
Market Forces and End-User Programming
for Mission-Critical Systems

Lutz Prechelt
Institut für Informatik, Freie Universität Berlin

Takustr. 9
14195 Berlin, Germany

+49 30 838-75115

prechelt@inf.fu-berlin.de

Daniel J. Hutzel
abaXX Technology AG

Forststraße 7
70174 Stuttgart

+49 711 61416-0

daniel.hutzel@abaxx.com

ABSTRACT

The abaXX Workflow Engine (WFE) is a J2EE COTS software
component, part of a larger suite for building web-based systems.
Although these systems are usually mission-critical (the custom-
ers often being financial institutions), a visual tool that could be
used for end-user programming, called the Process Modeler,
proved important for marketing the WFE and the component suite
in general. The promise of end-user programming (EUP), how-
ever, never materialized. This article sketches the evolution of the
WFE. It de-scribes why the EUP capabilities were required, why
they were never really used in practice, and how to reconcile
these two facts.

Categories and Subject Descriptors
D.1.7 [Visual Programming]
D.2.9 [Management]: Software Quality Assurance
J.1 [Administrative Data Processing]: Financial
K.1 [The Computer Industry]: Markets
K.6.4 [System Management]: Quality Assurance

General Terms
Design, Economics.

Keywords
Workflow engine, workflow modeler, quality assurance, market-
ing requirements.

1. INTRODUCTION
abaXX.components is a suite of COTS (commercial off-the-shelf)
software components for building high-end mission-critical e-
business and portal solutions (often in the financial industry)
based on Java™ 2 Platform Enterprise Edition (J2EE™) compo-
nent and web technology. Among these components is a Work-
flow Engine (WFE) component [1], introduced for providing
model-driven, code-free development which may be carried out
by domain experts without technical staff. This report describes

the evolution of the WFE component using qualitative, anecdotal
evidence.
After introducing some terminology (Section 2), we will discuss
four subsequent versions of the WFE (Sections 3, 4, 5, 6). The
description will show

- why visual end-user programming (EUP) capabilities (a
Process Modeler) were added to the WFE in version 2
(namely to be able to explain to the non-technical domain
experts the advantages of having a WFE when trying to sell
the components) ,

- why EUP has never actually happened (namely because fi-
nancial institutions' quality assurance would not allow it),

- why this will probably not change (namely because Process
Definitions involve either too much low-level technical de-
tail or are too complex to be reliably grasped by one person
alone), and

- that in this context the appropriate goal is probably not
EUP, but rather end-user understanding, which may involve
similar means.

For each WFE version, we will first consider the requirements
from a marketing point of view, then discuss technical aspects,
and finally describe the effects and consequences the version had.

2. WHAT IS A WORKFLOW?
Workflow is a buzzword that means very different things to dif-
ferent people. In this article, we are concerned with automated
workflows only and adopt the following terminology (roughly
along the lines of [9]):

- A workflow is the automation of a business process, in
whole or part, according to a process definition.

- A process execution is the result of executing a process
definition with specific parameters.

- A workflow engine (WFE) is what executes the process
definition.

- Process definitions consist of activities connected into a
graph. Control flow is described by the edges; data flow is
realized via reading/writing shared variables.

- Activities are distinct processing steps, implemented as Java
classes (custom or from a library).

- Process definitions can be structured by introducing sub-
processes (much like subroutines).

We discriminate three kinds of processes, with increasing granu-
larity and duration:

- Micro Flows (running milliseconds),
- Page Flows (running a few minutes), and

- Business Processes (running hours to weeks)
These will be explained below.

3. WFE VERSION 1 (MICRO FLOW)
Marketing requirements: Flexibility is a key issue for enterprise
applications, as their requirements evolve continually. Modifica-
tions often involve changes to the control logic, which almost
always require modifying the source code, even when using flexi-
bility-enhancing design patterns [4]. A requirement is thus to
provide a WFE that allows for introducing changes to control
logic and other program aspects without touching the source code.
Changes should even be possible at runtime, as enterprise systems
are often required to run 24/7. Additional requirement: Provide a
mechanism by which customers could flexibly adapt procedures
provided by us (or other vendors who built on top of our compo-
nents) without source code access.

