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1 Introduction

1.1 First Definitions and Historical Remarks

A check digit system with one check character over an alphabet A is a code

c :
{

An−1 −→ An

a1a2 . . . an−1 �−→ a1a2 . . . an−1an.

which is used to detect (but not in general to correct) single errors (i.e. errors
in one component) and other errors of certain patterns (discussed below).

Historically, among the first publications1 are articles by FRIEDMAN &
MENDELSOHN (1932; cf. [9]) based on code–tables (after an International Tele-
graph conference) and by Rudolf SCHAUFFLER (1956; cf. [19]) using algebraic
structures. In his book VERHOEFF (1969; cf. [27]) presented basic results which
are in use up to the present time.

1.2 Error Types to Be Detected

Which types of errors (of human operators) have to be detected ? This question
was answered more or less by statistical sampling made by VERHOEFF in a
Dutch postal office and by BECKLEY, see Table 1. They show that single errors
and adjacent transpositions (neighbour transpositions), i.e. errors of the form
. . . ab . . .� . . . ba . . ., are the most prevalent ones (beside insertion and deletion
errors which can be detected easily when all codewords have the same length n).

Note that the last two digits of a word may be affected by single errors more
than all the other digits ([27] p. 14).

1.3 Systems over Groups

The systems most commonly in use are defined over alphabets endowed with a
group structure. For a group G = (A, ·) one can determine the check digit an

� Based on a lecture given at the graduate school on May 31, 1999, and on [24], [25].
1 as J.Dénes found
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Table 1. Error types and their frequencies

Error type Relative frequency
Verhoeff Beckley

single error . . . a . . . � . . . a′ . . . 79.0% 86%
(60-95)

adjacent transposition . . . a b . . . � . . . b a . . . 10.2 % 8%
jump transposition . . . acb . . . � . . . bca . . . 0.8%
twin error . . . aa . . . � . . . bb . . . 0.6%
phonetic error (a≥2) . . . a0 . . . � . . . 1a . . . 0.5% 6%
jump twin error . . . aca . . .� . . . bcb . . . 0.3%
other error 8.6%

Source: Verhoeff [27](12,112 pairs, 6 digits), Beckley [1].

Table 2. Detection of other errors

Error type Detection possible if
twin errors xT (x) �= yT (y) for all x, y ∈ G with x �= y
jump transpositions xyT 2(z) �= zyT 2(x) for all x, y, z ∈ G with x �= z
jump twin errors xyT 2(x) �= zyT 2(z) for all x, y, z ∈ G with x �= z

such that the following (check) equation holds (for fixed permutations δi of
G, i = 1, . . . , n, and an element e of G, for instance the neutral element).

δ1(a1)δ2(a2) . . . δn(an) = e (1)

Such a system detects all single errors; and it detects all adjacent transpositions
iff for all x, y ∈ G with x �= y

x · δi+1δ
−1
i (y) �= y · δi+1δ

−1
i (x). (2)

The proofs are straightforward. Often, one chooses a fixed permutation T of G
and puts δi := T i for i = 1, . . . , n. Equation (2) then becomes2

x T(y) �= y T(x) for all x, y ∈ G with x �= y. (3)

A permutation T of G satisfying (3) is called anti-symmetric. Conditions for
the detection of other errors are shown in Table 2.

1.4 First Examples

Well-known systems are
2 Some authors take an−1 . . . a1a0 as the codeword numeration and therefore

φn−1(an−1) . . . φ(a1)a0 = e as the check equation. Then anti-symmetry is defined
by φ(x)y �= φ(y)x for x, y ∈ G, x �= y. Taking the inverse mapping T −1 as φ one can
transform this condition into (3) and vice versa.
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Fig. 1. Example of an EAN (with bar-code) and an ISBN.

– the European Article Number code (EAN) and (after adding 0 as
first digit) the Universal Product Code (UPC) with G = (Z10,+), n =
13, e = 0, δ2i−1(a) = a =: L1(a) and δ2i(a) = 3a =: L3(a) ; this system
does not detect adjacent transpositions . . . ab . . .� . . . ba . . . for |a− b| = 5 :
the mapping L3L−1

1 is not anti-symmetric. An example of an EAN is shown
in Figure 1.

– the International Standard Book Number code (ISBN) with
G = (Z11,+), n = 10, e = 0 and δi(a) = ia =: Li(a) for i = 1, . . . , 10;
this system detects all adjacent transpositions but needs an element X /∈
{0, . . . , 9}.

