
Time-space Trade-offs for
Voronoi Diagrams

Matias Korman Wolfgang Mulzer André van Renssen

Institut für Informatik,
Freie Universität
Berlin, Germany

National institute of
informatics.

Tokyo, Japan

National institute of
informatics.

Tokyo, Japan

Marcel Roeloffzen Paul Seiferth Yannik Stein

Institut für Informatik,
Freie Universität
Berlin, Germany

Institut für Informatik,
Freie Universität
Berlin, Germany

Tohoku University.
Tokyo, Japan

Tohoku University.
Tokyo, Japan

Limited Memory

Started in the 70’s

Limited Memory

Started in the 70’s

Increased interest recently

Limited Memory

Started in the 70’s

Increased interest recently

Input: read-only, random-access

Output: write-only

Memory: O(s) words

Model

Voronoi Diagram

Input: set P of points in R2

Output: Subdivision of R2, such that each region has a
common nearest neighbor in P .

Output format: vertices of Voronoi diagram in arbitrary order

Voronoi Diagram

Input: set P of points in R2

Output: Subdivision of R2, such that each region has a
common nearest neighbor in P .

Output format: vertices of Voronoi diagram in arbitrary order

Voronoi Diagram

Input: set P of points in R2

Output: Subdivision of R2, such that each region has a
common nearest neighbor in P .

Output format: vertices of Voronoi diagram in arbitrary order

Voronoi Diagram

Input: set P of points in R2

Output: Subdivision of R2, such that each region has a
common nearest neighbor in P .

Output format: vertices of Voronoi diagram in arbitrary order

Takes O(n log n) time using O(n) space
O(n2) time using O(1) space [Asano et al. 2011]
Takes O(n log n) time using O(n) space
O(n2) time using O(1) space [Asano et al. 2011]

General approach

• Find R ⊂ P of size O(s)

• Compute V D(R)

• Triangulate V D(R)

• For each triangle, report the vertices of V D(P) inside it

General approach

• Find R ⊂ P of size O(s)

• Compute V D(R)

• Triangulate V D(R)

• For each triangle, report the vertices of V D(P) inside it

General approach

• Find R ⊂ P of size O(s)

• Compute V D(R)

• Triangulate V D(R)

• For each triangle, report the vertices of V D(P) inside it

General approach

• Find R ⊂ P of size O(s)

• Compute V D(R)

• Triangulate V D(R)

• For each triangle, report the vertices of V D(P) inside it

General approach

• Find R ⊂ P of size O(s)

• Compute V D(R)

• Triangulate V D(R)

• For each triangle, report the vertices of V D(P) inside it

General approach

• Find R ⊂ P of size O(s)

• Compute V D(R)

• Triangulate V D(R)

• For each triangle, report the vertices of V D(P) inside it

Difficulty: ensure each triangle requires O(n/s) points to
compute its Voronoi vertices

Computing the vertices

Given R2 ⊂ P such that:
• |R2| = O(s)
• each vertex v ∈ V D(R2) has conflict set Bv with
|Bv| = O(n/s).

Computing the vertices

Given R2 ⊂ P such that:
• |R2| = O(s)
• each vertex v ∈ V D(R2) has conflict set Bv with
|Bv| = O(n/s).

Computing the vertices

Given R2 ⊂ P such that:
• |R2| = O(s)
• each vertex v ∈ V D(R2) has conflict set Bv with
|Bv| = O(n/s).

To report Voronoi vertices in
∆ = {v1, v2, v3} ⊆ R2 only consider

points in Bv1 , Bv2 , Bv3

Computing the vertices

Given R2 ⊂ P such that:
• |R2| = O(s)
• each vertex v ∈ V D(R2) has conflict set Bv with
|Bv| = O(n/s).

To report Voronoi vertices in
∆ = {v1, v2, v3} ⊆ R2 only consider

points in Bv1 , Bv2 , Bv3

Computing the vertices

Given R2 ⊂ P such that:
• |R2| = O(s)
• each vertex v ∈ V D(R2) has conflict set Bv with
|Bv| = O(n/s).

To report Voronoi vertices in
∆ = {v1, v2, v3} ⊆ R2 only consider

points in Bv1 , Bv2 , Bv3

Computing the vertices

Given R2 ⊂ P such that:
• |R2| = O(s)
• each vertex v ∈ V D(R2) has conflict set Bv with
|Bv| = O(n/s).

