18 Übung zur Analysis II

Weiterbildung für Lehrer **Dozent: V.Schulze**

Wiederholungsaufgaben

Aufgabe 35

Es sei $f:(-\frac{\pi}{2},+\frac{\pi}{2})\to\mathbb{R}$ definiert durch

$$f(x) := \begin{cases} \frac{1 - \cos x}{x} & falls & x \neq 0 \\ 0 & falls & x = 0 \end{cases}$$

- (i) Man zeige, daß f stetig ist.
- (ii) Ist *f* differenzierbar?
- (iii) Existiert das Integral $\int_0^1 f(x)dx$?

Aufgabe 36

Für 0 < x < y zeige man $\frac{1}{y} < \frac{\ln y - \ln x}{y - x} < \frac{1}{x}$.

Hinweis: Man verwende den Mittelwertsatz.

Aufgabe 37

- (i) Existiert das Integral $\int_{1}^{2} xe^{-x} dx$?
- (ii) Bestimmen Sie eine Stammfunktion von $\int xe^{-x} dx$.
- (iii) Konvergiert das uneigentliche Integral $\int_{1}^{\infty} xe^{-x}dx$?

Aufgabe 38

Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) := \begin{cases} \sqrt[2]{16 - x^2 - 6y^2} & falls & 16 \ge x^2 + 6y^2 \\ 0 & falls & 16 < x^2 + 6y^2 \end{cases}$$

1

- (i) Berechnen Sie die partiellen Ableitungen $\frac{\partial f}{\partial x}$ und $\frac{\partial f}{\partial y}$ im Punkt (1, 1). (ii) Bestimmen Sie die Gleichung der Tangentialebene von f
- im Punkt (1, 1).
- (iii) Existiert die partielle Ableitung $\frac{\partial f}{\partial x}$ im Punkt (4, 0) ?