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Dynamic Nearest Neighbor Search

sites P in R2 +
distance functions δp : R2 → R for all p ∈ P

Euclidean gen. metric

updates queries

[Cha06]

[AM95] nε logn

log6 n log2 n

updates queries

Now:

[AES99] nε logn

polylog(n) log2 n
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Applications

Old Bound: n1+ε [CJ15]

amortized, expected

Single source shortest path in unit disk graphs

New Bound: npolylog(n) exp.

s

Minimum Euclidean planar bichromatic matching

Old Bound: n2+ε [AES99] New Bound: n2polylog(n) exp.
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Overview

Dynamic Nearest
Neigbhors in R2

Dynamic Lower
Envelopes for

Surfaces S in R3

Chan’s Dynamic
Lower Envelopes
for Planes in R3

Vertical k-shallow
Cuttings for
Surfaces S

vertical k-shallow cuttings for S with

• size O((n/k)polylogn)

• in time O(npolylog(n))

dynamic lower envelopes for S with

• update time O(polylog(n))

• query time O(log2 n)
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Vertical k-shallow cuttings

k-level

(1 + ε)k-level

k-level

Theorem: The t = O(log n)-level of a sample of size
O((n/k) log n) yields a level approximation with
expected complextity O((n/k) log2 n)
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Randomized Incremental Construction

2D
3D

Theorem: The vertical decomposition of the ≤ t level of
A(S) has complexity O(ntλs+2(t)).
Theorem: The vertical decomposition of the ≤ t level of
A(S) has complexity O(ntλs+2(t)).
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Randomized Incremental Construction

2D
3D

Theorem: Constructing the ≤ t-level of A(S) takes
O(nt2polylog(n)) expected time.
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2. Level approximation of size O((n/k) log2 n)
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1. RIC for t = O(logn) level for O((n/k) logn) steps

2. Level approximation of size O((n/k) log2 n)

3. Vertical k-shallow cutting of size
O((n/k) log2 n) im time O(n log5 n)

4. Dynamic Lower Evenlopes with

• queries: O(log2 n) (w.c.)

• deletions: O(log11 n) (am. exp.)

• insertions O(log7 n) (am. exp.)
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