Technical requirements and design: As development resources
are limited, initially focus on Micro Flows: very lightweight,
short-running processes with life spans measured in milliseconds,
starting and terminating within the same transaction (if any). We
started from the reference model published by the WfMC [10],
but used only the most fundamental notions to form a small-
footprint meta model: process definitions are composed of activi-
ties, transitional control flow, and data flow through shared vari-
ables. The implementation of any Activity is provided by a Java
class.

WFE 1 had no built-in support for user interaction or multiple
participants, but we felt this component would quite well fulfill
the most important requirement: providing flexibility.

Consequences: Marketing-wise, this solution was a partial suc-
cess. It was used rather successfully by one of our customers, F,
who was building a software product to be bought by banks. It
implements banking services to be used via mobile devices and
contains over 400 different process definitions. Using a WFE is
crucial for this product: The software needs to be extensively
modifiable by domain experts at customer banks, as most banks
have a lot of unique requirements. However, F would not want to
give its customers access to the product's source code. Using a
WFE and providing source access to the process definitions only
is a good and elegant solution.
However, most of our customers were building custom solutions
rather than products. It turned out that most of them eventually
tended not to use the WFE at all (a few had bought it, though).
They felt the effort of wrapping their methods as activities and
producing the process definition never paid off.

4. WFE VERSION 2 (MODELER)
Marketing requirements: For the second version, we chose to
believe that a main drawback of our WFE was the effort needed
to produce the process definitions textually in XML. We decided
to build a graphical editor for process definitions, called the Proc-

Figure 1: The Process Modeler (as of WFE 4)

ess Modeler, though not everybody believed this would be the
right choice.
Our decision was mainly driven by market forces. We needed to
sell our components (which are typically sold as a suite and
bought in the context of specific projects) not only to technical
people, but also to domain experts, who are almost without excep-
tion non-programmers. To them, the idea of the WFE 1 had been
extremely abstract and it had been hard to convince them that it
was worthwhile.
We believed the Modeler would change that: It made program
designs and modifications visual, would give the domain experts a
means to talk about the system to the technical people at eye-
level, and would hence increase the domain experts' technical
confidence and be a great selling proposition.
We also intended to sell the Modeler as an end-user programming
tool: Changes to process definitions that relied only on previously
existing activities could be performed by domain specialists
alone, much like editors change a web site through a content
management system.

Technical requirements and design: The Process Modeler was
implemented as a stand-alone program, a Swing application. It
allowed to graphically design process definitions in familiar activ-
ity-flow diagrams by selecting pre-defined activities from a gal-
lery, dropping them as nodes on the diagram and wiring them into
a control flow by drawing edges from declared exits of an activity
to successor activities.
The existing base of the WFE (the process definition language,
the framework, and the runtime system) hardly changed, except
that we added meta information for Activity implementations
(BeanInfo).

Consequences: Marketing-wise, WFE 2 was a success. The Mod-
eler was indeed instrumental in convincing the domain experts of
the usefulness of a WFE which so became an important selling
point for our component suite.
Technically, however, it turned out that the Modeler hardly added
to the practical value of the WFE:

- From the programmers' point of view: Although the usabil-
ity of the Modeler was quite acceptable, most programmers
found it quicker to write the XML process definitions with
a text editor.

- From the domain experts' point of view: Whatever solution
they were building, with the processes being Micro Flows,
most of what they did still tended to be rather internal to the
software and hence still quite abstract. The gains from hav-
ing a visual representation were relevant in only few cases.

