Examples of Diophantine relations:

1. $a \equiv b(\bmod c): \exists x: a=c x+b$ or $b=c x+a$. (over $\mathbb{N}!)$
2. $a \geq b: a=b+x$ (\exists is always implicit)
3. $a>b$: (Exercise)
4. $a=b \bmod c: a \equiv b(\bmod c)$ and $0 \leq a<c$.
5. $\left\{(a, b, c) \mid a=b^{c}\right\}$?
6. $\left\{2^{k}\right\}$? Tarski believed not Diophantine
$G_{b}(0)=0, G_{b}(1)=1, \begin{aligned} & \begin{array}{l}G_{n}(n+1)=b \cdot G_{b}(n)-G_{b}(n-1) \\ G_{b}(n-1)+G_{n}(n+1)=b \cdot G_{b}(n)\end{array} \\ & \\ & \begin{array}{l}b=4:[\ldots,-15,-4,-1,] 0,1,4,15,56, \ldots \\ b=3: 0,1,3,8,21, \ldots \\ b=2: 0,1,2,3,4,5, \ldots \text { (useless?) }\end{array}\end{aligned} \begin{aligned} & \text { close to the recursion for } b^{n-1} \\ & \rightleftarrows \text { symmetric between forward and backward }\end{aligned}$
WE SHOW: $a=G_{b}(c)$ for (fixed) $b \geq 3$ is Diophantine. ($b \geq 4$ simplifies some arguments.)
Missing link! [Yuri Matiyasevich 1970, Julia Robinson, Martin Davis, Hilary Putnam 1961]
The points $\binom{x_{n}}{y_{n}}=\binom{G_{b}(n+1)}{G_{b}(n)}$ lie on the hyperbola $\begin{aligned} & h_{b}(x, y):=x^{2}-b x y+y^{2}-1=0\end{aligned}$. (\rightarrow picture)
Lemma 1. The only integer solutions of $h_{b}(x, y)=0$ with $x>y \geq 0$ are those points.
Proof: The hyberbola is invariant under the shift $\binom{G_{b}(n)}{G_{b}(n-1)} \leftrightarrow\binom{G_{b}(n+1)}{G_{b}(n)}:\binom{x}{y} \mapsto\binom{b x-y}{x}$ or $\binom{x}{y} \mapsto\binom{y}{b y-x}$, and the shift preserves $y<x$.

Now we can generate $\left\{G_{b}(n)\right\}=\left\{x \mid \exists y: h_{b}(x, y)=0\right\}$ but we don't know n.
Lemma 2. $b \equiv b^{\prime}(\bmod u) \Longrightarrow G_{b}(n) \equiv G_{b^{\prime}}(n)(\bmod u) \quad$ (Induction. Easy.)
IDEA: Choose two appropriate moduli M and m to coordinate $G_{b}(n)$ with n :

$G_{w}(0), G_{w}(1), \ldots, G_{w}(n), \ldots \bmod M$	$w \equiv b(\bmod M)$	$\rightarrow G_{b}(n)$
$G_{w}(0), G_{w}(1), \ldots, G_{w}(n), \ldots \bmod m$	$w \equiv 2(\bmod m)$	$\rightarrow G_{2}(n)=n$

As long as n is small and $G_{w}(n) \leq M$, we have $G_{w}(n) \bmod M=G_{b}(n)$ (and $\left.G_{w}(n) \bmod m=n\right)$, but for larger $n, G_{w}(n) \bmod M$ gets out of control, and there will be extra solutions. (\rightarrow picture)

- Make $G_{w}(n) \bmod M$ mirror-symmetric after reaching a peak at $G_{w}(p)=G_{b}(p):(\rightarrow$ picture $)$ $G_{b}(p-1) \equiv G_{b}(p+1)(\bmod M) \Longrightarrow M:=G_{b}(p+1)-G_{b}(p-1) \quad(p=$ peak $=$ period $)$
- Avoid "negative" values by using the absmod operation instead of mod. (\rightarrow picture) $x \operatorname{absmod} M=a \Longleftrightarrow x=q M \pm a$ and $0 \leq a \leq M / 2$.
- The period m of " $G_{w}(n) \operatorname{absmod} m=n$ " should divide the period $2 p$ of " $G_{w}(n) \operatorname{absmod} M$ ": $m \mid p$.
- Choose m (and M) larger than twice the (supposed) value a of $G_{b}(c)$, so that absmod does no harm.

1. $m>2 a$.
2. p should be a multiple of m
3. $M:=G_{b}(p+1)-G_{b}(p-1)$
4. Choose $w>2$ with $w \equiv b(\bmod M)$
$w \equiv 2(\bmod m)$
5. $h_{w}(x, y)=0\left[\Longrightarrow x=G_{w}(n)\right.$ for some $\left.n\right]$
6. $a=x \operatorname{absmod} M \quad\left[a=G_{b}(n)\right]$
$c=x \operatorname{absmod} m \quad\left[c=G_{2}(n)=n\right]$

Lemma 3. $G_{b}(k)^{2}\left|G_{b}(p) \Longrightarrow G_{b}(k)\right| p$
(Cf. Fibonacci numbers: $F_{k}\left|F_{p} \Longleftrightarrow k\right| p$.)
Application: Choose m of the form $m=G_{b}(k)$ for some k, by requiring $h_{b}\left(m, m^{\prime}\right)=0$.
Then $m^{2}\left|G_{b}(p) \Longrightarrow m\right| p$.
Implementation of Conditions 2 and 3.
$h_{b}(r, s)=0, r<s$

$$
\begin{aligned}
G_{b}(p-1) & =r, \text { for some } p \\
G_{b}(p) & =s \\
G_{b}(p+1) & =b s-r
\end{aligned}
$$

$M=(b s-r)-r \quad\left[=G_{b}(p+1)-G_{b}(p-1)\right.$. Also $G_{b}(p)<M / 2$.]
$m^{2} \mid s[\Longrightarrow m \mid p$.]
The conditions are enough to ensure that every solution (a, c) satisfies $a=G_{b}(c)$. (The condition $a<m / 2$ cuts off extra solutions.)

Converse direction:
We need to show that m, M with $\operatorname{gcd}(m, M)=1$ exist (then w statisfying (4.) exists, by the Chinese Remainder Theorem), and that $m^{2} \mid s$ can be fulfilled.

- Choose $m=G_{b}(k)$ odd and set $s=G_{b}(p)$ for $p=k \cdot m$:

Then it can be shown that $\operatorname{gcd}(m, M)=1$ and $m^{2} \mid s$.

Getting to the relation $a=b^{c}$:

$$
\begin{gathered}
(b-1)^{n} \leq G_{b}(n+1) \leq b^{n} \\
b^{c}=\lim _{x \rightarrow \infty} \frac{G_{b x+4}(c+1)}{G_{x}(c+1)} \approx \frac{(b x \pm \text { const })^{c}}{(x \pm \text { const })^{c}} \rightarrow b^{c}, \text { for all } b, c \geq 0 \\
b^{c}=\left\lfloor\frac{G_{b x+4}(c+1)}{G_{x}(c+1)}\right\rfloor \text { for } x>16(c+1) G_{b+4}(c+1) .
\end{gathered}
$$

(The " +4 " term ensures that this works even for $b=0$.)

