1. Andrey Kupavskii, kupavskii@ya.ru

“Given \(n \) slabs in \(\mathbb{R}^d \) of total divergent width, can one cover the unit ball with their translates?”

In more details: is it true that there exists \(C = C(d) \), such that for any \(n_1, \ldots, n_s \in S^{d-1}, \ d > 2, \) and any \(\varepsilon_1, \ldots, \varepsilon_s \in \mathbb{R}_+ \) with \(\sum_{i=1}^{s} \varepsilon_i > C \), there exist \(x_1, \ldots, x_s \in \mathbb{R} \) satisfying

\[
\{ x \in \mathbb{R}^d : |x| \leq 1 \} \subseteq \{ x \in \mathbb{R}^d : x_i \leq \langle x, n_i \rangle \leq x_i + \varepsilon_i \}.
\]

Asked in [Makai–Pach, 1983].

2. Dömötör Pálvölgyi, dom@cs.elte.hu

Can we 3-color any (finite) set of points such that any disk with at least 3 points is non-monochromatic? Asked originally in [Keszegh, 2012].

3. Eran Nevo, nevo@math.huji.ac.il

Fix \(d \) even, and let \(n \to \infty \):

Must \(d \)-polytopes with \(n \) vertices have only \(o(n^{d/2}) \) non-simplex facets? (The trivial upper bound is \(O(n^{d/2}) \).)

Jeff Erickson asked this in 1999, and conjectured that the answer is yes, also for \((d - 1)\)-polyhedral spheres.

For spheres the answer is no - as was proved in [Nevo–Santos–Wilson, 2016]

The case \(d = 4 \) of the above question is already very interesting. The lower bound obtained in Nevo et al. is \(\Omega(n^{3/2}) \).
Let P_1 and P_2 be two combinatorially equivalent convex polytopes in \mathbb{R}^3. Is it true that there exist corresponding edges t_1 of P_1 and t_2 of P_2, such that the dihedral angle of t_1 is not greater than the dihedral angle of t_2, or all the corresponded angles are equal? This problem is Conjecture 5.1 in the following preprint.

Danzer’s problem. A finite set of pairwise intersecting disks in the plane can be stabbed by 4 points, and there exists a configuration of 10 pairwise intersecting disks that require 4 points [Danzer, 1986].

The problem:
(a) Understand Danzer’s solution.
(b) Come up with a simpler solution.
(c) Make it constructive.

Fact: For any probability measure μ that charges no lines, there exist two order types $\omega_1(\mu)$ and $\omega_2(\mu)$ of size 6 such that if X is a set of 6 points $\sim \mu$ then

$$\mathbb{P}[X \text{ realizes } \omega_1(\mu)] > 1.8 \mathbb{P}[X \text{ realizes } \omega_2(\mu)].$$

Question: Does there exist $c > 0$ such that $\forall \mu \exists \omega_1(\mu), \omega_2(\mu)$ with $|\omega_1(\mu)| = |\omega_2(\mu)| = n$ and

$$P[X \simeq \omega_1] > c^n \ P[X \simeq \omega_2(\mu)]?$$

7. Géza Tóth, geza@renyi.hu

Is the class of intersection graphs of lines in \mathbb{R}^3 (or \mathbb{R}^d) χ-bounded? Namely, is there a function f such that given n lines in the \mathbb{R}^3, no k of them pairwise crossing, the lines can be colored with $f(k)$ colors in such a way that crossing lines get different colors?

8. Imre Bárány, barany@renyi.hu

k-crossing curves in \mathbb{R}^d. A curve γ in \mathbb{R}^d is k-crossing if every hyperplane intersects it at most k times. Thus $k \geq d$. A d-crossing curve is called convex.

Theorem (Bárány, Matoušek, Pór). *For every $d \geq 2$ there is $M(d)$ such that every $(d+1)$-crossing curve in \mathbb{R}^d can be split into $M(d)$ convex curves.*

The proof gives $M(d) \leq 4^d$, $M(2) = 4$ and $M(3) \leq 22$.

Question: Give lower bounds for $M(d)$.

9. Pavel Valtr, valtr@kam.mff.cuni.cz

Lines, line-point incidences, and crossing families in dense sets. Let P be a set of n points in \mathbb{R}^2 such that $\min \text{dist}(P) = 1$ and $\max \text{dist}(P) = O(\sqrt{m})$. Prove or disprove:

Conjecture 1. P contains a crossing family of size $\Omega(n)$.
Known: P contains a crossing family of size $\Omega(n^{1-\varepsilon})$.

Two lines are essentially different if either their direction differ by at least $1/n$, or their $\frac{1}{\sqrt{n}}$-neighborhoods do not intersect inside $\text{conv}(P)$.

Conjecture 2. P determines $\Omega(n^2)$ pairwise essentially different lines.

Known: P determines $\Omega(n^{2-\varepsilon})$ pairwise essentially different lines.

A point p and a line ℓ determine a rough point-line incidence if $\text{dist}(p,\ell) \leq \frac{1}{\sqrt{n}}$.

Conjecture 3. Let P as before and L a set of n pairwise essentially different lines. Then the number of rough point-line incidences is at least $\Omega(n^{4/3})$.

10. Luis Montejano, luis@matem.unam.mx

Let X be a polyhedron. Let $\mathcal{F} = \{A_1, \ldots, A_m\}$ be a polyhedral cover of X such that A_i is not empty but not necessarily connected. Let N be the nerve of \mathcal{F}.

Fact: Suppose that the following hold: (a) $H_1(X) = 0$, and (b) for every $i \neq j$, if $A_i \cap A_j \neq \emptyset$ then $A_i \cup A_j$ is connected. Then $H_1(N) = 0$.

Question: Suppose that the following hold: (a) $H_1(X) = 0$, (b) for every $i \neq j$, if $A_i \cap A_j \neq \emptyset$ then $A_i \cup A_j$ is connected, and (c) for every $i < j < k$, if $A_i \cap A_j \cap A_k \neq \emptyset$ then $H_1(A_i \cup A_j \cup A_k) = 0$. Is it true that $H_2(N) = 0$? The answer is yes if $m = 4$.

11. József Solymosi, solymosi@math.ubc.ca

Question 1: What is the minimum number of collinear triples in a subset of the integer grid $n \times n \times n$? If $|S| = n^{3-\varepsilon}$, $S \subset n \times n \times n$, then S spans at least $\frac{n^6-4}{\log n}$ collinear triples. We (with Jozsi Balogh) do not think that this is sharp.

Question 2: Find a bipartite unit distance graph which is rigid.

12. Edgardo Roldán-Pensado, e.roldan@im.unam.mx

Centre of $BM(2)$. Let δ be the Banach-Mazur distance. Find the convex body $C \subset \mathbb{R}^2$ such that $\max\{\delta(C, D) : D \subset \mathbb{R}^2 \text{ a convex body}\}$ is minimized.
An update by Edgardo Roldán-Pensado: The answer to the problem is known. A solution appears in: