Übung zum Lehrerweiterbildungskurs 'Geometrie'

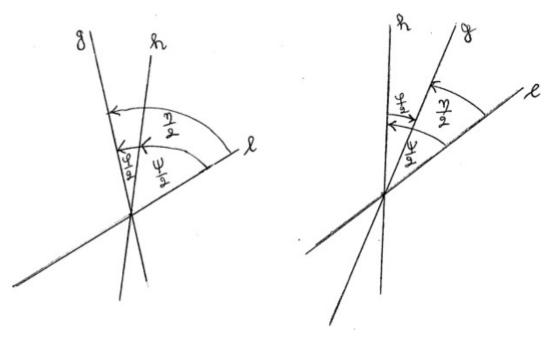
Aufgabe D4 (Drehungen) (Teil von Skript-Aufgabe 89)

Bezeichne δ_{α} die Drehung der reellen euklidischen Ebene mit fest vorgegebenem Zentrum Z und (orientierter) Drehwinkelgröße α . Beweisen Sie für die positiv orientierte Winkelgröße ψ und die orientierten Winkelgrößen ϕ and η mit

$$|\varphi|, |\psi|, |\eta| < R$$

die Aussage

$$\delta_{\phi}\circ\delta_{\psi}=\delta_{\eta}\Longleftrightarrow\eta=\phi+\psi.$$


Lösungshinweis: Benutzen Sie die Dartellung $\delta_{\phi} = \gamma_g \circ \gamma_h$ und $\delta_{\psi} = \gamma_h \circ \gamma_l$!

Lösungsskizze:

Laut Hinweis benutzen wir die Dartellung $\delta_{\phi}=\gamma_g\circ\gamma_h$ und $\delta_{\psi}=\gamma_h\circ\gamma_l$; diese ist möglich für Geraden g,h,l durch Z, wobei die eingeschlossenen Winkel $\frac{\psi}{2}$ bzw. $\pm |\frac{\phi}{2}|$ sind. Die Winkel addieren sich (unter Beachtung der vorgegebenen Orientierung von ψ und den beiden möglichen Orientierungen von ϕ) zum Winkel der Größe $\frac{\psi+\phi}{2}$ (vgl. die beiden Skizzen), zu dem wegen

$$\delta_{\Phi} \circ \delta_{\Psi} = \gamma_g \circ \gamma_h \circ \gamma_h \circ \gamma_l = \gamma_g \circ \gamma_l$$

die Drehung um Z um die Winkelgröße $\psi + \varphi$ gehört.

