Übung zum Lehrerweiterbildungskurs Mathematik 'Lineare Algebra/Analytische Geometrie I'

Aufgabe C3 (Lineare Unabhängigkeit binär)

(i) Gegeben seien die Vektoren p_1 bis p_9 aus \mathbb{F}_2^{9} mit:

Zeigen Sie, dass diese Vektoren linear abhängig sind!

Lösungshinweis: Kombinieren Sie geeignete dieser Vektoren zum Nullvektor!

(ii) Zeigen Sie, dass die folgenden Vektoren q_1,q_2,q_3 und q_4 aus $\mathbb{F}_2^{\ 5}$ linear unabhängig sind:

$$q_1 := 1 \quad 1 \quad 0 \quad 1 \quad 0$$
 $q_2 := 1 \quad 1 \quad 0 \quad 0 \quad 0$
 $q_3 := 0 \quad 1 \quad 0 \quad 0 \quad 0$
 $q_4 := 0 \quad 1 \quad 1 \quad 1 \quad 1$

Lösungsskizze

(i) Z.B. addieren sich p_1, p_3 und p_8 zum Nullvektor; auch gilt $p_2 + p_4 + p_7 + p_9 = 0$. Wenn man diese Abhängigkeiten nicht durch Ausprobieren findet, muss man das folgende Lineare Gleichungssystem lösen, das sich aus $\sum_{i=1}^{9} c_i p_i = 0$ ergibt:

(ii) Aus $c_1q_1+c_2q_2+c_3q_3+c_4q_4=0$ mit $c_i\in\mathbb{F}_2$ ergibt sich durch Komponentenvergleich das lineare Gleichungssystem

$$c_{1} +c_{2} = 0$$

$$c_{1} +c_{2} +c_{3} +c_{4} = 0$$

$$c_{4} = 0$$

$$c_{1} +c_{4} = 0$$

$$c_{4} = 0,$$

das nur die triviale Lösung $c_1=c_2=c_3=c_4=0$ hat. Daher sind q_1,q_2,q_3,q_4 linear unabhängig.