
The Surprising Dynamics of a Simple Year 2000 Bug

Lutz Prechelt (prechelt@ira.uka.de)
Fakult�at f�ur Informatik, Universit�at Karlsruhe

D-76128 Karlsruhe, Germany
http://wwwipd.ira.uka.de/~prechelt/

Abstract: These are the reactions (and an analysis of their
reasons) of a very simple program containing a rather sim-
ple form of century-dependent code. These reactions are ex-
tremely surprising and emerge from an interesting daisy-chain
of e�ects.

Note: In this text, dates will be written in ISO standard
notation, e.g. September 21st, 1998 would be 1998-09-21.

1 The bug

The program in question, a short Perl script, contains the
following unsuitable statement:
sprintf ("19%d-%02d-%02d", $year, $month+1, $day);

The correct statement would have been as follows:
sprintf ("%d-%02d-%02d", $year+1900, $month+1, $day);

The program essentially generates a calendar for a three-
month period given as an argument. It relies on the oper-
ating system's calendar functionality for computing the day
of week and the number of days in each month. The pro-
gram works by repeatedly converting internal time() inte-
ger values into a date stamp text and advancing the time()

value by 86400, the number of seconds in one day. The con-
version is performed by the system procedure localtime(),
which returns the individual date �elds (year, month, day,

weekday), plus the formatting statement given above. The
loop stops when the generated time stamp indicates a month
after the requested three-month interval.

The unsuitable statement given above was in fact marked
as \needs to be changed in the year 2000" and had been
written based on the (incorrect) assumption that the year

value returned by the operating system would always be in
the range 0 to 99. In fact, the year value is intended to be
\years since 1900". (For all who wonder: I am the author of
the script.)

2 The e�ects

Surprise 1: It happened in 1998. In contrast to most
expectations, the bug became visible much earlier than Jan-
uary 2000. In August 1998 I needed the calendar for 1999

and called the script for all four quarters of 1999. The script
failed to process the end of 1999 correctly.

Surprise 2: The result was an in�nite loop. I had never
thought of what the actual e�ect of the bug would be and was
surprised to learn that the e�ect was to keep the script from
terminating | as a result it wrote a �le of 34 Megabytes
before I �nally stopped it.

Surprise 3: The di�erent semantics of the \>" oper-

ator for strings versus numbers is relevant. So why
did the script not stop? After generating the date stamp for
1999-12-31, the script generated 19100-01-01. This should
have stopped the script as obviously this date is beyond the
requested three month range. However, the loop condition
was based on a string comparison. Given the intended for-
matting this should be equivalent to the corresponding arith-
metic comparison of year, then month, then day. The stop
date had been computed to be 1999-12-31 (last month of the
period and largest possible day number), but
"19100-01-01" > "1999-12-31"

does not hold! (In fact, the actual operator in Perl is called
\gt" (\greater than") for Strings, not \>", which is valid for
numbers only.)

Surprise 4: The script even hit the Year 2038 Bug.

The internal Unix clock time() is expressed in terms of
the number of seconds since midnight 1970-01-01 (called the
\epoch"). When using 32-bit integers, this clock overows
on 2038-01-19 at 3:14am. Hence, the script generated date
stamps up to 19138-01-19 and then made the underlying in-
ternal clock integer value overow.

Surprise 5: The script jumped back 1847 years. At the
point of overow, adding 86400 brings the two's complement
integer value into the negative range. The resulting date is as
far before the epoch as 2038-01-19 is after the epoch: 1901-
12-14. Unfortunately, the date stamp formatting statement
does not provide a leading zero, hence the generated date at
that point is 191-12-14.

Surprise 6: . . . and then forward 1711 years. From 191-
12-14 the script ran nicely through the years until 199-12-31.
At that point it jumped forward to 1910-01-01. From there,
everything went \normal" until 1969-12-31.

Surprise 7: A �xed point is reached | because of a

language feature. One should expect that the internal clock

integer values would change back into the positive range now,
calendars through the year 2038 be produced again, and the
whole thing starting over at 1901. But this is not what hap-
pened. Instead the script began generating date stamps for
only 1970-01-01 over and over. The reason is the integer han-
dling of Perl: it has none. Instead, all arithmetic variables are
in fact implemented as double (64-bit oating point). When
calling an operating system procedure which takes a 32-bit
integer argument, Perl converts the double value into int,
ensuring that no overow occurs. Concretely: At 1969-12-31,
the Perl variable holds a value just under 232 and all further
additions of another 86400 let Perl convert the result into the
maximum 32-bit integer value, namely 232 � 1. The internal
clock time value and hence the generated date stamp do not
change any further.

Surprise 8: the non-distinction of int and unsigned

int is relevant. But, hey, if this is so, why did the script
jump back to 1901 in the �rst place? Because our Perl 5.003
treats the target integer value as an unsigned value, but the
Unix library call interprets it as signed.

Summary: The following is the list of the years, for which
the script generated (complete or partial) calendars as de-
scribed above. Note that the calendars printed for the years
19100{19138 and 191-199 have incorrect weekdays, as the year
printed is not the one used for weekday computation: 1999
19100 19101 19102 19103 19104 19105 19106 19107 19108
19109 19110 19111 19112 19113 19114 19115 19116 19117
19118 19119 19120 19121 19122 19123 19124 19125 19126
19127 19128 19129 19130 19131 19132 19133 19134 19135
19136 19137 19138 191 192 193 194 195 196 197 198 199 1910
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
1966 1967 1968 1969 1970 1970 1970 1970 1970 1970 1970
1970 1970 1970 1970 1970 1970 1970 . . .

Epilogue: Is the in�nite loop really in�nite? One might
ask: Wouldn't (in principle) the oating point value in the
Perl variable overow at some point, hence making the script
leave its apparent �xed point? The answer is no. Once the
oating point value becomes su�ciently large, the addition of
86400 will not change it at all. This happens long before the
oating point overow.

3 Conclusion

We don't have the slightest idea what will happen in the next
few years.

