
9

Statistics and Neural Networks

9.1 Linear and nonlinear regression

Feed-forward networks are used to find the best functional fit for a set of
input-output examples. Changes to the network weights allow fine-tuning of
the network function in order to detect the optimal configuration. However,
two complementary motivations determine our perception of what optimal
means in this context. On the one hand we expect the network to map the
known inputs as exactly as possible to the known outputs. But on the other
hand the network must be capable of generalizing, that is, unknown inputs
are to be compared to the known ones and the output produced is a kind
of interpolation of learned values. However, good generalization and minimal
reproduction error of the learned input-output pairs can become contradictory
objectives.

9.1.1 The problem of good generalization

Figure 9.1 shows the problem from another perspective. The dots in the
graphic represent the training set. We are looking for a function capable of
mapping the known inputs into the known outputs. If linear approximation
is used, as in the figure, the error is not excessive and new unknown values of
the input x are mapped to the regression line.

Figure 9.2 shows another kind of functional approximation using linear
splines which can reproduce the training set without error. However, when the
training set consists of experimental points, normally there is some noise in the
data. Reproducing the training set exactly is not the best strategy, because the
noise will also be reproduced. A linear approximation as in Figure 9.1 could be
a better alternative than the exact fit of the training data shown in Figure 9.2.
This simple example illustrates the two contradictory objectives of functional
approximation: minimization of the training error but also minimization of
the error of yet unknown inputs. Whether or not the training set can be

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

230 9 Statistics and Neural Networks

inputs

interpolated

output

input

outputs

Fig. 9.1. Linear approximation of the training set

learned exactly depends on the number of degrees of freedom available to the
network (number of weights) and the structure of the manifold from which the
empirical data is extracted. The number of degrees of freedom determines the
plasticity of the system, that is, its capability of approximating the training
set. Increasing the plasticity helps to reduce the training error but can increase
the error on the test set. Decreasing the plasticity excessively can lead to a
large training and test error.

input

output

Fig. 9.2. Approximation of the training set with linear splines

There is no universal method to determine the optimal number of parame-
ters for a network. It all depends on the structure of the problem at hand. The
best results can be obtained when the network topology is selected taking into
account the known interrelations between input and output (see Chap. 14).
In the example above, if a theoretical analysis leads us to conjecture a linear
correspondence between input and output, the linear approximation would be
the best although the polylinear approximation has a smaller training error.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 231

This kind of functional approximation to a given training set has been
studied by statisticians working in the field of linear and nonlinear regression.
The backpropagation algorithm is in some sense only a numerical method for
statistical approximation. Analysis of the linear case can improve our under-
standing of this connection.

9.1.2 Linear regression

Linear associators were introduced in Chap. 5: they are computing units which
just add their weighted inputs. We can also think of them as the integration
part of nonlinear units. For the n-dimensional input (x1, x2, . . . , xn) the output
of a linear associator with weight vector (w1, w2, . . . , wn) is y = w1x1 + · · ·+
wnxn. The output function represents a hyperplane in (n + 1)-dimensional
space. Figure 9.3 shows the output function of a linear associator with two
inputs. The learning problem for such a linear associator is to reproduce the
output of the input vectors in the training set. The points corresponding
to the training set are shown in black in Figure 9.3. The parameters of the
hyperplane must be selected to minimize the error, that is, the distance from
the training set to the hyperplane. The backpropagation algorithm can be
used to find them.

F

x1

x2

Fig. 9.3. Learning problem for a linear associator

Consider a training set T = {(x1, a1), . . . , (x
m, am)} for a linear associa-

tor, where the inputs x1, . . . ,xm are n-dimensional vectors and the outputs
a1, . . . , am real numbers. We are looking for the weight vector (w1, . . . , wn)
which minimizes the quadratic error

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

232 9 Statistics and Neural Networks

E =
1

2

(

a1 −
n∑

i=1

wix
1
i

)2

+ · · ·+
(

am −
n∑

i=1

wix
m
i

)2

 (9.1)

where xj
i denotes the i-th component of the j-th input vector. The components

of the gradient of the error function are

∂E

∂wj
= −

(

a1 −
n∑

i=1

wix
1
i

)

x1
j − · · · −

(

am −
n∑

i=1

wix
m
i

)

xm
j (9.2)

for j = 1, 2, . . . , n. The minimum of the error function can be found analyti-
cally by setting ∇E = 0 or iteratively using gradient descent. Since the error
function is purely quadratic the global minimum can be found starting from
randomly selected weights and making the correction ∆wj = −γ∂E/∂wj at
each step.

