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Example: Consider the four state mouse whose program is described by: 

~0  Ε  ql  N q2  N q3  N q0  ; the essential states are q0  and q3  ; 

one has V 	3 , 11 - I , so c - 2, b 	I, and y0  - 0, y1  - 1 . This 
example yields the recurrence sequence whose initial fragment was given above. 

L'ircussion: One might compare the problem above to the problem about the 

Collatz "eνen-cdd" name . define the function g by 
g(n) = if even n then n/2 else 3n+1 fi ; 

It is an open conjecture that for each n there exists a k such that 

iterating g 	for k times on input n will transform n into I : 

g'(n) 	1 . 

J.E. Conway has shown that some generalisation of this type of iterations 

leads to•an undecidable problem. If one considers functions g defined by 

gin) u an mod q 34 n 	bn mod q 

where a~ and b1  are rational numbers selected ii' such a way that g(n) 

is integral for each value of .n, then the problem of deciding whether 

g'(n) 	1 for sane k becomes undecidable; this holds even for the case 

that all b. 	0 ; the proof uses an encoding of a Minsky machine, whose 

register contents together with its memory state are encoded by exponents 

in the prime facrorisation of the argument n . (for this reduεtίon it is 
even crucial that the b. are zero 

The sequences arising out of the Mouse-in-first-Octant-prohlem are in one 

aspect more restricted than the sequences considered by Conway - the multiplier 

a. is a fixed number which is moreover larger than 1 ; however we have the 

new effect of the finite memory (state qi) which influences the additive 

terms b. , and which is in its turn determined by the residue class mod c 

of the sum of all previous values in the sequence. Will it still be 	• 

possible to encode a Minsky machine with these restricted tools ? 
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Some remarks on  

PCP(k) and related problems  

by 

Volker C l a u s (University of Dortmund, FRG) 

1. Examples and definitions  

Consider the integer-valued matrix  

0' 1 3 

1 	1 	5 

14 -9 0 

Does there exist a power M" of M(n > 1)such that the right 

upper element of M" is zero ? For testing we calculate: 

43 =26 5  44 -28 -1  

Μ 2  ν  71 -43 8 , 	Μ 3 	=  69 -44 -2  

-9 5 -3 -37 23 -2 

-42 25 -8  

Μ 4  =  -72 43 -13 

-5 4 4 

and this gives us the right upper elements of'Ι" 

for n = 1,2,...,8: 

3, 5, -1, -8, -1, 14, 8, -21. 

The reader may verify that the right upper element of M14  

is zero. 

,  
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Let RU be the right upper element of a matrix. Our example 

belongs to the unsolved problem of SKOLEM (1933): 

Does there exist an algo~ithm,which decides for every 

natural number m and for every matrix over the integers 

Με7̀m'm  of order m, whether there exists a power  

Mn  of M(n>1) with RU(Mn) = 0? 

The similar problem of KARPINSKI asks for positive right upper 

elements (RU(Mn) >0)>  and is unsolved, too. The generalization 

leads to problems (which I called NUGAMOR- and POGAMOR-problem 

C1]): 

Does there exist an algorithm which decides for every 

natural numbers k and m and for every set 

M = {M1,...'Mk} c jL m'm  of k integer-valued matrices of 

order m, whether there exists a sequence of indices 

i 1,... ,i n  (n>1) such that 

RU(1.  .Μ  .....1. ) a 0 (respectively greater zero). 
1 	2 	 n 

We abbreviate the restriction of this problem to fixed k and m 

by NUG(m,k), resp. POG(m,k). Then NUG(m,l) is equal to the 

SKOLEM-problem, and  POG(m,1) to the KARPINSKI-problem. The 

problems NUG(m,k) andPOG(m,k) turn out to be unsolvable for some 

m and k, and therefore we'll ask for the limit between the 

areas of decidability and undecidability (with respect to the 

parameters m and k). 

There are connections to the reachability problem (decide, 

whether there exists an n such that M°x = y for given vectors 

x,y~7L m'1  and matrix MC TL m'm), which were pointed out by 

KARPINSKI. A related problem is the mortality-problem, which asks 

for indices i1 	i
n 
 such that  Μ. 	...  µ. 	= 0 	(C5],[6]). ι 

1 	n  

The emptiness-problem for rational probabilistic acceptors 

asks for an algorithm , which decides to every natural numbers 

k and m, to every rational number  λ  , and to every rational 
probabilistic acceptor 	,,4- = ( Χ,S,{Ρ( x) Ι x εΧ),Π,f) with an 
k-elementary input-set X, an m-elementary set of states S. a 

rational probabilistic distribution γτ on the states, a 0-1-
vector of final states f,and k stochastic matrices  

over the rational numbers of order m, whether the accepted 

language L(  4,λ)  is empty or not. We abbreviate the restriction 
of this problem to fixed . m and k by EMPTY(m,k). In general this 

problem is unsolvable. 