– the system of the serial numbers of German banknotes (see e.g. [20]
p.64–67.) An example of a serial number is shown in Fig. 3. (The solution
for the check digit � is given at the end of this article.) In this system, G
is D5, the dihedral group of order 10 (see below) and n = 11, δi = T i

0 for
i = 1, . . . 10 and δ11 = id ; here T0 = (01589427)(36) is an anti-symmetric
permutation found by VERHOEFF (cf. [27]). Thus, the check equation is

T0(a1) ∗ T 2
0 (a2) ∗ · · · ∗ T 10

0 (a10) ∗ a11 = 0.

Letters of the serial numbers are coded as follows:
A D G K L N S U Y Z
0 1 2 3 4 5 6 7 8 9

The dihedral group Dm of order 2m is the symmetry group of the regular
m−gon. Denoting the rotation through angle 2π/m by d and a reflection by
s (see Fig. 2) one has Dm =< d, s | e = dm = s2 ∧ ds = sd−1 > . The 2m
elements are of the form d is j for i = 0, . . . ,m− 1 and j = 0, 1.
For any natural number m one can identify the element d is j ∈ Dm with the
integer i+ j ·m (i = 0, . . . ,m− 1; j = 0, 1). Thus one obtains a representa-
tion of Dm on {0, . . . , 2m − 1}; we denote the induced operation by ∗. The
composition table for the case m = 5 is shown in Table 3.

2 Anti-symmetric Mappings

2.1 The Abelian Case

For an abelian group G, condition (3) is equivalent to

xT (x)−1 �= yT (y)−1 for all x, y ∈ G with x �= y. (4)
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Table 3. The operation on {0, 1, . . . , 8, 9} induced by D5.

* 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 0 6 7 8 9 5
2 2 3 4 0 1 7 8 9 5 6
3 3 4 0 1 2 8 9 5 6 7
4 4 0 1 2 3 9 5 6 7 8

5 5 9 8 7 6 0 4 3 2 1
6 6 5 9 8 7 1 0 4 3 2
7 7 6 5 9 8 2 1 0 4 3
8 8 7 6 5 9 3 2 1 0 4
9 9 8 7 6 5 4 3 2 1 0

d s

Fig. 2. Generators of D5 (as symme-
tries of the regular pentagon).

Fig. 3. What does the last digit (�) of
DK9673165S� look like?

A permutation T satisfying (4) is called an orthomorphism or perfect difference
mapping and 1

T : x �→ T (x)−1 is said to be a complete mapping, cf. MANN
(1942) [17]. The theory of complete mappings is well developed. Thus one knows
for example

2.1.1 Theorem. a) A finite abelian group G admits a complete mapping iff G
has odd order m or contains more than one involution; (PAIGE 1947 [18]).

b) A necessary condition for a finite group of even order to admit complete
mappings is that its Sylow 2-subgroups be non-cyclic. For soluble groups this
condition is also sufficient; (HALL and PAIGE 1955 [15]).

A consequence of this theorem is the following corollary for which DAMM [4]
gave a short prove using groups with “sign”, i.e. with a homomorphism G −→
{−1,+1}.
2.1.2 Corollary. (i) A group of order 2m where m is odd does not admit a
complete mapping.

(ii) Z10 does not admit a check digit system which detects all single errors
and all adjacent transpositions.

(iii) Like the EAN, no other system using Z10 is able to detect all adjacent
transpositions. More generally:

(iv) A cyclic group G admits an anti–symmetric mapping iff |G| is odd.
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(v) Groups of order m = 2u with u odd, in particular D5 and Z10, do not
admit a check digit system which detects all twin errors or all jump twin errors.

2.2 Further Examples

1. We mention several other anti–symmetric mappings of Dm. If m is odd then,

by defining d =
(

1 0

−1 1

)
and s =

(
−1 0

0 1

)
, the dihedral group Dm can be

represented as a matrix group (see e.g. [12]), namely Dm
∼= {

(
a 0

b 1

)
| a, b ∈

Zm ∧ a ∈ {1,−1}}. a) For m odd the mapping

T

(
a 0
b 1

)
:=

(
a 0
ha(b) 1

)

is anti–symmetric if ha(b) = ua − ab with u1 �= u−1 (see [21] 3.7).
Choosing ua = −at − c with c, t ∈ Zm and t �= 0 one gets the system of
GUMM ([12] p.103), namely