Figure 9.4 shows the B-diagram for a linear associator. The training
vector x1 has been used to compute the error E1. The partial derivatives
∂E/∂w1, . . . , ∂E/∂wn can be computed using a backpropagation step.

+1

w1

w2

wn

x1
1

x 2

x n

E1

1

2
(a1 − wixi

i =1

n

Σ)
2

n

− (a1 − wix i

i=1

Σ)
.
.
.

1

1

1 1

Fig. 9.4. Backpropagation network for the linear associator

The problem of finding optimal weights for a linear associator and for a
given training set T is known in statistics as multiple linear regression. We are
looking for constants w0, w1, . . . , wn such that the y values can be computed
from the x values:

yi = w0 + w1x
i
1 + w2x

i
2 + · · ·+ wnx

i
n + εi ,

where εi represents the approximation error (note that we now include the
constant w0 in the approximation). The constants selected should minimize
the total quadratic error

∑n
i=1 ε

2
i . This problem can be solved using algebraic

methods. Let X denote the following m× (n+ 1) matrix:

X =

1 x1
1 · · · x1

n

1 x2
1 · · · x2

n
...

...
. . .

...
1 xm

1 · · · xm
n

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 233

The rows of the matrix consist of the extended input vectors. Let a, w and ε
denote the following vectors:

a =

a1

a2

...
am

w =

w0

w1

...
wn

ε =

ε1
ε2
...
εm

The vector w must satisfy the equation a = Xw + ε, where the norm of the
vector ε must be minimized. Since

‖ε‖2 = (a−Xw)T(a−Xw)

the minimum of the norm can be found by equating the derivative of this
expression with respect to w to zero:

∂

∂w
(a−Xw)T(a−Xw) = −2XTa + 2XTXw = 0.

It follows that XTXw = XTa and if the matrix XTX is invertible, the solution
to the problem is given by

w =
(
XTX

)−1
XTa.

9.1.3 Nonlinear units

Introducing the sigmoid as the activation function changes the form of the
functional approximation produced by a network. In Chap. 7 we saw that
the form of the functions computed by the sigmoidal units corresponds to a
smooth step function. As an example in Figure 9.5 we show the continuous
output of two small networks of sigmoidal units. The first graphic corresponds
to the network in Figure 6.2 which can compute an approximation to the
XOR function when sigmoidal units are used. The output of the network is
approximately 1 for the inputs (1, 0) and (0, 1) and approximately 0 for the
inputs (0, 0) and (1, 1). The second graph corresponds to the computation of
the NAND function with three sigmoidal units distributed in two layers.

Much more complicated functions can be produced with networks which
are not too elaborate. Figure 9.8 shows the functions produced by a network
with three and four hidden units and a single output unit. Small variations
of the network parameters can produce widely differing shapes and this leads
us to suspect that any continuous function could be approximated in this
manner, if only enough hidden units are available. The number of foldings of
the functions corresponds to the number of hidden units. In this case we have
a situation similar to when polynomials are used to approximate experimen-
tal data—the degree of the polynomial determines the number of degrees of
freedom of the functional approximation.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

234 9 Statistics and Neural Networks

0

1

x1

0

1

x2

1

s

0

1

x1

0

1

x2

1

s

0

1

x1

0

1

x2

1

F

0

1

x1

0

1

x2

1

F

Fig. 9.5. Output of networks for the computation of XOR (left) and NAND (right)

Logistic regression

Backpropagation applied to a linear association problem finds the parameters
of the optimal linear regression. If a sigmoid is computed at the output of the
linear associator, we are dealing with the conventional units of feed-forward
networks.

There is a type of nonlinear regression which has been applied in biology
and economics for many years called logistic regression. Let the training set T
be {(x1, a1), (x

2, a2), . . . , (x
m, am)}, where the vectors xi are n-dimensional.

A sigmoidal unit is to be trained with this set. We are looking for the n-
dimensional weight vector w which minimizes the quadratic error

E =
m∑

i=1

(ai − s(w · xi))2 ,

where s denotes the sigmoid function. Backpropagation solves the problem
directly by minimizing E. An approximation can be found using the tools
of linear regression by inverting the sigmoid and minimizing the new error
function

E′ =

m∑

i=1

(s−1(ai)−w · xi)2.

