

Dynamic Planar Voronoi Diagrams for General Distance Functions

Haim Kaplan

Tel Aviv University Tel Aviv, Israel

Wolfgang Mulzer

Freie Universität Berlin, Germany **Liam Roditty**

Bar-Ilan University Tel Aviv, Israel

Paul Seiferth

Freie Universität Berlin, Germany

Micha Sharir

Tel Aviv University Tel Aviv, Israel

	updates	queries
[AM95]	$n^{arepsilon}$	$\log n$
[Cha06]	$\log^6 n$	$\log^2 n$

	updates	queries
[AM95]	$n^{arepsilon}$	$\log n$
[Cha06]	$\log^6 n$	$\log^2 n$

sites P in \mathbb{R}^2 + distance functions $\delta_p : \mathbb{R}^2 \to \mathbb{R}$ for all $p \in P$

	updates	queries
[AM95]	$n^{arepsilon}$	$\log n$
[Cha06]	$\log^6 n$	$\log^2 n$

(e.g., add. weighted or any ℓ_p -norm)

	updates	queries
[AM95]	$n^{arepsilon}$	$\log n$
[Cha06]	$\log^6 n$	$\log^2 n$

	updates	queries
[AES99]	$n^{arepsilon}$	$\log n$

sites P in \mathbb{R}^2 + distance functions $\delta_p : \mathbb{R}^2 \to \mathbb{R}$ for all $p \in P$

	updates	queries
[AM95]	$n^{arepsilon}$	$\log n$
[Cha06]	$\log^6 n$	$\log^2 n$

gen. metric (e.g., add. weighted or any ℓ_p -norm)

	updates	queries
[AES99]	$n^{arepsilon}$	$\log n$
Now:	polylog(n)	$\log^2 n$

Applications

Applications

Minimum Euclidean planar bichromatic matching Old Bound: $n^{2+\varepsilon}$ [AES99] New Bound: n^2 polylog(n) exp.

sites P in \mathbb{R}^2 + distance functions $\delta_p : \mathbb{R}^2 \to \mathbb{R}$

Euclidean

k-shallow cutting: covering of $\leq k$ -level with "few" cells s.t. each cell intersects O(k) surfaces

k-shallow cutting: covering of $\leq k$ -level with "few" cells s.t. each cell intersects O(k) surfaces

k-shallow cutting: covering of $\leq k$ -level with "few" cells s.t. each cell intersects O(k) surfaces

 $\begin{array}{l|l} \underline{vertical} & k \text{-shallow cutting: covering of } \leq k \text{-level with "few"} \\ & \text{cells s.t. each cell intersects } O(k) \text{ surfaces} \end{array}$

 $\begin{array}{l|l} \underline{vertical} & k \text{-shallow cutting: covering of } \leq k \text{-level with "few"} \\ & \text{cells s.t. each cell intersects } O(k) \text{ surfaces} \end{array}$

 $\begin{array}{l|l} \underline{vertical} & k \text{-shallow cutting: covering of } \leq k \text{-level with "few"} \\ & \text{cells s.t. each cell intersects } O(k) \text{ surfaces} \end{array}$

- obtained from an x-y-monotone terrain

3D

 $\begin{array}{l|l} \underline{vertical} & k \text{-shallow cutting: covering of} \leq k \text{-level with "few"} \\ & \text{cells s.t. each cell intersects } O(k) \text{ surfaces} \end{array}$

 $\begin{array}{l|l} \underline{vertical} & k \text{-shallow cutting: covering of} \leq k \text{-level with "few"} \\ & \text{cells s.t. each cell intersects } O(k) \text{ surfaces} \end{array}$

 $\begin{array}{l|l} \underline{vertical} & k \text{-shallow cutting: covering of} \leq k \text{-level with "few"} \\ & \text{cells s.t. each cell intersects } O(k) \text{ surfaces} \end{array}$

 $\begin{array}{l|l} \underline{vertical} & k \text{-shallow cutting: covering of } \leq k \text{-level with "few"} \\ & \text{cells s.t. each cell intersects } O(k) \text{ surfaces} \end{array}$

 $\begin{array}{l|l} \underline{vertical} & k \text{-shallow cutting: covering of } \leq k \text{-level with "few"} \\ & \text{cells s.t. each cell intersects } O(k) \text{ surfaces} \end{array}$

<u>Theorem</u>: The $t = O(\log n)$ -level of a sample of size $O((n/k) \log n)$ yields a level approximation with **expected complexity** $O((n/k) \log^2 n)$

Strategy: • take rand. perm. $s_1, s_2, s_3, s_4, \ldots, s_n$

• perform RIC for $t = O(\log n)$ level of surfaces S

- perform RIC for $t = O(\log n)$ level of surfaces S
- stop after $O((n/k) \log n)$ steps

- perform RIC for $t = O(\log n)$ level of surfaces S
- stop after $O((n/k)\log n)$ steps

- perform RIC for $t = O(\log n)$ level of surfaces S
- stop after $O((n/k)\log n)$ steps

- perform RIC for $t = O(\log n)$ level of surfaces S
- stop after $O((n/k) \log n)$ steps

- perform RIC for $t = O(\log n)$ level of surfaces S
- stop after $O((n/k) \log n)$ steps

- perform RIC for $t = O(\log n)$ level of surfaces S
- stop after $O((n/k) \log n)$ steps

- perform RIC for $t = O(\log n)$ level of surfaces S
- stop after $O((n/k) \log n)$ steps

- perform RIC for $t = O(\log n)$ level of surfaces S
- stop after $O((n/k) \log n)$ steps

- perform RIC for $t = O(\log n)$ level of surfaces S
- stop after $O((n/k) \log n)$ steps

- perform RIC for $t = O(\log n)$ level of surfaces S
- stop after $O((n/k) \log n)$ steps

Theorem: The vertical decomposition of the $\leq t$ level of $\mathcal{A}(S)$ has complexity $O(nt\lambda_{s+2}(t))$.

Theorem: Constructing the $\leq t$ -level of $\mathcal{A}(S)$ takes $O(nt^2 \operatorname{polylog}(n))$ expected time.

• queries: $O(\log^2 n)$ (w.c.)