Ergebnisse zur Modulprüfung zur Elementaren Algebra/Zahlentheorie II

Weiterbildung für Lehrer an der FU

Dozent: V.Schulze Datum: 18.1.2018 Bearbeitungszeit: 90 Minuten

Name		Vorname		Unterschrift		Matr.Nr.
Aufgabe	1	2	3	4	Punktsumr	ne Note
Punkte						

Bearbeiten Sie drei der folgenden vier Aufgaben.

Anmerkung: Pro Aufgabenteil werden maximal 5 Punkte vergeben, pro Aufgabe also maximal 10 Punkte; insgesamt also maximal 30 Punkte. Zur vollständigen Bearbeitung einer Aufgabe gehört auch die stilistisch einwandfreie Darstellung des Gedankenganges.

Matr.Nr. - Note

4068696 - 3,7

090366 - 4,0

5123257 - 1,0

5123269 - 4,0

5123282 - 1,3

3064430 - 4,0

180679 - 2,7

2495489 - 1,3

 $L \in M - 2.7$

3010687 - 1,3

1071 - 2,3

Irr - 2,7

08-15 - 3,7

??? - 1,7

mn12161 - 1,7

524265 - 3,7

205615 - 3,0

5129852 - 3,0 KKE - 5,0 5128751 - 2,3 5129089 - 1,3 4016640 - 5,0 315324 - 3,3 3309033 - 4,0

Aufgabe 1

Die Permutation π aus der symmetrischen Gruppe S_5 sei definiert durch $\pi := (1,3,5)$.

(i) Man zeige: $U := \{id, \pi, \pi^2\}$ ist die kleinste Untergruppe der symmetrischen Gruppe S_5 , die π enthält.

Man bestimme die Elemente der Nebenklasse $(1,2) \circ U$.

(ii) Man zeige: π ∘ (1, 2) \notin (1, 2) ∘ *U*.

Ist U Normalteiler in S_5 ?

Aufgabe 2

Der Unterring $\mathbb{Z}[\sqrt{5}]$ von \mathbb{R} sei definiert durch $\mathbb{Z}[\sqrt{5}] := \{a+b\sqrt{5} \mid a,b \in \mathbb{Z}\}.$

Sei $f: \mathbb{Z}[\sqrt{5}] \longrightarrow \mathbb{Z}$ definiert durch $f(a+b\sqrt{5}) := a$ für alle $a, b \in \mathbb{Z}$.

(i) Man zeige: f ist relationstreu bezüglich + .

Also ist f ein Gruppenhomomorphismus bezüglich + .

Ist f ein Ringhomomorphismus?

(ii) Ist f surjektiv?

Man bestimme den Kern des Gruppenhomomorphismus f .

Aufgabe 3

(i) Man zeige: $x^3 + x + 1 \equiv 0 \pmod{5}$ ist nicht lösbar.

Ist $x^3 + x + 1 \equiv 0 \pmod{135}$ lösbar?

Ist $x^3 + x + 1 = 5y^2$ in \mathbb{Z} lösbar?

(ii) Man zeige: $5104x \equiv 1 \pmod{10209}$ ist lösbar.

Man bestimme eine Lösung a der Kongruenz mit geradem a. Man bestimme eine Lösung a der Kongruenz mit ungeradem a.

Aufgabe 4

(i) Man zeige: $x^3 + 2x + 2 \in \mathbb{Q}[x]$ ist irreduzibel.

Ist $x^3 + 2x + 2 \in \mathbb{Z}_2[x]$ irreduzibel?

(ii) Sei $\alpha \in \mathbb{R}$ Nullstelle von $x^3 + 2x + 2 \in \mathbb{Q}[x]$.

Man gebe eine Basis von $\mathbb{Q}(\alpha)$: \mathbb{Q} an. Ist $\{1, \alpha, \alpha^3\}$ eine Basis von $\mathbb{Q}(\alpha)$: \mathbb{Q} ?