Übung zum Lehrerweiterbildungskurs Mathematik 'Lineare Algebra/Analytische Geometrie I'

Aufgabe C 1(Lineare Abhängigkeit, Koordinaten/ Polynome, Matrizen)

- 1. $\vec{a}=1-x, \ \vec{b}=1+x$, $\vec{c}=x$ sind Vektoren im Vektorraum der Polynome über \mathbb{R} . Zeigen Sie, dass die Vektoren $\vec{a}, \vec{b}, \vec{c}$ linear abhängig sind. Prüfen Sie, ob die Vektoren \vec{b}, \vec{c} linear abhängig sind. Ist \vec{c} allein linear abhängig?
- 2. Untersuchen Sie, ob im Vektorraum der 2 × 2
— Matrizen über $\mathbb R$ die Matrizen

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$$

linear unabhängig sind. Ist A für sich allein linear unabhängig?

- 3. $\mathcal{B}=(1,x,x^2,x^3)$ ist eine (geordete) Basis des Vektorraums der Polynome vom Grad kleiner gleich 3.
 - a) Welches Polynom hat bezüglich \mathcal{B} den Koordinatenvektor $\begin{pmatrix} -1\\ \frac{2}{3}\\ -4\\ 2 \end{pmatrix}$?
 - b) Wie lautet der zum Polynom $3-2x+4x^3$ gehörige Koordinatenvektor?
- 4. Im Vektorraum der Polynome vom Grad ≤ 2 ist $\mathcal{C} = (2, 1 + x, 1 x^2)$ geordnete Basis.
 - a) Welches Polynom hat bezüglich \mathcal{C} den Koordinatenvektor $\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$?
 - b) Wie lautet der Koordinatenvektor des Polynoms $1 + x + x^2$ bzgl. \mathcal{B} ?
- 5. a) Zeigen Sie, dass im Vektorraum der $2 \times 2-$ Matrizen über \mathbb{R} die Menge $\mathcal{D} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ eine geordnete Basis ist!
 - b) Welche Matrix hat bez. \mathcal{D} die Koordinaten $\begin{pmatrix} -\frac{1}{2} \\ 2 \\ -1 \\ \frac{3}{5} \end{pmatrix}$?

c) Welche Koordinaten bez.
$$\mathcal{D}$$
 hat die Matrix $\begin{pmatrix} 2 & 3 \\ 4 & -7 \end{pmatrix}$?

Lösungsskizze

1. Die Vektoren $\vec{a}, \vec{b}, \vec{c}$ sind linear abhängig genau dann, wenn es Skalare $r, s, t \in \mathbb{R}$ gibt, die nicht alle gleich null sind, so dass

(*)
$$r \cdot \vec{a} + s \cdot \vec{b} + t \cdot \vec{c} = \vec{0}$$

gilt.

Setzt man o.B.d.A. t=-1, so ergibt eine Heuristik (Beweisrichtung beachten!) aus Gleichung (*) die Werte $r=-\frac{1}{2}$ und $s=\frac{1}{2}$. Tatsächlich gilt:

$$r \cdot \vec{a} + s \cdot \vec{b} = (-\frac{1}{2}) \cdot (1 - x) + \frac{1}{2} \cdot (1 + x) = \frac{1}{2} \cdot (-1 + x + 1 + x) = x = \vec{c}.$$

 \vec{c} lässt sich somit als Linearkombination der Vektoren \vec{a} und \vec{b} darstellen; also sind die Vektoren \vec{a} , \vec{b} und \vec{c} linear abhängig.

Alternativ: \vec{a}, \vec{b} und \vec{c} sind Polynome vom Grad 1. Der Vektorraum der Polynome vom Grad kleiner gleich 1 hat Dimension 2 (z.B. Basis (1, x)). Daher sind drei Vektoren dieses Raumes immer linear abhängig.