T (d k) = d c+t−k and T (d js) = d t−c+js,

in particular for t = r/2 = −c one of VERHOEFF’s anti-symmetric map-
pings; and putting u−1 = 0 and u1 = 1 − m (or c = t = (m − 1)/2 in
GUMM l.c.) yields the system of BLACK ([2]) for m = 5 and of ECKER
and POCH ([8] Th.4.4). If one puts c = t = 1 in GUMM’s system, one gets
the scheme of GALLIAN and MULLIN ([11]Th.2.1) for m odd: T (d k) =
d 2−k and T (d js) = d js.
b) GALLIAN and MULLIN observed that for m = 2k and G = Dm the
following mapping is anti–symmetric; ([11] l.c.; see as well [4] p.22).
T (s) = e T (d−1s) = ds T (dj) = d1−j (k+1≤j≤m)

T (dj) = d1−js (1≤j≤k) T (djs) = dj+1s (1≤j≤k−1)

T (djs) = dj+1 (k≤j≤m−2)

2. Let q = 2m > 2 and K = GF (q); put uac = 1 if a2 �= c and otherwise uac = u
for a fixed u ∈ K \ {0, 1} Then the mapping

T :
(
a 0
b c

)
�−→

(
a2 0
uac · b c2

)

is an anti–symmetric mapping of the group

G0 = {
(
a 0
b c

)
| a, b ∈ K ∧ a · c �= 0}

of all regular 2 × 2- triangular matrices over GF (q); (see [22] 3.1).
3. For m ≥ 2, the group

Qm :=< a, b | a2m = b4 = e, b2 = am, ab = ba−1 >
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is called a dicyclic group or (for m a power of 2) a generalized quaternion
group and for m = 2 quaternion group; it is a group of order 4m. One obtains
an anti–symmetric mapping ϕ in the following way (cf. [11] Th.2.1 ii).

ϕ(ai) = a−i (for 0≤i≤m−1) and ϕ(ai) = b · ai−1 (for m≤i≤2m−1)

ϕ(bai) = bai−1 (for 0≤i≤m−1) and ϕ(bai) = a−i (for m≤i≤2m−1).

4. Further examples can be found below and, for example, in [8], [22], [21], [24].

2.3 Existence Theorems

The following theorem, similar to the abelian case, has a rather technical proof:
2.3.1 Theorem (GALLIAN and MULLIN). Let G be a group and g ∈ G. The
mapping ϕ with ϕ(x) = gx−1 is anti–symmetric iff g commutes with no element
of order 2; (cf. [11] Th.3.1).

An important tool for the construction of anti–symmetric mappings is the
following.
2.3.2 Extension-Theorem (GALLIAN and MULLIN). If H is a normal sub-
group of G and there exist anti–symmetric mappings ϕ and ψ of H and G/H
respectively, then there exists an anti–symmetric mapping of G; (cf. [11]).
Proof (Sketch). Put γ(uih) = ϕ(h)ψ∗(ui) where ψ∗ is the mapping induced by
ψ on a set of representatives {ui} of the cosets of H . ✷

In particular, the direct product of groups with anti–symmetric mappings
has an anti–symmetric mapping; this was already known to GUMM [12] and,
implicitly, to VERHOEFF. So one can extend the results on the existence of
anti–symmetric mappings from p− groups which are different from cyclic 2-
groups to nilpotent groups with trivial or non–cyclic Sylow 2-subgroup. This led
to the Conjecture of Gallian and Mullin ([11]) which has been confirmed by
HEISS [13], [14]:
2.3.3 Theorem (HEISS). Every finite non-abelian group admits an anti–
symmetric mapping.

2.4 Anti-automorphisms and Good Automorphisms

In this section we shall use automorphisms and anti-automorphisms to construct
anti-symmetric mappings. We start with anti-automorphisms. The mapping inv:
x �−→ x−1 is, under certain conditions, an anti-symmetric mapping. On the other
hand, inv is, for every group, an anti-automorphism.
2.4.1 Definition. A bijection ψ : G −→ G of a group G is called an anti-
automorphism if ψ(xy) = ψ(y) · ψ(x) for all x, y ∈ G.

The set of all anti-automorphisms of G is denoted by Antaut G. Note that
Antaut G = Aut G◦ inv. DAMM uses anti-automorphisms to construct anti-
symmetric mappings. He states:
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2.4.2 Theorem (DAMM [4], [5]). (a) If ϕ is anti-symmetric and ψ an anti-
automorphism then ψ ◦ ϕ−1 ◦ ψ−1 is anti-symmetric.

