

Bar-Ilan University

Dynamic Planar Voronoi Diagrams for General Distance Functions

Haim Kaplan
Tel Aviv University
Tel Aviv, Israel

Wolfgang Mulzer
Freie Universität
Berlin, Germany

Liam Roditty

Bar-Ilan University
Tel Aviv, Israel

Paul Seiferth
Freie Universität
Berlin, Germany

Micha Sharir
Tel Aviv University
Tel Aviv, Israel

Dynamic Nearest Neighbor Search

```
sites \(P\) in \(\mathbb{R}^{2}+\)
distance functions \(\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}\) for all \(p \in P\)
```


Euclidean

Dynamic Nearest Neighbor Search

```
sites \(P\) in \(\mathbb{R}^{2}+\)
distance functions \(\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}\) for all \(p \in P\)
```


Euclidean

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for all $p \in P$

Euclidean

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for all $p \in P$

Euclidean

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for all $p \in P$

Euclidean

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for all $p \in P$

Euclidean

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for all $p \in P$

Euclidean

	updates	queries
[AM95]	n^{ε}	$\log n$
[Cha06]	$\log ^{6} n$	$\log ^{2} n$

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for all $p \in P$

Euclidean

gen. metric
(e.g., add. weighted or any ℓ_{p}-norm)

	updates	queries
[AM95]	n^{ε}	$\log n$
[Cha06]	$\log ^{6} n$	$\log ^{2} n$

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for all $p \in P$

Euclidean

gen. metric
(e.g., add. weighted or any ℓ_{p}-norm)

	updates	queries
[AM95]	n^{ε}	$\log n$
[Cha06]	$\log ^{6} n$	$\log ^{2} n$

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for all $p \in P$

Euclidean

gen. metric
(e.g., add. weighted or any ℓ_{p}-norm)

	updates	queries
[AES99]	n^{ε}	$\log n$

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ for all $p \in P$

Euclidean

gen. metric
(e.g., add. weighted or any ℓ_{p}-norm)

	updates	queries
[AES99]	n^{ε}	$\log n$
Now:	$\operatorname{polylog}(n)$	$\log ^{2} n$

Applications

Single source shortest path in unit disk graphs Old Bound: $n^{1+\varepsilon}$ [CJ15] New Bound: n polylog (n) exp.

Applications

Single source shortest path in unit disk graphs Old Bound: $n^{1+\varepsilon}$ [CJ15] New Bound: n polylog (n) exp.

Minimum Euclidean planar bichromatic matching Old Bound: $n^{2+\varepsilon}$ [AES99] New Bound: n^{2} polylog (n) exp.

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Euclidean

gen. metric

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Euclidean

gen. metric

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Euclidean

gen. metric

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\left.\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}\right\}$
surfaces S in \mathbb{R}^{3}

Euclidean

gen. metric

Dynamic Nearest Neighbor Search

sites P in $\mathbb{R}^{2}+$
distance functions $\left.\delta_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}\right\}$
surfaces S in \mathbb{R}^{3}

Euclidean

gen. metric

Overview

Overview

Vertical k-shallow Cuttings for Surfaces S

Chan's Dynamic Lower Envelopes for Planes in \mathbb{R}^{3}
vertical k-shallow cuttings for S with

- size $O((n / k)$ polylog $n)$
- in time $O(n$ polylog $(n))$

dynamic lower envelopes for S with
- update time $O(\operatorname{polylog}(n))$
- query time $O\left(\log ^{2} n\right)$

Envelopes for
Surfaces S in \mathbb{R}^{3}

Dynamic Nearest Neigbhors in \mathbb{R}^{2}

Vertical k-shallow cuttings

Vertical k-shallow cuttings

k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces

Vertical k-shallow cuttings

k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces
≤ 3-level

Vertical k-shallow cuttings

k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces

Vertical k-shallow cuttings

vertical k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces
obtained from an x - y-monotone terrain

Vertical k-shallow cuttings

vertical k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces
obtained from an x - y-monotone terrain
≤ 3-level

Vertical k-shallow cuttings

vertical k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces
obtained from an $x-y$-monotone terrain

Vertical k-shallow cuttings

vertical k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces
obtained from an x - y-monotone terrain
$3 D$

Vertical k-shallow cuttings

vertical k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces
obtained from an x - y-monotone terrain
projection on x-y-plane

Vertical k-shallow cuttings

vertical k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces
obtained from an x - y-monotone terrain
projection on x-y-plane

Vertical k-shallow cuttings

vertical k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces
obtained from an x - y-monotone terrain
projection on x-y-plane

Vertical k-shallow cuttings

vertical k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces
obtained from an $x-y$-monotone terrain
projection on x-y-plane

Vertical k-shallow cuttings

vertical k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces
obtained from an x - y-monotone terrain

Vertical k-shallow cuttings

vertical k-shallow cutting: covering of $\leq k$-level with "few" cells s.t. each cell intersects $O(k)$ surfaces
obtained from an $x-y$-monotone terrain

