How many compositions of two polyominoes?

Günter Rote
Freie Universität Berlin

joint work with Andrei Asinowski, Gill Barequet, Gil Ben-Shachar, Martha Carolina Osegueda
How many compositions of two polyominoes?

\[P_1, \text{ size } n_1 = 14 \quad \text{and} \quad P_2, \text{ size } n_2 = 4 \]
How many compositions of two polyominoes?

\[P_1, \text{ size } n_1 = 14 \quad \text{and} \quad P_2, \text{ size } n_2 = 4 \]
How many compositions of two polyominoes?

\[P_1, \text{ size } n_1 = 14 \quad \text{and} \quad P_2, \text{ size } n_2 = 4 \]
How many compositions of two polyominoes?

P_1, size $n_1 = 14$ \quad \qu
How many compositions of two polyominoes?

\[P_1, \text{ size } n_1 = 14 \quad \text{and} \quad P_2, \text{ size } n_2 = 4 \]
How many compositions of two polyominoes?

\[P_1, \text{size } n_1 = 14 \quad \text{and} \quad P_2, \text{size } n_2 = 4 \]
Background

(Wrong) LEMMA. Two polyominoes of total size $n_1 + n_2 = n$ have at most $2n$ compositions.

[G. Barequet and R. Barequet 2015]
Background

(Wrong) LEMMA. Two polyominoes of total size $n_1 + n_2 = n$ have at most $2n$ compositions.

[G. Barequet and R. Barequet 2015]

PROPOSITION. Every polyomino of size n can be composed from two polyominoes of size n_1 and n_2 with $n_1, n_2 \geq \frac{n-1}{4}$.

$A_n =$ the number of polyominoes of size n

$$A_n \leq \sum_{n_1 = n/4}^{3n/4} A_{n_1} A_{n-n_1} 2n$$
Background

(Wrong) LEMMA. Two polyominoes of total size $n_1 + n_2 = n$ have at most $2n$ compositions.

[G. Barequet and R. Barequet 2015]

PROPOSITION. Every polyomino of size n can be composed from two polyominoes of size n_1 and n_2 with $n_1, n_2 \geq \frac{n-1}{4}$.

$A_n = \text{the number of polyominoes of size } n$

\begin{align*}
A_n &\leq \sum_{n_1=n/4}^{3n/4} A_{n_1} A_{n-n_1} 2n
\end{align*}

[G. Barequet, G. Rote, Mira Shalah 2019]: Improved bounds on the number of polyiamonds
Almost tight bounds

OBSERVATION. Two polyominoes of size n_1 and n_2 have at most $4n_1n_2$ compositions.
Almost tight bounds

OBSERVATION. Two polyominoes of size n_1 and n_2 have at most $4n_1 n_2$ compositions.

Two polycubes in d dimensions of size n_1 and n_2 have at most $2dn_1 n_2$ compositions.

In $d \geq 3$ dimensions, this is tight up to a constant factor.
Almost tight bounds

OBSERVATION. Two polyominoes of size n_1 and n_2 have at most $4n_1n_2$ compositions.

Two polycubes in d dimensions of size n_1 and n_2 have at most $2dn_1n_2$ compositions.

In $d \geq 3$ dimensions, this is tight up to a constant factor.

THEOREM. Two polyominoes of size n can have as many as

$$\frac{n^2}{2 \cdot 8 \cdot \sqrt{\log_2 n}}$$

compositions.
Compositions & Minkowski difference

Represent polyomino P by the set A of square centers

$P_1 \quad \begin{array}{ccc} \times & \times & \times \\ \times & \times & \quad \end{array} \quad A_1 \quad \begin{array}{ccc} \times & \times & \times \\ \times & \times & \quad \end{array}$
Compositions & Minkowski difference

Represent polyomino P by the set A of square centers

\[
P_1 \begin{array}{cccc}
\times & \times & \times \\
\times & \times
\end{array} \quad A_1 \begin{array}{ccc}
\times & \times & \times \\
\times & \times
\end{array}
\]

OBSERVATION. P_1 and $P_2 + t$ overlap $\iff t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, \ x_2 \in A_2 \}$
Compositions & Minkowski difference

Represent polyomino P by the set A of square centers

\[
P_1 \quad × \quad × \quad ×
\]
\[
A_1 \quad × \quad × \quad ×
\]

OBSERVATION. P_1 and $P_2 + t$ overlap $\iff t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, \ x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$
Compositions & Minkowski difference

Represent polyomino P by the set A of square centers

$P_1 \quad A_1 \quad P_2 \quad A_2$

OBSERVATION. P_1 and $P_2 + t$ overlap $\iff t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, \ x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$
Compositions & Minkowski difference