Since the ai are constants this step can be done at the beginning so that a
linear associator has to approximate the outputs

a′i = s−1(ai) = ln

(
ai

1− ai

)

, for i = 1, . . . ,m. (9.3)

All the standard machinery of linear regression can be used to solve the prob-
lem. Equation (9.3) is called the logit transformation [34]. It simplifies the

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 235

approximation problem but at a cost. The logit transformation modifies the
weight given to the individual deviations. If the target value is 0.999 and the
sigmoid output is 0.990, the approximation error is 0.009. If the logit trans-
formation is used, the approximation error for the same combination is 2.3
and can play a larger role in the computation of the optimal fit. Consequently,
backpropagation is a type of nonlinear regression [323] which solves the ap-
proximation problem in the original domain and is therefore more precise.

9.1.4 Computing the prediction error

The main issue concerning the kind of functional approximation which can
be computed with neural networks is to obtain an estimate of the prediction
error when new values are presented to the network. The case of linear re-
gression has been studied intensively and there are closed-form formulas for
the expected error and its variance. In the case of nonlinear regression of the
kind which neural networks implement, it is very difficult, if not impossible,
to produce such analytic formulas. This difficulty also arises when certain
kinds of statistics are extracted from empirical data. It has therefore been a
much-studied problem. In this subsection we show how to apply some of these
statistical methods to the computation of the expected generalization error of
a network.

One might be inclined to think that the expected generalization error of
a network is just the square root of the mean squared training error. If the
training set consists of N data points and E is the total quadratic error of
the network over the training set, the generalization error Ẽ could be set to

Ẽ =
√

E/N.

This computation, however, would tend to underestimate the true general-
ization error because the parameters of the network have been adjusted to
deal with exactly this data set and could be biased in favor of its elements.
If many additional input-output pairs that do not belong to the training set
are available, the generalization error can be computed directly. New input
vectors are fed into the network and the mean quadratic deviation is averaged
over many trials. Normally, this is not the case and we want to use all of the
available data to train the network and to predict the generalization error.

The bootstrap method, proposed by Efron in 1979, deals with exactly this
type of statistical problem [127]. The key observation is that existent data
can be used to adjust a predictor (such as a regression line), yet it also tells
us something about the distribution of the future expected inputs. In the
real world we would perform linear regression and compute the generalization
error using new data not included in the training set. In the bootstrap world
we try to imitate this situation by sampling randomly from the existing data
to create different training sets.

Here is how the bootstrap method works: assume that a data set X =
{x1, x2, . . . , xn} is given and that we compute a certain statistic θ̂ with this

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

236 9 Statistics and Neural Networks

data. This number is an estimate of the true value θ of the statistic over the
whole population. We would like to know how reliable is θ̂ by computing its
standard deviation. The data is produced by an unknown probability distribu-
tion F . The bootstrap assumption is that we can approximate this distribution
by randomly sampling from the set X with replacement. We generate a new
data set X∗ in this way and compute the new value of the statistics which we
call θ̂∗. This procedure can be repeated many times with many randomly gen-
erated data sets. The standard deviation of θ̂ is approximated by the standard
deviation of θ̂∗.

1

2

Fig. 9.6. Distribution of data in input space

Figure 9.6 graphically shows the idea behind the bootstrap method. The
experimental data comes from a certain input space. If we want to compute
some function over the whole input space (for example if we want to find
the centroid of the complete input domain), we cannot because we only have
some data points, but we can produce an estimate assuming that the distri-
bution of the data is a good enough approximation to the actual probability
distribution. The figure shows several regions where the data density is differ-
ent. We approximate this varying data density by sampling with replacement
from the known data. Region 2 in the figure will then be represented twice
as often as region 1 in the generated samples. Thus our computations use
not the unknown probability distribution F , but an approximation F̂ . This
is the “plug-in principle”: the empirical distribution F̂ is an estimate of the
true distribution F . If the approximation is good enough we can derive more
information from the data, such as the standard deviation of function values
computed over the empirical data set.

Algorithm 9.1.1 Bootstrap algorithm

i) Select N independent bootstrap samples x∗1,x∗2, . . . ,x∗N each consisting
of n data values selected with replacement from X .

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 237

ii) Evaluate the desired statistic S corresponding to each bootstrap sample,

θ̂∗(b) = S(x∗b) b = 1, 2, . . . , N.

iii) Estimate the standard error ŝN by the sample standard deviation of the
N replications

ŝN =

(
N∑

b=1

[θ̂∗(b)− θ̃]2/(N − 1)

)1/2

where θ̃ =
∑N

b=1 θ̂
∗(b)/N .