(b) For an anti–automorphism ψ the following are equivalent: (i) ψ is anti-
symmetric. (ii) ψ is fixed point free. (iii) ϕ−1 ◦ ψ ◦ ϕ is fixed point free for any
(anti-) automorphism ϕ.

We continue with group automorphisms.
2.4.3 Proposition. Let G be a finite group and T ∈ Aut G. Then T is anti-
symmetric iff T does not fix any conjugacy class of G \ {e} (where e denotes the
identity element of G). When G is abelian, this is the case iff T operates fixed
point freely on G; (see [23] 3.1.)

When determining necessary and sufficient conditions for the detection of
errors, one comes to the following
2.4.4 Definition. Let G be a finite group. An automorphism T of G is called
good provided T (x) is not conjugate to x or x−1 and T 2(x) is not conjugate
to x or x−1 for all x ∈ G, x �= e (cf.[3]).
2.4.5 Remarks. (i) A good automorphism is anti-symmetric and detects single
errors, adjacent transpositions, jump transpositions, twin errors and jump twin
errors; (see 2.4). (ii) If G is abelian then the automorphism T detects single
errors, adjacent transpositions, jump transpositions and twin errors if T 2 is
fixed point free; and T is good if T 4 is fixed point free.
2.4.6 An Example (cf.[3]). Choose q = 2m > 2 and G as the Sylow 2–
subgroup of the unitary group SU(3, q2) of order q3, formed by the matrices

Q(x, y) =


1 x y
0 1 xq

0 0 1


 with x, y ∈ GF (q2) and y + yq + xq+1 = 0 .

The automorphism T : Q(x, y) �−→ Q(xλ2q−1, yλq+1), induced by conjugation
with

Hλ =


λ

−q 0 0
0 λq−1 0
0 0 λ




for λ ∈ GF (q2) \ {0} is good iff the multiplicative order of λ is not a divisor
of q + 1. Generalization:
2.4.7 Good Automorphisms on p-Groups. Let P be a p-group and T ∈
Aut P . Suppose gcd

(
o(T ), p(p− 1)

)
= 1. Then T is good iff T is fixed point free

on P ; (cf.[3]).
2.4.8 Corollary. Let S be the Sylow 2–subgroup of PSL (2, q) , q =
2m,m > 1 defined by

S =
{(

1 0
v 1

)
| v ∈ GF (q)

}
; then T =

(
t 0
0 t−1

)

with t ∈ GF (q) \ {0, 1} acts fixed point freely on S. Therefore S admits a good
automorphism and hence a check digit system which detects all single errors,
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neighbour-transpositions, twin errors, jump transpositions and jump-twin errors;
(cf.[3]).

Similarly, the Sylow 2–subgroups of the Suzuki group Sz(q)(q = 22t+1, q > 2)
admit a good automorphism. More generally
2.4.9 Theorem. The Sylow 2–subgroup of a Chevalley group over GF (q), q =
2m, admits a good automorphism T with o (T ) | (q−1) provided q is large enough;
(cf.[3] Result 2).

3 Equivalence of Check Digit Systems

Although the systems over Chevalley groups are able to detect all five types of
prevalent errors we concentrate now on the dihedral group of order 10 since its
elements can be interpreted as 0, 1, . . . , 9 in the decimal system.

Because there are (exactly) 34,040 anti–symmetric mappings over D5 (VER-
HOEFF [27] p.92, DAMM [4] p.44, GIESE [10]) we want to define equivalences
between these (and the corresponding schemes). There are several possibilities
to do so. Throughout this section, let G be a group and T1, T2 permutations of
G.

