s}
wron = Ui

i=0
where M is a single word or a sef of words, We see that
fof L as above we have:
v& L Af end only if .w € h'*(v) .
Obviously h-*%M) is a finite set if M is.finite and the
only interesting casé is the one where M is an infinite
language of a certain type. For instance, what can ﬁé say
if M. is a context-frce language? Well, it is not surprising

. =%
that h™ (M) need not be context-free if M is context=~free,

Let h be given by h(a) := aa , h(b) := b . Then

=4/¢ NN
h ({alb ' n > 0}) is not context- free, since

WM™ I ny o) avt = §av2 | nyo} .

Could it happen that h-‘(M) is not even recursive for
some context=free language M ? We believe that this is the

case, but we do not have a proof for this conjecture!
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