In the case of functional approximation the bootstrap method can be ap-
plied in two different ways, but the simpler approach is the following. Assume
that a neural network has been trained to approximate the function ϕ asso-
ciated with the training set T = {(x1, t1), . . . , (xm, tm)} of m input-output
pairs. We can compute a better estimate of the expected mean error by gen-
erating N different bootstrap training sets. Each bootstrap training set is
generated by selecting m input-output pairs from the original training set
randomly and with replacement. The neural network is trained always using
the same algorithm and stop criterion. For each network trained we compute:

• The mean squared error Q∗
i for the i-th bootstrap training set,

• The mean squared error for the original data, which we call Q0
i .

The standard deviation of the Q∗
i values is an approximation to the true

standard deviation of our function fit.
In general, Q∗

i will be lower than Q0
i , because the training algorithm ad-

justs the parameters optimally for the training set at hand. The optimism in
the computation of the expected error is defined as

O =
1

B

B∑

i=1

(Q0
i −Q∗

i).

The idea of this definition is that the original data set is a fair representative
of the whole input space and the unknown sample distribution F , whereas the
bootstrap data set is a fair representative of a generic training set extracted
from input space. The optimism O gives a measure of the degree of underes-
timation present in the mean squared error originally computed for a training
set.

There is a complication in this method which does not normally arise
when the statistic of interest is a generic function. Normally, neural networks
training is nondeterministic because the error function contains several global
minima which can be reached when gradient descent learning is used. Re-
training of networks with different data sets could lead to several completely

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

238 9 Statistics and Neural Networks

different solutions in terms of the weights involved. This in turn can lead to
disparate estimates of the mean quadratic deviation for each bootstrap data
set. However, if we want to analyze what will happen in general when the
given network is trained with data coming from the given input space, this
is precisely the right thing to do because we never know at which local min-
ima training stopped. If we want to analyze just one local minimum we must
ensure that training always converges to similar local minima of the error
function (only similar because the shape of the error function depends on the
training set used and different training sets have different local minima). One
way to do this was proposed by Moody and Utans, who trained a neural net-
work using the original data set and then used the weights found as initial
weights for the training of the bootstrap data sets [319]. We expect gradi-
ent descent to converge to nearby solutions for each of the bootstrap data
sets. Especially important is that with the bootstrap method we can compute
confidence intervals for the neural approximation [127].

9.1.5 The jackknife and cross-validation

A relatively old statistical technique which can be considered a predecessor of
the bootstrap method is the jackknife. As in the bootstrap, new data samples
are generated from the original data, but in a much simpler manner. If n data
points are given, one is left out, the statistic of interest is computed with the
remaining n− 1 points and the end result is the average over the n different
data sets. Figure 9.7 shows a simple example comparing the bootstrap with
the jackknife for the case of three data points, where the desired statistic
is the centroid position of the data set. In the case of the bootstrap there
are 10 possible bootstrap sets which lead to 10 different computed centroids
(shown in the figure as circles with their respective probabilities). For the
jackknife there are 3 different data sets (shown as ellipses) and centroids. The
average of the bootstrap and jackknife “populations” coincide in this simple
example. The d-jackknife is a refinement of the standard method: instead of
leaving one point out of the data set, d different points are left out and the
statistic of interest is computed with the remaining data points. Mean values
and standard deviations are then computed as in the bootstrap.

In the case of neural networks cross-validation has been in use for many
years. For a given training set T some of the input-output pairs are reserved
and are not used to train the neural network (typically 5% or 10% of the data).
The trained network is tested with these reserved input-output pairs and the
observed average error is taken as an approximation of the true mean squared
error over the input space. This estimated error is a good approximation if
both training and test set fully reflect the probability distribution of the data
in input space. To improve the results k-fold cross-validation can be used. The
data set is divided into k random subsets of the same size. The network is
trained k times, each time leaving one of the k subsets out of the training set
and testing the mean error with the subset which was left out. The average of

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 239

1/10

1/10

1/10

1/10

1/10

1/10 1/10

1/10

1/10 1/10

jackknife sets

bootstrap
centroids

data points (black)

Fig. 9.7. Comparison of the bootstrap and jackknife sampling points for n = 3

the k computed mean quadratic errors is our estimate of the expected mean
quadratic error over the whole of input space. As in the case of the bootstrap,
the initial values of the weights for each of the k training sets can be taken
from previous results using the complete data set, a technique called nonlinear
cross-validation by Moody and Utans [319], or each network can be trained
with random initial weights. The latter technique will lead to an estimation
of the mean quadratic deviation over different possible solutions of the given
task.

