Übungen zum Lehrkräfteweiterbildungskurs "Lineare Algebra/Analytische Geometrie II"

Aufgabe W2 (Skalarprodukt, Eigenwerte)

Sei M eine hermitesche Matrix, also $M = \overline{M}^T \in \mathbb{C}^{(n,n)}$, und sei f die lineare Abbildung von $V := \mathbb{C}^{(n,1)}$ in sich mit $x \mapsto Mx$. Das kanonische Skalarprodukt auf $\mathbb{C}^{(n,1)}$ werde mit Φ bezeichnet.

(i) Zeigen Sie, dass für alle $x, y \in V$ gilt:

$$(*) \qquad \Phi(f(x), y) = \Phi(x, f(y)).$$

(Eine solcher Endomorphismus heißt selbstadjungiert.)

(ii) Beweisen Sie, dass die Eigenwerte selbstadjungierter Endomorphismen (vgl. (i)) reell sind!

Lösungshinweis: Betrachten Sie z.B. $\Phi(\lambda x, x)$, wenn λ Eigenwert zum Eigenvektor x ist!