The undecidability is often proven by reducing the problem to 

Post's correspondence problem (PCP). Let X be an alphabet of 

2 elements. The k-bounded PCP asks for an algorithm which decide: 

for a fixed natural number k and for every k-elementary set 

of pairs of words over R  

Υ 	((υ1,ν1),... )( ίJk νk))  ε Χ*  χ Χ # ,  

whether there IS a correspondence,i.e. whether there exists a 

sequence of indices i t 	 ,i
n 
 (n>1) such that 	•  

ui  ui  ...ui 	= vi  vi  ...vi  . We denote this problem by PCP(k). 
12 	n 	12 n 

2. PCP(10) is undecidable 

We need a theorem of MATIJASEVIC (C4]) and a corollary. 

Theorem 1: The wordproblen for semigroups over a 2-elementary 

alphabet is undecidable, even if it is restricted to 

3 relations. 

For defining the equivalence of words the relation can be used 

symmetrically. For carrying over this result to Semi-Thee-system 

(or grammars) every relation has to be 	read from left to 

right and from right to left. Therefore, we get 6 productions 

from the 3 relations. 
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Corollary: There exists no algorithm which decides 

for every Semi-Thue-system U (or grammar) with 6 productions 

over a 2-elementary alphabet X and for every two words 	. 

u,v ε X*  whether u 	v (ire. v is derivable from u with 
respect to U)or not. 

This corollary says that the wordproblem for Semi-Thue-systems 

with' at most 6 productions is undecidable. 	 . 

Theorem  2: If the word problem for Semi-Thue-systems with 

j productions is undecidable, then ΡCΡ(j+4) is unsolvable. 

Proof: Let 	Uo  = (Χ0 ,Ρo) 	be a Semi-Thue-system with the 

2-elementary alphabet Xo  = {χ1 ,χ2) and the j-elementary set of 
productions P

o 
 =  (υ1 	v13...,uj  + vj) . Let y be a new . 

symbol. 	 .  
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p attaches one ß  to every symbol on the right side and  λ  on the 
left side. To two given words ú,v~X~ define  

Υ 	( (2(w1 ),λ( w2)) ί  for  α11 ω1  ►  ω2 εΡ 2  )  

u { (p(x),λ( x)) ( 	for all x εΧ2  ) 

u { (h(ß)ß , h(y)λ( h(~γ))) , (ρ( h( γ~))h(γ)  

If there exists a derivation with respect to U2  

h( γúΥ) = h( γ ~οY) 	h(γΖ1v) -* h(yz2γ) 	...-* ń (γznγ) = h(γ Vγ), 

then 

h(Υ)λ( h(ΖoΥ))λ( h(ΖΙΥ))...λ( h(Ζ n-1Υ))λ( h(Ζ n))ah(Υ) 

is a correspondence of Y. Conversely, if there exists a 

Define X1  :=  Χ0  u  {γ) 	and 	U1 = (X1,Ρ0), then for.  all 	 correspondence, this must begin with h(Υ)λ( ń(ú Υ)) ... and 

u,v εΧ : 	 end with λ( h(γ v))ßh(γ). The reader may verify that any 

u - v 	w.r.t. 	Uo  ( > yuy 	Υv Υ 	w.r.t. U1. 	 correspondence of Y defines a derivation from h(y  γ)  to 
h(Υv Υ). It follows: 

Let  Χ2  := (0,1), and define a homomorphism h:Xi -+  Χ  by 

h(χ1) = 01, h(χ2) = 011, h(χ3) = 0111. h is injective. 

Let  Ρ2  = {h(υ1) -• h(vl),...,h(uj) + h(vj)) 	and 

Then we get for all u,v εΧ~: 

w.r.t. U2  <=>  Υ  has a correspondence. 

By coding X3  into a 2-elementary alphabet and coding  Υ  
analogously, we get a set of .j+4 pairs of words Ý over 

a 2-elementary alphabet such that: U2  = (Χ2 ,Ρ 2 ). 

~ 
ΥυΥ + yly  w.r.t. U1  <s> h(Yuy)  4  'h( γνΥ) 	w.r.t. υ 2  . J 	ν 	w.r.t. Uo  <=> Υ  has a  correspendence.  

Let ß be a new symbol, and 	X3  := X2  u (ß). 	We define two 	 Hence, theorem 2 is proven. 

monemorphismus p,λ:Χ -►  X3 	by 	 . 

and 	λ(x) 	ßx 	for all xεΧ9. 
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The proof is a variant of a proof given in C2]. 

