Aufgabe W1

(Lineare Unabhängigkeit, Erzeugendensystem, lineare Abbildung)

(i) Für welche Werte $t \in \mathbb{R}$ sind die Vektoren

$$v_1 := (1, 1, 2), \quad v_2 := (1, 2, 4) \quad \text{und} \quad v_3 := (1, 4, t) \quad \text{aus} \quad \mathbb{R}^3$$

linear unabhängig, für welche nicht?

(ii) Sei $f: V_1 \to V_2$ eine surjektive lineare Abbildung des K-Vektorraums V_1 mit Basis $B = (b_1, \ldots, b_n)$ auf den K-Vektorraum V_2 . Zeigen Sie, dass dann die Vektoren $f(b_1), \ldots, f(b_n)$ ein Erzeugendensystem von V_2 bilden!

Lösungsskizze:

(i) Aus dem Ansatz

$$\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$$

erhält man das homogene lineare Gleichungssystem

(*)
$$\begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} = 0 \\ \lambda_{1} + 2\lambda_{2} + 4\lambda_{3} = 0 \\ 2\lambda_{1} + 4\lambda_{2} + t\lambda_{3} = 0 \end{cases}$$

aus dem u.a. (durch Subtraktion des Zweifachen der Zeile 2 von Zeile 3 folgt:

$$(t-8)\lambda_3=0.$$

Daher gilt $\lambda_3 = 0$ oder t = 8. Im ersten Fall ergibt die Subtraktion der Zeile 1 von Zeile 2, dass $\lambda_2 = 0$ und damit $\lambda_1 = 0$ ist.

Ergebnis: Im Falle $t \neq 8$ sind die gegebenen Vektoren linear unabhängig. Um zu zeigen, dass im Falle t = 8 die gegebenen Vektoren linear abhängig sind, suchen wir eine nicht-triviale Linearkombination des Nullvektors (d.h. eine nicht-triviale Lösung des Systems (*)). Wegen der Homogenität von (*) wählen wir $\lambda_3 = 1$ und erhalten aus (*) mittels Subtraktion der Zeile 1 von Zeile 2 dann $\lambda_2 = -3$ sowie aus Zeile 1 dann $\lambda_1 = 2$. Notwendige Probe (!): Umgekehrt ist (2, -3, 1) im Falle t = 8 eine Lösung

Notwendige Probe (!): Umgekehrt ist (2, -3, 1) im Falle t = 8 eine Lösung von (*) und

$$2v_1 - 3v_2 + v_3 = 0$$

eine nicht-triviale Darstellung des Nullvektors mittels v_1, v_2, v_3 . Daher sind v_1, v_2, v_3 im Fall t = 8 linear abhängig.

(ii) Sei w ein beliebiger Vektor aus V_2 . Wegen der Surjektivität von f exisitert dann ein Urbild v von w in V_1 , also ein v mit f(v) = w. Da B Basis von V_1 ist, existieren $\lambda_1, \ldots, \lambda_n \in K$ mit $v = \sum_{i=1}^n b_i \lambda_i$. Wegen der Linearität von f gilt:

$$w = f(v) = f(\sum_{i=1}^{n} b_i \lambda_i) = \sum_{i=1}^{n} f(b_i) \lambda_i \in \langle f(b_1), \dots, f(b_n) \rangle.$$

Daher ist $f(B) = \{f(b_1), \dots, f(b_n)\}$ ein Erzeugendensystem von V_2 .