Vertical k-shallow cuttings

Theorem: The $t=O(\log n)$-level of a sample of size $O((n / k) \log n)$ yields a level approximation with expected complextity $O\left((n / k) \log ^{2} n\right)$

Overview

Overview

Dynamic Lower Envelopes for Surfaces S in \mathbb{R}^{3}

Dynamic Nearest Neigbhors in \mathbb{R}^{2}

Randomized Incremental Construction

Strategy: - take rand. perm. $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}$

- perform RIC for $t=O(\log n)$ level of surfaces S

Randomized Incremental Construction

Strategy:

- take rand. perm. $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}$
- perform RIC for $t=O(\log n)$ level of surfaces S
- stop after $O((n / k) \log n)$ steps

Randomized Incremental Construction

Strategy:

- take rand. perm. $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}$
- perform RIC for $t=O(\log n)$ level of surfaces S
- stop after $O((n / k) \log n)$ steps

Randomized Incremental Construction

Strategy:

- take rand. perm. $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}$
- perform RIC for $t=O(\log n)$ level of surfaces S
- stop after $O((n / k) \log n)$ steps

Randomized Incremental Construction

Strategy: - take rand. perm. $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}$

- perform RIC for $t=O(\log n)$ level of surfaces S
- stop after $O((n / k) \log n)$ steps

Randomized Incremental Construction

Strategy:

- take rand. perm. $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}$
- perform RIC for $t=O(\log n)$ level of surfaces S
- stop after $O((n / k) \log n)$ steps

Randomized Incremental Construction

Strategy:

- take rand. perm. $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}$
- perform RIC for $t=O(\log n)$ level of surfaces S
- stop after $O((n / k) \log n)$ steps

Randomized Incremental Construction

Strategy:

- take rand. perm. $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}$
- perform RIC for $t=O(\log n)$ level of surfaces S
- stop after $O((n / k) \log n)$ steps

Randomized Incremental Construction

Strategy:

- take rand. perm. $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}$
- perform RIC for $t=O(\log n)$ level of surfaces S
- stop after $O((n / k) \log n)$ steps

Randomized Incremental Construction

Strategy:

- take rand. perm. $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}$
- perform RIC for $t=O(\log n)$ level of surfaces S
- stop after $O((n / k) \log n)$ steps

Randomized Incremental Construction

Strategy:

- take rand. perm. $s_{1}, s_{2}, s_{3}, s_{4}, \ldots, s_{n}$
- perform RIC for $t=O(\log n)$ level of surfaces S
- stop after $O((n / k) \log n)$ steps

Randomized Incremental Construction

Theorem: The vertical decomposition of the $\leq t$ level of $\mathcal{A}(S)$ has complexity $O\left(n t \lambda_{s+2}(t)\right)$.

Randomized Incremental Construction

Theorem: Constructing the $\leq t$-level of $\mathcal{A}(S)$ takes $O\left(n t^{2}\right.$ polylog $\left.(n)\right)$ expected time.

Overview

Chan's Dynamic Lower Envelopes for Planes in \mathbb{R}^{3}

Dynamic Lower Envelopes for Surfaces S in \mathbb{R}^{3}

Dynamic Nearest Neigbhors in \mathbb{R}^{2}

Overview

Chan's Dynamic Lower Envelopes for Planes in \mathbb{R}^{3}

1. RIC for $t=O(\log n)$ level for $O((n / k) \log n)$ steps
2. Level approximation of size $O\left((n / k) \log ^{2} n\right)$

Dynamic Lower Envelopes for
Surfaces S in \mathbb{R}^{3}

Dynamic Nearest Neigbhors in \mathbb{R}^{2}

Overview

Chan's Dynamic Lower Envelopes for Planes in \mathbb{R}^{3}

Dynamic Lower Envelopes for
Surfaces S in \mathbb{R}^{3}

Dynamic Nearest Neigbhors in \mathbb{R}^{2}

Overview

RIC for t-level in arrangement $\mathcal{A}(S) \xrightarrow{1}$

Vertical k-shallow
Cuttings for Surfaces S
level approx. of k-level in arrangement $\mathcal{A}(S)$

1. RIC for $t=O(\log n)$ level for $O((n / k) \log n)$ steps
2. Level approximation of size $O\left((n / k) \log ^{2} n\right)$
3. Vertical k-shallow cutting of size
$O\left((n / k) \log ^{2} n\right)$ im time $O\left(n \log ^{5} n\right)$
4. Dynamic Lower Evenlopes with

- insertions $O\left(\log ^{7} n\right)$ (am. exp.)
- deletions: $O\left(\log ^{11} n\right)$ (am. exp.)
- queries: $O\left(\log ^{2} n\right)$ (w.c.)

Chan's Dynamic Lower Envelopes for Planes in \mathbb{R}^{3}

Dynamic Lower
Envelopes for
Surfaces S in \mathbb{R}^{3}

Dynamic Nearest
Neigbhors in \mathbb{R}^{2}