Represent polyomino P by the set A of square centers

$P_1 \quad \times \times \times \times \quad A_1 \quad \times \times \times \quad P_2 \quad \circ \circ \quad A_2 \quad \circ \circ$

OBSERVATION. P_1 and $P_2 + t$ overlap $\iff t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$
Compositions & Minkowski difference

Represent polyomino P by the set A of square centers

$P_1 \quad \times \times \times \times \quad A_1 \quad \times \times \quad P_2 \quad \circ \circ \quad A_2 \quad \circ \circ$

OBSERVATION. P_1 and $P_2 + t$ overlap $\iff t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$
Compositions & Minkowski difference

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap $\iff t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, \; x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$
Compositions & Minkowski difference

Represent polyomino P by the set A of square centers

P_1 A_1 P_2 A_2

OBSERVATION. P_1 and $P_2 + t$ overlap $\iff t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$
Represent polyomino P by the set A of square centers

P_1
\[
\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & & \\
\end{array}
\]

A_1
\[
\begin{array}{ccc}
\times & \times & \times \\
\times & & \\
\end{array}
\]

P_2
\[
\begin{array}{ccc}
\circ & \circ & \\
\circ & & \\
\circ & & \\
\end{array}
\]

A_2
\[
\begin{array}{c}
\circ \\
\circ \\
\end{array}
\]

OBSERVATION. P_1 and $P_2 + t$ overlap $\iff t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, \ x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$
Compositions & Minkowski difference

Represent polyomino P by the set A of square centers

P_1

A_1

P_2

A_2

OBSERVATION. P_1 and $P_2 + t$ overlap \iff
$t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, \ x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$
Compositions & Minkowski difference

Represent polyomino \(P \) by the set \(A \) of square centers

\[
P_1 \begin{array}{c}
\times \\
\times \\
\times \\
\times
\end{array} \quad A_1 \begin{array}{c}
\times \\
\times \\
\times
\end{array} \quad P_2 \begin{array}{c}
ocircle
\ocircle
\ocircle
\ocircle
\end{array} \quad A_2 \begin{array}{c}
\ocircle
\ocircle
\ocircle
\ocircle
\end{array}
\]

OBSERVATION. \(P_1 \) and \(P_2 + t \) overlap \iff \(t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, \ x_2 \in A_2 \} \)

Proof: \(t = x_1 - x_2 \iff x_1 = x_2 + t \)
Compositions & Minkowski difference

Represent polyomino P by the set A of square centers

P_1 A_1 P_2 A_2

OBSERVATION. P_1 and $P_2 + t$ overlap $\iff t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, \ x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

P_1 and $P_2 + t$ valid $\iff t \notin M$ and t is adjacent to M
Compositions & Minkowski difference

Represent polyomino P by the set A of square centers

P_1 x x x x A_1 x x x P_2 x x A_2 o o o o

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

P_1 and $P_2 + t$ valid \iff $t \not\in M$ and t is adjacent to M
Motion Planning
Motion Planning

\[\Theta(n^2) \]
Motion Planning

$\Theta(n^4)$
Many Compositions

\[\sqrt{n} \times \sqrt{n} \times \sqrt{n} \times 2\sqrt{n} \times n \]
Many Compositions

\[
\begin{align*}
\sqrt{n} & \quad \times \quad \sqrt{n} \\
3\sqrt{n} & \quad \times \quad \sqrt{n} \\
\end{align*}
\]

\[
\begin{align*}
\sqrt{n} & \quad \times \quad \sqrt{n} \\
2\sqrt{n} & \quad \times \quad n \\
\end{align*}
\]

\[
\text{size} = \Theta(n) \quad \Theta(n^{3/2}) \text{ compositions}
\]
Even more compositions

$\Theta(n^{5/3})$

sparse toothbrush S_2

dense toothbrush D_2
Even more compositions

\[\Theta\left(n^{5/3}\right) \]

sparse toothbrush S_2

dense toothbrush D_2
Even more compositions

\[\Theta(n^{5/3}) \]

sparse toothbrush \(S_2 \)
dense toothbrush \(D_2 \)
Numerical experiments

\[\text{normalized number of compositions } n + n \]
Numerical experiments

normalized number of compositions $n + n$

$4n$
Compute the (number of) compositions

Find $M := A_1 \oplus (-A_2)$ and find all its neighbors.
Compute the (number of) compositions

Find $M := A_1 \oplus (-A_2)$ and find all its neighbors
Compute the (number of) compositions

Find $M := A_1 \oplus (-A_2)$ and find all its neighbors

In d dimensions: $O(n^2d)$ space and $O(n^2d^2)$ time. (Radix sort)