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Applications

Single source shortest path in unit disk graphs
Old Bound: n'*¢ [CJ15] New Bound: npolylog(n) exp.

Minimum Euclidean planar bichromatic matching
Old Bound: n*™¢ [AES99]  New Bound: n*polylog(n) exp.
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Overview

Vertical k-shallow| | Chan's Dynamic

Cuttings for Lower Envelopes

Surfaces S for Planes in R3
vertical k-shallow cuttings for .S with .x
e size O((n/k)polylogn) Y

e in time O(npolylog(n)) Dynamic Lower

4 Envelopes for

dynamic lower envelopes for S with Surfaces S in R*

e update time O(polylog(n)) l

e query time O(log2 n) Dynamic Nearest

Neigbhors in R?
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Vertical k-shallow cuttings

vertical k-shallow cutting: covering of < k-level with "few”
cells s.t. each cell intersects O(k) surfaces

obtained from an z-y-monotone terrain
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Vertical k-shallow cuttings

Theorem: The t = O(log n)-level of a sample of size
O((n/k)logn) yields a level approximation with
expected complextity O((n/k)log® n)
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Strategy: e take rand. perm. si, S9, 83, S4, ..
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Randomized Incremental Construction

Strategy: e take rand. perm. sy, Ss,S3,S4,..., Sy,
e perform RIC for t = O(logn) level of surfaces S

e stop after O((n/k)logn) steps

e ‘(‘y‘/"’(




Randomized Incremental Construction

Strategy: e take rand. perm. sy, Ss,S3,S4,..., Sy,
e perform RIC for t = O(logn) level of surfaces S

e stop after O((n/k)logn) steps

t-level




Randomized Incremental Construction

Strategy: e take rand. perm. sy, Ss,S3,S4,..., Sy,
e perform RIC for t = O(logn) level of surfaces S

e stop after O((n/k)logn) steps

t-level




Randomized Incremental Construction

Strategy: e take rand. perm. sy, Ss,S3,S4,..., Sy,
e perform RIC for t = O(logn) level of surfaces S

e stop after O((n/k)logn) steps

2D




Randomized Incremental Construction

Strategy: e take rand. perm. sy, Ss,S3,S4,..., Sy,
e perform RIC for t = O(logn) level of surfaces S

e stop after O((n/k)logn) steps

2D




Randomized Incremental Construction

Strategy: e take rand. perm. sy, Ss,S3,S4,..., Sy,
e perform RIC for t = O(logn) level of surfaces S

e stop after O((n/k)logn) steps

3D
2D




Randomized Incremental Construction

Strategy: e take rand. perm. sy, Ss,S3,S4,..., Sy,
e perform RIC for t = O(logn) level of surfaces S

e stop after O((n/k)logn) steps

3D
2D

~
~
~
~
~
b d
. b
bl
-
b d
-’
-
-
ﬂ |‘ ’
- -~
~
~
-~
-~
~
~
Nt
’I
-
-

-
-




Randomized Incremental Construction

Strategy: e take rand. perm. sy, Ss,S3,S4,..., Sy,
e perform RIC for t = O(logn) level of surfaces S

e stop after O((n/k)logn) steps

3D
2D

h < X
| . [
w A

-
-
-
-
-




Randomized Incremental Construction

Strategy: e take rand. perm. sy, Ss,S3,S4,..., Sy,
e perform RIC for t = O(logn) level of surfaces S

e stop after O((n/k)logn) steps

3D
2D

h <X
| . [
w A

-
-
-
-
-




Randomized Incremental Construction

Strategy: e take rand. perm. sy, Ss,S3,S4,..., Sy,
e perform RIC for t = O(logn) level of surfaces S

e stop after O((n/k)logn) steps
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Randomized Incremental Construction

Theorem: The vertical decomposition of the < ¢ level of
A(S) has complexity O(ntAsi2(t)).
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Randomized Incremental Construction

Theorem: Constructing the < t-level of A(S) takes
O(nt*polylog(n)) expected time.
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Dynamic Nearest
4. Dynamic Lower Evenlopes with ] )
) " Neigbhors in R?

e insertions O(log” n) (am. exp.)
o deletions: O(log'' n) (am. exp.)
o queries: O(log®n) (w.c.)