Even the aforementioned customer F decided not to use our Proc-
ess Modeler, although in principle such a tool was obviously an
important contribution to the value of their product. Rather, they
decided – despite the rather large effort involved – to build a simi-
lar tool themselves, because they required massive customizabil-
ity, which our Modeler did not provide.
Overall, it turned out our original assumptions had been mostly
wrong; the actual usage conditions often crippled the usefulness
of having a Micro Flow WFE:

- Dynamic behavior changes at runtime were often as unac-
ceptable as was end-user programming: The quality assur-
ance processes of many of our customers (many of whom

are financial institutions) demanded a full-fledged IT pro-
ject even for changes where modifying only process defini-
tions could have done the job.

- Many changes were not confined to the process definition:
Much of the time, the intended change would require intro-
ducing a new Activity or modifying an existing one.

- The vast majority of code in custom solutions goes into
web user interfaces. Consequently, modifications in re-
sponse to evolving requirements would quite frequently af-
fect user interface logic and the flow of web pages, which
was not covered by the WFE in versions 1 and 2 at all.

A WFE that supported only Micro Flows was clearly not as useful
as we had hoped.

5. WFE VERSION 3 (PAGEFLOW)
Marketing requirements: At this point, however, we recognized
that our WFE would become very useful if it supported the type
of process we call Page Flow:
Page Flows describe user interactions spanning several dialog
steps of the same user within a web application. They usually
have a medium duration (minutes). Page Flows repeatedly do the
following: execute some application logic, then display a page,
then wait for the user to send the next request. Page Flows cen-
tralize the control flow of a web application, which otherwise
tends to be widely scattered over many files and rather hard to
understand and modify. We decided to extend the WFE to cover
Page Flows.

Technical requirements and design: The Modeler was enhanced
by a Page Gallery that displays the pages available in a web ap-
plication. Dropping such a page to a process diagram adds a page
activity to the process definition with control flow exits reflecting
the page’s declared web events.
Like in version 2, the required changes to the WFE were purely
incremental.
First, a generic Page Activity was introduced, instances of which
represent web pages within a process definition. Its implementa-
tion displays the assigned page and suspends the process. Second,
the run-time system's Page Flow Interceptor plugs into the web
framework [2], [6], [8], intercepts an incoming request (if it refers
to a Page Flow process instance), maps it to the corresponding
exit of a page activity, and resumes the process.

Consequences: By and large, this third version of the WFE was a
big success, both technically and marketing-wise. Most of the
expected benefits were realized:

- While defining a dialog sequence, the visualization pro-
vided by the Process Modeler much simplified the commu-
nication both among domain experts as well as between
domain experts and programmers.

- This was true not just for the initial implementation of a
dialog sequence, but also during incremental improvement
cycles later on.

- At the same time, the centralization of control flow aided
and accelerated frequent changes during the development
process, which made rapid prototyping much more realistic.

- Understanding an existing implementation became much
easier for the programmers: Normally in a web application,
control flow and data flow are scattered horribly across
dozens of files (JSP pages and controller Java classes). In

contrast, a Page Flow definition now provided a nice, co-
herent "big picture" while suppressing the details.

In terms of end-user programming, the addition of Page Flows
allowed business experts to quickly change the course of user
interactions in certain cases. Overall, however, the situation did
not change much compared to that we found for WFE 2:

- Modifying (let alone creating) a Page Flow still usually re-
quired too much technical background knowledge (about
the behavior of the Activities involved) to be possible for a
pure domain expert

- and the prescribed quality assurance processes would not
have allowed it anyways.

Nevertheless, our customers now started using the WFE heavily
and not before long the obvious and unavoidable thing happened:
They wanted to go beyond single-participant page flows towards
long-running, multi-participant business process automation.

6. WFE VERSION 4 (BUSINESS PROCESS)
Marketing requirements: Thus, the next goal clearly had to be
supporting the next level of processes, too: Business Processes.
Business Processes are workflows with a long duration (hours to
weeks) and multiple participating users. Most of the time they
pause with their state information persisted, waiting for an exter-
nal event – typically a user re-activating the process by triggering
its next step after selecting it as a task from a work list, but often
also technical kinds of trigger stemming from other software sys-
tems. This requires functionality for modeling participant roles
and support for parallelism.