Coilary: PCP(10) is unsolvable 
e 

Ti my knowledge, k = 10 is the best proven bound of 

undecidabiiity of PCP(k). PCP(1) is solvable. For k 	2,3,... ‚9 

the question is open, but because of the investigations of 

K.CULIK, J.KARHUMAKI and others it is supposed that PCΡ(2) is., 

,solvable, but PCΡ(3) is not. 

(Remark: The mortality-problem for 12 33-matrlces is undecidable. 

Use the proof of 15].) 

3. Related problems 

Let  χ  = (1,2) be the 2-elementary alphabet and let 
g:Χ 
 i 

 Zoo be the 3-adic interpretation of every word over X. 

g is injective, but no homomorphism. Then, the mapping 

Ψ:Χ * ,‚ 	X 3,3  defined by 

(ι  
Φ_(υ,ν) =  

\ 0 

is an injective homomorphism ( ί u denotes the length of u). 

ΤhereFore PCP(k) can be transformed into NUG(3,k): Using another 
injective homomorphism PCP(k) can be transformed into POG(7,k). 

By combining the matrices and adding a suitable permutation 

matrix several results can be derived, for example (C13): 

Theorem 3: The following problems are unsolvable: 

NUG(3,i0), NUG(32,2), NUG(6,6), 

POG(7,i0),POG(70,2), POG(14,6).  
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This theorem is based on the unsolvability of PCP(10), and 

will be automatically sharpened, if the corollary of theorem 

2 will be. 

There is a strong connection between EMPTY(m,k) and POG(m,k). 

Inspecting the proof of TURAKAINEN([7]) carefully one gets 

Lemma: If POG(m,k) is unsolvable, then so is ΕMPTY(m+2,k). 

If EMPTY(m,k) is unsolvable, then so is POG(m+1,k). 

Therefore, EΜΡ TΥ(9,10), EΜPTY(72,2),... are unsolvable. 
Though, we do not know anything about rOG(2,k), it has been 

proven that EΜΡΤΥ(?_, k) is solvable  (Cl]).  

4. Remarks to Skolem's problem  

The proof for the undecidability of NUG(32,2) uses two matrices 

M and Q, where Q is a permutation-matrix and M contains the 

whole information of PCP(10) for a given Y. It seems impossible 

to enumerate all products of M and Q with one single matrix, 

i.e, this proof might be not applicable to SKOLEM's problem. 

The SKOLEM-problem is equivalent to the question, whether there 

exists a zero in a sequence of numbers defined by a linear 

recursive equation. Let M be an integer-valued matrix of order 

m with the characteristic polynomial 	 . 

ρ( x) = x - 	αix , and let  bi  = RU(M ) for 	'O. Then the 
m m-1  i 	 i  

i=0 

sequence b1,b2,b3,... is characterized by 	b
o 
 := 0, b 	•bm-1' 

and 	m-1 
bj+m = ΣΡ 	αi bj+i 	for all j»0, 

i=0 

because M is a root of p. Conversely, from 	 . 

bo  = 0,b1,...,bm_ 1 ,αο,...,~m 	one can construct an integer- 

valued matrix  Μ  όf order m such that: 	b. = 0 4—> RU(M3) =.  Ο.  

Because of the linearity we may be full of hope that SKOLEM's 

0 

g(v) 

3Ι v ~ 

0 
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problem is solvable, though we know the solution only 

in the case m = 2. 

Another characterization uses the eigenvalues of M and gives 

the result, that SKOLEM's problem becomes only difficult if 

there exist at least two eigenvalues of the same absolute 

velue. Investigations on the languages 

1(11) _ {j ί RU(M~) = 0} c {1}*  

initliJus Jaτι tzun  
Fachbereich  18 
Univ. Hamburg 
Schlbturstr, 70 
D-2ΟΟΟ hamburg 13  

Wo  all know that DOL languages can be defined nicely by 

iterating some homumorphism h :  Χ  —j X;  on an axiom w E X*. 

The DOL language L then is 

yield that these languages coincide with the regular languages 	 np 

over an 1-letter alphabet. But this connection is not constructive 	 L :_ 	hi(w) 
i=0 

(until today, 13]). 	 . 

10w', thinkingbackwards,we may define languages of the form 

}ί  *(Μ) :α 	h  1(Μ)  
i=0  

	

113 	113 	1469 
	 where  Μ  is a single word or a set of words. We see that 

	

1938 	0, 	-7910 
	 for L as above we have: 

	

442 	113 	113 
	

v e L 	if and only if .w  Ε  h(ν) . 

Obviously h *(M) is a finite set if  Μ  is finite and .the 

Only interesting case is the one where  Μ  is an infinite 
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Anybody, who wants to get a feeling of the problem, may calculate 

the exponent n, for which RU(Mn) = 0 holds with respect to 

the matrix  
Ü  ι  

Μ =  
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