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Input: read-only, random-access

Output: write-only

Memory: O(s) words

Model
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General approach

• Find R ⊂ P of size O(s)

• Compute V D(R)

• Triangulate V D(R)

• For each triangle, report the vertices of V D(P ) inside it

Difficulty: ensure each triangle requires O(n/s) points to
compute its Voronoi vertices
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Computing R2

• Take random set R ⊂ P of size Θ(s)
• Compute and triangulate V D(R)

• Compute sizes of conflict sets Bv for v ∈ V D(R)
• If size of conflict sets is too large, restart

tv = |Bv| · s/n∑
v∈V D(R) tv log tv = O(s)

time to sample:
O(n + s log s)
count conflict size:
O(n log s)
total:
O(n log s)



Computing R2

Problem: For some v ∈ V D(R) we may have Bv � n/s

Solution:

1 sampling round:
O(n log s + s log s)
expected #rounds:
O(log∗ s)
total:
O(n log s log∗ s)

• Sample Θ(tv log tv) extra points from Bv for any
v ∈ V D(R) with tv ≥ 2.

• Recompute conflict sizes
• Continue sampling in large conflict sets
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Putting it together

(Almost optimal for both linear and constant memory)

Computing R2: expected O(n log s log∗ s)

Computing for each triangle: expected O((n2/s) log s)⇒

Reporting Voronoi diagrams of a set of n points in the plane
can be done in O((n2/s) log s + n log s log∗ s) expected time.

Open Problem: Can we do the same in worst-case time?