To report Voronoi vertices in
∆ = {v1, v2, v3} ⊆ R2 only consider

points in Bv1 , Bv2 , Bv3

Computing the Voronoi vertices

Problem: O(s) voronoi diagrams of size O(n/s) to compute

Computing the Voronoi vertices

Problem: O(s) voronoi diagrams of size O(n/s) to compute

Solution: Use O(1)-memory algorithm on each triangle:
• Allocate each triangle O(1) memory

• Scan points O(n/s) times and O(n log s) per scan

Computing the Voronoi vertices

Problem: O(s) voronoi diagrams of size O(n/s) to compute

Solution: Use O(1)-memory algorithm on each triangle:
• Allocate each triangle O(1) memory

• Scan points O(n/s) times and O(n log s) per scan

Computing the Voronoi vertices

Problem: O(s) voronoi diagrams of size O(n/s) to compute

Solution: Use O(1)-memory algorithm on each triangle:
• Allocate each triangle O(1) memory

• Scan points O(n/s) times and O(n log s) per scan

Computing the Voronoi vertices

Problem: O(s) voronoi diagrams of size O(n/s) to compute

Solution: Use O(1)-memory algorithm on each triangle:
• Allocate each triangle O(1) memory

• Scan points O(n/s) times and O(n log s) per scan

Computing R2

• Take random set R ⊂ P of size Θ(s)
• Compute and triangulate V D(R)

• Compute sizes of conflict sets Bv for v ∈ V D(R)

Computing R2

• Take random set R ⊂ P of size Θ(s)
• Compute and triangulate V D(R)

• Compute sizes of conflict sets Bv for v ∈ V D(R)

Computing R2

• Take random set R ⊂ P of size Θ(s)
• Compute and triangulate V D(R)

• Compute sizes of conflict sets Bv for v ∈ V D(R)

Computing R2

• Take random set R ⊂ P of size Θ(s)
• Compute and triangulate V D(R)

• Compute sizes of conflict sets Bv for v ∈ V D(R)
• If size of conflict sets is too large, restart

tv = |Bv| · s/n∑
v∈V D(R) tv log tv = O(s)

Computing R2

• Take random set R ⊂ P of size Θ(s)
• Compute and triangulate V D(R)

• Compute sizes of conflict sets Bv for v ∈ V D(R)
• If size of conflict sets is too large, restart

tv = |Bv| · s/n∑
v∈V D(R) tv log tv = O(s)

time to sample:
O(n + s log s)
count conflict size:
O(n log s)
total:
O(n log s)

Computing R2

Problem: For some v ∈ V D(R) we may have Bv � n/s

Solution:

1 sampling round:
O(n log s + s log s)
expected #rounds:
O(log∗ s)
total:
O(n log s log∗ s)

• Sample Θ(tv log tv) extra points from Bv for any
v ∈ V D(R) with tv ≥ 2.

• Recompute conflict sizes
• Continue sampling in large conflict sets

Computing R2

Problem: For some v ∈ V D(R) we may have Bv � n/s

Solution:

1 sampling round:
O(n log s + s log s)
expected #rounds:
O(log∗ s)
total:
O(n log s log∗ s)

• Sample Θ(tv log tv) extra points from Bv for any
v ∈ V D(R) with tv ≥ 2.

• Recompute conflict sizes
• Continue sampling in large conflict sets

Computing R2

Problem: For some v ∈ V D(R) we may have Bv � n/s

Solution:

1 sampling round:
O(n log s + s log s)
expected #rounds:
O(log∗ s)
total:
O(n log s log∗ s)

• Sample Θ(tv log tv) extra points from Bv for any
v ∈ V D(R) with tv ≥ 2.

• Recompute conflict sizes
• Continue sampling in large conflict sets

Computing R2

Problem: For some v ∈ V D(R) we may have Bv � n/s

Solution:

1 sampling round:
O(n log s + s log s)
expected #rounds:
O(log∗ s)
total:
O(n log s log∗ s)

• Sample Θ(tv log tv) extra points from Bv for any
v ∈ V D(R) with tv ≥ 2.

• Recompute conflict sizes
• Continue sampling in large conflict sets

Putting it together

(Almost optimal for both linear and constant memory)

Computing R2: expected O(n log s log∗ s)

Computing for each triangle: expected O((n2/s) log s)⇒

Reporting Voronoi diagrams of a set of n points in the plane
can be done in O((n2/s) log s + n log s log∗ s) expected time.

Open Problem: Can we do the same in worst-case time?