The bootstrap, jackknife, and cross-validation are all methods in which
raw computer power allows us to compute confidence intervals for statistics
of interest. When applied to neural networks, these methods are even more
computationally intensive because training the network repetitively consumes
an inordinate amount of time. Even so, if adequate parallel hardware is avail-
able the bootstrap or cross-validation provides us with an assessment of the
reliability of the network results.

9.1.6 Committees of networks

The methods for the determination of the mean quadratic error discussed in
the previous section rely on training several networks with the same basic
structure. If so much computing power is available, the approximation ca-
pabilities of an ensemble of networks is much better than just using one of
the trained networks. The combination of the outputs of a group of neural
networks has received several different names in the literature, but the most
suggestive denomination is undoubtedly committees [339].

Assume that a training set of m input-output pairs (x1, t1), . . . , (x
m, tm)

is given and that N networks are trained using this data. For simplicity we
consider n-dimensional input vectors and a single output unit. Denote by fi

the network function computed by the i-th network, for i = 1, . . . , N . The
network function f produced by the committee of networks is defined as

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

240 9 Statistics and Neural Networks

f =
1

N

N∑

i=1

fi.

The rationale for this averaging over the network functions is that if each
one of the approximations is biased with respect to some part of input space,
an average over the ensemble of networks can reduce the prediction error
significantly. For each network function fi we can compute an m-dimensional
vector ei whose components are the approximation error of the function fi for
each input-output pair. The quadratic approximation error Q of the ensemble
function f is

Q =
m∑

i=1

ti −
1

N

N∑

j=1

fj(x
i)

2

.

This can be written in matrix form by defining a matrix E whose N rows are
the m components of each error vector ei:

E =

e11 e12 · · · e1m
...

...
. . .

...
eN
1 eN

2 · · · eN
m

The quadratic error of the ensemble is then

Q =

∣
∣
∣
∣

1

N
(1, 1, . . . , 1)E

∣
∣
∣
∣

2

=
1

N2
(1, 1, . . . , 1)EET(1, 1, . . . , 1)T (9.4)

The matrix EET is the correlation matrix of the error residuals. If each func-
tion approximation produces uncorrelated error vectors, the matrix EET is
diagonal and the i-th diagonal element Qi is the sum of quadratic deviations
for each functional approximation, i.e., Qi = ‖ei‖2. In this case

Q =
1

N

(
1

N
(Q1 + · · ·+QN)

)

,

and this means that the total quadratic error of the ensemble is smaller by a
factor 1/N than the average of the quadratic errors of the computed functional
approximations. Of course this impressive result holds only if the assumption
of uncorrelated error residuals is true. This happens mostly when N is not too
large. In some cases even N = 2 or N = 3 can lead to significant improvement
of the approximation capabilities of the combined network [339].

If the quadratic errors are not uncorrelated, that is if EET is not symmet-
ric, a weighted combination of the N functions fi can be used. Denote the
i-th weight by wi. The ensemble functional approximation f is now

f =
N∑

i=1

wifi.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

9.1 Linear and nonlinear regression 241

The weights wi must be computed in such a way as to minimize the expected
quadratic deviation of the function f for the given training set. With the same
definitions as before and with the constraint w1 + · · · + wN = 1 it is easy to
see that equation (9.4) transforms to

Q =
1

N2
(w1, w2, . . . , wN)EET(w1, w2, . . . , wN)T.

The minimum of this expression can be found by differentiating with respect to
the weight vector (w1, w2, . . . , wN) and setting the result to zero. But because
of the constraint w1 + · · ·+wN = 1 a Lagrange multiplier λ has to be included
so that the function to be minimized is

Q′ =
1

N2
wEETwT + λ(1, 1, . . . , 1)wT

=
1

N2
wEETwT + λ1wT

where 1 is a row vector with all its N components equal to 1. The partial
derivative of Q′ with respect to w is set to zero and this leads to

1

N2
wEET + λ1 = 0 .

If the matrix EET is invertible this leads to

w = −λN21(EET)−1.

From the constraint w1T = 1 we deduce

w1T = −λN21(EET)−11T = 1 ,

and therefore

λ = − 1

N21(EET)−11T
.

The final optimal set of weights is

w =
1(EET)−1

1(EET)−11T
,

assuming that the denominator does not vanish. Notice that the constraint
w1T is introduced only to simplify the analysis of the quadratic error.

This method can become prohibitive if the matrix EET is ill-conditioned
or if its computation requires too many operations. In that case an adaptive
method can be used. Note that the vector of weights can be learned using a
Lagrange network of the type discussed in Chap. 7.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

