Time-space Trade-offs for Voronoi Diagrams

Matias Korman

0

Ο

0

National institute of informatics. Tokyo, Japan

Wolfgang Mulzer Institut für Informatik,

Freie Universität Berlin, Germany

Marcel Roeloffzen Tohoku University. Tokyo, Japan

Paul Seiferth Institut für Informatik, Institut für Informatik, Freie Universität 🕤 Berlin, Germany

André van Renssen

National institute of informatics. Tokyo, Japan

Yannik Stein Freie Universität Berlin, Germany

Limited Memory

Started in the 70's

Limited Memory

Started in the 70's

Increased interest recently

Limited Memory

Started in the 70's

13 1333

6000

Model Input: read-only, random-access Memory: O(s) words Output: write-only

Increased interest recently

Input: set *P* of points in \mathbb{R}^2

Output: Subdivision of \mathbb{R}^2 , such that each region has a common nearest neighbor in P.

Input: set *P* of points in \mathbb{R}^2

Output: Subdivision of \mathbb{R}^2 , such that each region has a common nearest neighbor in P.

Input: set *P* of points in \mathbb{R}^2

Output: Subdivision of \mathbb{R}^2 , such that each region has a common nearest neighbor in P.

Input: set *P* of points in \mathbb{R}^2

Output: Subdivision of \mathbb{R}^2 , such that each region has a common nearest neighbor in P.

- Find $R \subset P$ of size O(s)
- Compute VD(R)
- Triangulate VD(R)
- For each triangle, report the vertices of VD(P) inside it

- Find $R \subset P$ of size O(s)
- Compute VD(R)
- Triangulate VD(R)
- For each triangle, report the vertices of VD(P) inside it

- Find $R \subset P$ of size O(s)
- Compute VD(R)
- Triangulate VD(R)
- For each triangle, report the vertices of VD(P) inside it

- Find $R \subset P$ of size O(s)
- Compute VD(R)
- Triangulate VD(R)
- For each triangle, report the vertices of VD(P) inside it

- Find $R \subset P$ of size O(s)
- Compute VD(R)
- Triangulate VD(R)
- For each triangle, report the vertices of VD(P) inside it

- Find $R \subset P$ of size O(s)
- Compute VD(R)
- Triangulate VD(R)
- For each triangle, report the vertices of VD(P) inside it

Given $R_2 \subset P$ such that:

- $|R_2| = O(s)$
- each vertex $v \in VD(R_2)$ has conflict set B_v with $|B_v| = O(n/s)$.

Given $R_2 \subset P$ such that:

- $|R_2| = O(s)$
- each vertex $v \in VD(R_2)$ has conflict set B_v with $|B_v| = O(n/s)$.

Given $R_2 \subset P$ such that:

|R₂| = O(s)
each vertex v ∈ VD(R₂) has conflict set B_v with |B_v| = O(n/s).

To report Voronoi vertices in $\Delta = \{v_1, v_2, v_3\} \subseteq R_2 \text{ only consider}$ points in $B_{v_1}, B_{v_2}, B_{v_3}$

Given $R_2 \subset P$ such that:

|R₂| = O(s)
each vertex v ∈ VD(R₂) has conflict set B_v with |B_v| = O(n/s).

To report Voronoi vertices in $\Delta = \{v_1, v_2, v_3\} \subseteq R_2 \text{ only consider}$ points in $B_{v_1}, B_{v_2}, B_{v_3}$

Given $R_2 \subset P$ such that:

|R₂| = O(s)
each vertex v ∈ VD(R₂) has conflict set B_v with |B_v| = O(n/s).

Given $R_2 \subset P$ such that:

|R₂| = O(s)
each vertex v ∈ VD(R₂) has conflict set B_v with |B_v| = O(n/s).

Problem: O(s) voronoi diagrams of size O(n/s) to compute

- Allocate each triangle O(1) memory
- Scan points O(n/s) times and $O(n \log s)$ per scan

- Allocate each triangle O(1) memory
- Scan points O(n/s) times and $O(n \log s)$ per scan

- Allocate each triangle O(1) memory
- Scan points O(n/s) times and $O(n \log s)$ per scan

- Allocate each triangle O(1) memory
- Scan points O(n/s) times and $O(n \log s)$ per scan

- Take random set $R \subset P$ of size $\Theta(s)$
- Compute and triangulate VD(R)
- Compute sizes of conflict sets B_v for $v \in VD(R)$

- Take random set $R \subset P$ of size $\Theta(s)$
- Compute and triangulate VD(R)
- Compute sizes of conflict sets B_v for $v \in VD(R)$

- Take random set $R \subset P$ of size $\Theta(s)$
- Compute and triangulate VD(R)
- Compute sizes of conflict sets B_v for $v \in VD(R)$

- Take random set $R \subset P$ of size $\Theta(s)$
- Compute and triangulate VD(R)
- Compute sizes of conflict sets B_v for $v \in VD(R)$
- If size of conflict sets is too large, restart

- Take random set $R \subset P$ of size $\Theta(s)$
- Compute and triangulate VD(R)
- Compute sizes of conflict sets B_v for $v \in VD(R)$
- If size of conflict sets is too large, restart

- **Solution**: Sample $\Theta(t_v \log t_v)$ extra points from B_v for any $v \in VD(R)$ with $t_v \ge 2$.
 - Recompute conflict sizes
 - Continue sampling in large conflict sets

- **Solution**: Sample $\Theta(t_v \log t_v)$ extra points from B_v for any $v \in VD(R)$ with $t_v \ge 2$.
 - Recompute conflict sizes
 - Continue sampling in large conflict sets

- **Solution**: Sample $\Theta(t_v \log t_v)$ extra points from B_v for any $v \in VD(R)$ with $t_v \ge 2$.
 - Recompute conflict sizes
 - Continue sampling in large conflict sets

- **Solution**: Sample $\Theta(t_v \log t_v)$ extra points from B_v for any $v \in VD(R)$ with $t_v \ge 2$.
 - Recompute conflict sizes
 - Continue sampling in large conflict sets

Putting it together

Computing R_2 : expected $O(n \log s \log^* s)$ Computing for each triangle: expected $O((n^2/s) \log s)$

Reporting Voronoi diagrams of a set of n points in the plane can be done in $O((n^2/s)\log s + n\log s\log^* s)$ expected time.

(Almost optimal for both linear and constant memory)

Open Problem: Can we do the same in worst-case time?