3.1 Weak Equivalence

3.1.1 Definition. T1 and T2 (and the related schemes) are calledweakly equiv-
alent if there exist elements a, b ∈ G and an automorphism α ∈ Aut G such
that

T2 = Ra ◦ α−1 ◦ T1 ◦ α ◦ Lb ;

here Ra(x) := x · a and, as before, Lb(y) := by ; (cf. [27], [4] p.38, [24]). Weak
equivalence is an equivalence relation.
3.1.2 Theorem. a) If T1 and T2 are weakly equivalent and if T1 is anti–
symmetric, then T2 is also anti-symmetric ([27], [4]) .

b) If T1 and T2 are weakly equivalent permutations of G then they detect the
same percentage of twin errors ([24], [10]).

c) If T1 is an automorphism of G and if T2 is weakly equivalent to T1
then T1 and T2 detect the same percentage of jump transpositions and the same
percentage of jump twin errors ([24], [10]).
Proof (Sketch). b) We have (for x = α(bx) and y = α(by)):
xT2(x) �= yT2(y) ⇐⇒ xα−1T1α(bx)a �= yα−1T1α(by)a⇐⇒ xT1(x) �= y T1(y)
c) We get xyT 2

2 (z) �= zyT 2
2 (x) ⇐⇒ x y T 2

1 (z) �= z y T 2
1 (x) for x = α(bx), z =

α(bz) and y = α(y)T1(α(b)) . Similarly for jump twin errors. �
3.1.3 Weak Equivalence and Detection Rates. The following counter-
example (cf. [10], [24]) shows that systems with weakly equivalent anti-symmetric
permutations may have different detection rates. Let T0 be the anti–symmetric
mapping T0 = (01589427)(36) of VERHOEFF. It detects 94.22 % of jump trans-
positions and 94.22 % of jump twin errors. The weakly equivalent permutation
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Table 4. Types of anti–symmetric mappings of D5 and their detection rates

I IIa IIb III IV VIa/b V
single errors 100%
adjacent transpos. 100%
twin errors 95.56 95.56 91.11 91.11 91.11 55.56
jump transpositions 94.22 92 94.22 92 90.22 66,67
jump twin errors 94.22 92 94.22 92 90.22 66.67
Detection rate of
all 5 error types
(weighted)

99.90 99.87 99.87 99.84 99.82 99.30 99.85-
99.42

number of classes 2 44 8 160 16 1/5 1470
elements in a class 20 20 20 20 20 20/4 20

Source: GIESE [10],[24].

T1 := R4 ◦ id ◦T0 ◦ id ◦L3, namely T1 = (079482)(36) detects only 87.56 % of all
jump transpositions and jump twin errors respectively. Therefore, we look for
equivalence relations preserving the detection rates.

3.2 Automorphism Equivalence and Strong Equivalence

3.2.1 Definition. T1 and T2 (and the related systems) are called automor-
phism equivalent if there exists an α ∈ Aut G such that T2 = α−1 ◦ T1 ◦ α ;
and they are said to be strongly equivalent if they are automorphism equiv-
alent or if there exists an anti-automorphism ψ with T2 = ψ−1 ◦ T−1

1 ◦ ψ; ([24],
[25]).

3.2.2 Proposition. Automorphism equivalence and strong equivalence are equiv-
alence relations; and if T1 and T2 are automorphism equivalent then T1 and T2
are weakly equivalent. If T1 and T2 are automorphism equivalent or strongly
equivalent, then T1 and T2 detect the same percentage of adjacent transpositions,
jump transpositions, twin errors and jump twin errors; ([10], [24]).

3.2.3 The Dihedral Group of Order 10. a)Types of equivalence classes. Ac-
cording to computations by GIESE with the program package MAGMA there
are 1,706 equivalence classes of anti-symmetric mappings with respect to auto-
morphism equivalence [10]. S. Giese distinguishes 6 types of classes according to
the rate of detection of errors, see Table 4.

b)Some representatives. To Type I there belong e.g. T0, (03986215)(47) and
(07319854)(26) (VERHOEFF’s mappings) ; the mappings of GUMM, SCHULZ,
BLACK and WINTERS mentioned in 2.2 belong to Type VIb.

3.2.4 The Quaternion Group Case. By coding the elements of Q2 = 〈a, b|a4
= e ∧ b2 = a2 ∧ ab = ba−1〉 by aib j �−→ i + 4j (i = 0, . . . , 3; j = 0, 1) one gets
Table 5 as the multiplication table. There exist exactly 1,152 anti–symmetric
mappings of Q2which constitute 48 equivalence classes of size 24 each with re-
spect to automorphism equivalence (as S. Ugan found out using C++). The
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Table 5. Multiplication table of the quaternion group.