Technical requirements and design: We added that support
basically by introducing new generic activities. This was mainly
the Work Item Activity which represents a transition from one
participant to another (during which the process is sus-
pended/passivated) as well as Split and Join Activities which
allow for parallel control flow paths.
In addition, we provided pre-fabricated user interface compo-
nents, such as the Worklist Portlet which displays a user’s list of
pending work items and allows him/her to pick an item for further
processing.
On the Modeler side, we introduced a Participants Gallery, which
reflects organizational roles in a hierarchy. An open XML inter-
face allows customers to put their own organizational model into
this gallery. An entry from the Participants Gallery can be
dropped to a process diagram and associated with a Work Item
Activity, with the effect that the work item created at runtime will
be assigned to all users who have the respective organizational
role.
Consequences: At the time of writing, version 4 of the WFE has
only just appeared on the market, so we do not yet have much
actual experience with its consequences. It is obvious, however,
that the extended functionality does not make end-user program-
ming any easier:

- the previous stumbling blocks are still relevant,
- the complexity of concurrent, multiple-participant proc-

esses is much higher (deadlock, escalation, substitution,
etc).

7. LESSONS LEARNED & CONCLUSION
Past and present: As we introduced the Process Modeler, we did
not make a conscious decision whether it would primarily be tar-
geted to end-users or primarily to software engineers. We are still
not sure whether the EUP claims1 we made helped more than they
hampered in convincing potential customers to buy our compo-
nent suite. But we have meanwhile understood this much: as un-
realistic as actual end-user programming by means of the Process
Modeler may be in our setting, the Modeler's contribution towards
both convincing (before buy) and empowering (after buy) the
domain experts is substantial and relevant – the Modeler is not
just some arbitrary non-end-user software engineering tool.

Future: Further development of the WFE will likely be in the
field of web-service-based process collaboration and orchestra-
tion, maybe using a standardized notation such as the BPEL
(Business Process Execution Language, [5]) or BPML (Business
Process Modeling Language, [3]), plus the underlying somewhat
extended paradigm [7]. This will further increase the complexity
faced by people creating Process Definitions and will make end-
user programming still less likely to occur.
This is probably a trend valid for all potential mission-critical
EUP in enterprise applications: The complexity of the require-
ments handled by these applications increases in such a way that
end-user programming becomes increasingly unlikely because
multi-person teams (which can then include a software engineer)
are needed anyways – independent of the actual tools or tech-
niques used.

Conclusion: Sometimes end-user programming may be one half
the right idea and one half a red herring: end-user understanding
may be the goal to go for.

8. REFERENCES
[1] abaXX Technology AG, abaXX.components Workflow En-

gine User Guide V4.0, Stuttgart, 2004.
[2] abaXX Technology AG, abaXX.components WebApp

Framework User Guide V4.0, Stuttgart, 2004.
[3] Business Process Management Initiative, Business Process

Modeling Language BPML V1.0 Specification,
www.bpmi.org, 2002.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley, 1995.

[5] OASIS, Business Process Execution Language for Web Ser-
vices Version 1.1, www.oasis-open.org, 2003.

[6] H.M.L. Ship, Tapestry in Action, Manning Publications,
Greenwich, CT, 2004.

[7] H. Smith, P. Fingar, Workflow is just a Pi process,
BPTrends, www.bptrends.com, January 2004.

[8] J. Turner, K. Bedell, Struts Kick Start, SAMS, 2002.
[9] Workflow Management Coalition, Terminology and Glos-

sary, WFMC TC 1011 v.3, www.wfmc.org, Feb 1999.
[10] Workflow Management Coalition, The Workflow Reference

Model, WFMC TC 1003 v.1.1, www.wfmc.org, Jan 1995.

1 Better: claimlets, as they were never really loud.