Die Vektoren \vec{b} und \vec{c} sind linear unabhängig genau dann, wenn gilt:

$$s \cdot \vec{b} + t \cdot \vec{c} = 0 \Rightarrow s = t = 0.$$

Aus s(1+x)+tx=0 folgt s+(s+t)x=0 und damit s=0=s+t, also s=t=0. D.h.: die Vektoren \vec{b} und \vec{c} sind nicht linear abhängig.

Entsprechend ist auch \vec{c} linear unabhängig, denn: $tx = 0 \Rightarrow t = 0$.

Anmerkung: Dies gilt i.A. für jeden vom Nullvektor verschiedenen Vektor.

2. Da A nicht die Nullmatrix ist, ist A linear unabhängig. Aus

$$(sA+tB=)\ s\cdot\begin{pmatrix}1&1\\1&1\end{pmatrix}+t\begin{pmatrix}-1&1\\2&1\end{pmatrix}=\begin{pmatrix}0&0\\0&0\end{pmatrix},$$

$$\begin{pmatrix} s-t & s+t \\ s+2t & s+t \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

folgt s = t = 0. Also sind die Matrizen A und B linear unabhängig.

3. a) Das Polynom mit Koordinatenvektor $\begin{pmatrix} -1\\ \frac{2}{3}\\ -4\\ 2 \end{pmatrix}$ bezüglich der Basis

 $\mathcal{B}=(1,x,x^2,x^3)$ ist $-1+\frac{2}{3}x-4x^2+2x^3.$ b) Der zum Polynom $3-2x+4x^3$ bezüglich \mathcal{B} gehörende Koordinaten-

vektor ist $\begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix}$.

4. a) Den Koordinatenvektor $\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ bezüglich $\mathcal C$ hat das Polynom

 $2 \cdot 2 + (-3) \cdot (1+x) + 1 \cdot (1-x^2) = 4 - 3 - 3x + 1 - x^2 = 2 - 3x - x^2$

b) Der Koordinatenvektor des Polynoms $1 + x + x^2$ bzgl. C ergibt sich aus

$$r \cdot 2 + s \cdot (1+x) + t \cdot (1-x^2) = 1 + x + x^2$$
.

Ein Koeffizientenvergleich liefert die Aquivalenz zu

$$2r + s + t = 1$$

$$-t = 1$$

und damit zu $r = \frac{1}{2}, s = 1, t = -1$, also den Koeffizientenvektor $\begin{pmatrix} \frac{1}{2} \\ 1 \\ -1 \end{pmatrix}$.

5. a) In $\mathbb{R}^{2\times 2}$ ist jedes Element $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ eindeutig als Linearkombination der Elemente aus \mathcal{D} darstellbar

$$x_1 \cdot \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + x_2 \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + x_3 \cdot \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} + x_4 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

ist äquivalent zum linearen Gleichungssysem

das genau eine Lösung hat (die Koeeffizientenmatrix ist eine obere Dreiecksmatrix mit nicht-trivialen Diagonalelementen). Daher ist \mathcal{D} Basis.

(b) Aus den obigen Berechnungen folgt:

$$a = x_1 + x_3 + x_4 = -\frac{1}{2} - 1 + \frac{3}{5} = -\frac{9}{10}$$

$$b = x_1 - x_2 - x_3 = -\frac{1}{2} - 2 + 1 = -\frac{3}{2}$$

$$c = x_1 + x_2 = -\frac{1}{2} + 2 = \frac{3}{2}$$

$$d = x_1 = -\frac{1}{2}$$

und damit

$$A = \begin{pmatrix} -\frac{9}{10} & -\frac{3}{2} \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}.$$

c) Aus dem Gleichungssystem

$$x_1 = d = -7$$

$$x_2 = c - d = 4 + 7 = 11$$

$$x_3 = -b - c + 2d = -3 - 4 - 14 = -21$$

$$x_4 = a+b+c-3d = 2+3+4+21 = 30$$

Koordinatenvektor als

$$\begin{pmatrix} -7\\11\\-21\\30 \end{pmatrix}$$

ergibt sich der gesuchte