∗ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 0 5 6 7 4
2 2 3 0 1 6 7 4 5
3 3 0 1 2 7 4 5 6
4 4 7 6 5 2 1 0 3
5 5 4 7 6 3 2 1 0
6 6 5 4 7 0 3 2 1
7 7 6 5 4 1 0 3 2

Table 6. Multiplication in Q3.

i ∗ j 0 ≤ j ≤ 5 6 ≤ j ≤ 11
0 ≤ i ≤ 5 (i + j)MOD 6 (i + j)MOD 6 + 6
6 ≤ i ≤ 11 (i − j)MOD 6 + 6 (i − j + 3)MOD 6

mapping of GALLIAN & MULLIN, (0)(1362745), belongs to Type I. (For more
details see [26], [25]).
3.2.5 The Dicyclic Group of Order 12. (a) As defined in 2.2, Q3 is 〈a, b|a6 =
e∧b2 = a3∧ab = ba−1〉. The elements of this group can be coded by the numbers
0 to 11 by aib j �−→ i+6j (i = 0, . . . , 5; j = 0, 1). This yields the multiplication
shown in Table 6.

(b) According to a computer search by S. UGAN (1999)[26], see as well [25],
there are exactly 1, 403, 136 anti–symmetric mappings of Q3; (this means that
only approximately 0.3% of the 12! permutations of Q3 are anti–symmetric).
Further results are shown in Table 7.

c)Representatives for Type I in Q3. Representatives of the 4 classes of Type I
with respect to strong equivalence are (0 1 6 9 10 8 2 5 11 3 7 4),(0 2 6 11 7 9 3 8 1 5 4 10),

(0 6 8 10 9 5 3 11 1 2 4 7),(0 6 1 3 4 11 8 9 7 5 2 10).
d) The Mapping of Gallian and Mullin. For m = 3, their anti–symmetric

mapping is (0)(1 5 8 2 4 9 3 10 11 6 7); it has a detection rate of 81.82% for twin
errors, of 92.42% for jump transpositions and jump twin errors respectively; the
weighted rate for all 5 errors under consideration is 99.79% (cf. Ugan [26]).

4 Generalization to Quasigroups

(Q, ∗) is called a quasigroup if the equations x ∗ b = c and a ∗ y = c have
a unique solution x and y (respectively) for every a, b, c ∈ Q. Quasigroups are
another way to describe Latin squares, cf. [6], [7], [16].

Let (Q, ∗i) be quasigroups; then one uses as check equation

(. . . (xn ∗n xn−1) ∗n−1 xn−2) . . .) ∗1 x0 = d
Of importance for error detection are now (i) the anti–symmetry of (Q, ∗):

x ∗ y = y ∗ x =⇒ x = y (for all x, y ∈ Q)
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Table 7. Types of check digit systems of Q 3 with detection rates of over 90% for each
considered error type.

Type I Type II Type III/IV

single errors 100%
adjacent transpos. 100%
twin errors 96.97% 96.97–93,94 96.97–90.91
jump transpositions 94.70% 95.71–93.94 95.96–90.15
jump twin errors 94.70% 95.45–93.18 95.96–90.15

all 5 error types (weighted) 99.92% 99.91 99.90-99.82

number of automorphism equiva-
lence classes

8 204 804/26,464

number of strong equivalence
classes

4 102 402/13,232

number of check digit systems 96 2,448 9,648/317,568

Source: Ugan [26],[25]

and (ii) the total anti–symmetry, that means anti–symmetry with

(c ∗ x) ∗ y = (c ∗ y) ∗ x =⇒ x = y (for all x, y ∈ Q).
For more details see e.g. [8], [22],[4].

5 Solution of the Exercise

The alpha-numeric serial number of the banknote of Figure 2 with hidden check
digit is DK9673165SΛ. Substituting the letters as indicated in section 1.4 one
obtains 1396731656Λ. Applying the check equation gives

T0(1)∗T 2
0 (3)∗T 3

0 (9)∗T 4
0 (6)∗T 5

0 (7)∗T 6
0 (3)∗T 7

0 (1)∗T 8
0 (6)∗T 9

0 (5)∗T 10
0 (6)∗Λ = 0,

an equation equivalent to 5 ∗ 3︸︷︷︸
7

∗ 7 ∗ 6︸︷︷︸
1

∗ 9 ∗ 3︸︷︷︸
6

∗ 0 ∗ 6︸︷︷︸
6

∗ 8 ∗ 6︸︷︷︸
2

∗Λ = 0;

7 ∗ 1 ∗ 6 ∗ 6 ∗ 2 ∗ Λ = 0 leads to 6 ∗ 0 ∗ 2 ∗ Λ = 0 which has Λ = 9−1 = 9 as
solution.
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