
Design Recovery by Automated Search for

Structural Design Patterns in Object-Oriented Software

Christian Kr�amer (ckraemer@ctec-sw.com)
Computec GmbH

Software Engineering Dept.
D-76133 Karlsruhe, Germany �

Lutz Prechelt (prechelt@ira.uka.de)
Fakult�at f�ur Informatik
Universit�at Karlsruhe

D-76128 Karlsruhe, Germany
+49/721/608-4068, Fax: +49/721/694092

Abstract

The object-oriented design community has recently
begun to collect so-called design patterns: cliches
plus hints to their recommended use in software con-
struction. The structural design patterns Adapter,
Bridge, Composite, Decorator, and Proxy represent
packaged problem/context/solution/properties descrip-
tions to common problems in object-oriented design.
Localizing instances of these patterns in existing soft-
ware produced without explicit use of patterns can im-
prove the maintainability of software. In our approach,
called the Pat system, design information is extracted
directly from C++ header �les and stored in a reposito-
ry. The patterns are expressed as Prolog rules and
the design information is translated into facts. A single
Prolog query is then used to search for all patterns.
We examined four applications, including the popular
class libraries zApp and LEDA, with Pat. With some
restrictions all pattern instances are found; the preci-
sion is about 40 percent. Since manual �ltering of the
output is relatively easy, we consider Pat a useful tool
for discovering or recovering design information.

Keywords: design patterns, object-oriented, CASE,
Prolog, maintainability

1 Design patterns for understanding

The structural design patterns introduced by Gamma
et al. [4] are concepts to improve the understanding
of object-oriented designs. A design pattern packages
expert knowledge; it represents a solution to a common

�Appeared in Proc. Working Conf. on Reverse Engineering,

IEEE CS press, Monterey, November 1996.

design problem and can be reused frequently and easi-
ly. Each pattern is a microarchitecture on a higher ab-
straction level than classes. Design patterns are meant
to be design building blocks for better software con-
struction and designer communication. In a pattern-
based methodology a pattern not only consists of a
solution (a cliche) but of a description of the problem,
problem context, terminology, one or several solutions,
and solution properties and constraints.

In this work, we will use the term pattern to refer only
to (one of) the solution(s). Therefore, for our purpose,
a pattern is just a particular kind of design cliche [13].

It would be useful to �nd instances of such patterns in
designs were they were not used explicitly or where
their use is not documented. This could improve
the maintainability of software, because larger chunks
could be understood as a whole.

We present a tool, the Pat system, that searches for de-
sign pattern instances in existing software. We describe
in order the general approach taken, related work, the
CASE tool used, the Prolog representation for the
search, and a quantitative evaluation of the system.

As an example of a pattern, see the description of an
Adapter in the OMT diagram [12] of Figure 1. The
purpose of an Adapter is to provide an additional us-
age interface to an adapted class (called the adaptee),
so that the adapter class can adhere to the calling con-
ventions of a client but the interface of the adaptee
need not be changed. The Adapter pattern requires
that there are four classes Client, Target, Adapter, and
Adaptee. Adapter must be a subclass of Target and
must delegate Client calls to a method Request of the
Target class to a method Speci�cRequest (with di�er-
ent interface) of the Adaptee class. To be able to do
this, an Adapter instance needs an association (e.g. a
pointer) to an Adaptee instance.

1



Client Target

Request()

Adaptee

Speci�cRequest()

Adapter

Request() adaptee ! Speci�cRequest()

-

��TT

-

adaptee

Figure 1. OMT diagram of the design pattern Adapter

With respect to the Adapter pattern, the purpose of
the Pat system is to �nd triples of Target, Adapter,
and Adaptee that have the required Request and Speci-
�cRequest methods and the required association and
delegation. Of course, the classes and methods can
have arbitrary names. Any such constellation repre-
sents an instance of the Adapter pattern to be found
by Pat.

In this study, we limited the set of considered design
patterns to �ve structural object patterns in the sense
of Gamma et al., namely Adapter, Bridge, Composite,
Decorator, and Proxy. Additional structural patterns
could be used as well.

From a reverse engineering point of view, �nding in-
stances of these patterns yields the following informa-
tion: Adapter instances signal where classes are used in
multiple contexts, requiring di�erent interfaces. Bridge
instances show where the interface and the implemen-
tation of a module were encapsulated in separate class-
es, so that both can be changed independently. This
gives a hint to an area in the program where much
change or reuse was expected. Composite and Deco-
rator instances signal easily extensible areas of a pro-
gram. Proxy instances allow to use a surrogate of an
object instead of the object itself; they often hint to
points in the program were very large objects are han-
dled or objects that are expensive to create but may
never be used after creation.

2 Approach

The fundamental idea for the automated search in Pat
is to represent both patterns and designs in Prolog

and let the Prolog engine do the actual search. The
basic design information itself is extracted from source
code by the structural analysis mechanism of a com-
mercial object-oriented CASE tool. More concretely
we proceed as follows (see also Figure 2):

1. Each pattern is represented as a static OMT dia-
gram as seen in Figure 1 | much like in the book
by Gamma et al. These diagrams constitute the
repository P (for patterns); see Section 5.2.

2. A program P2prolog is used to convert P in-
to Prolog representation. The generated form
is one rule for each pattern, representing design
properties that are required but not su�cient to
diagnose the pattern; see Section 5.

3. The structural analysis mechanism of the ooCASE
tool is used to extract design information fromC++

header �les and represent it in the repository in
OMT form. The resulting part of the repository
is called D (for design).

4. Another program D2prolog converts D into Pro-
log representation; see Section 5.

5. A Prolog query Q detects all instances of de-
sign patterns from P in the examined design D.
Simple automatic postprocessing is used to remove
duplicates of design patterns that often occur in
the Prolog output. Manual postprocessing is re-
quired to remove false positives; see Section 7.

2



C++
source
code

structural
analysis D2prolog

PROLOG
rules
PROLOG
facts

PROLOG
query

pattern
instance
candidates

OMT
pattern
diagrams

P2prolog

Figure 2. Architecture of the Pat system

2.1 Limitations

One important limitation of the approach is that some
characteristics of design patterns require too much se-
mantic information about the behavior of methods to
be modeled by a CASE tool, let alone to be extract-
ed from source code automatically today. An example
of this is the design pattern Composite which requires
operations for adding and deleting elements and for it-
erating over all of these elements. For the same reason
it is also di�cult to �nd behavioral patterns instead of
structural ones.

3 Related work

Design patterns are a young �eld and until now, they
are mostly used for understanding and communicating
during the production of designs. Seven pattern prac-
titioners [1] agree that one of the largest bene�ts of
design patterns is their use as a means of communi-
cation and understanding. This observation suggests
that �nding patterns in existing designs should make
understanding these designs easier.

In contrast to much other work in reverse engineering,
Pat does not strive for detailed program understand-
ing [3, 11] or design recovery [2]. In those cases, a wide
gap has to be closed between the syntactic representa-
tion of the program (and maybe other artifacts) and
the understanding of semantics and pragmatics that
is to be gained. On the other hand, when searching
for structural design patterns, this gap is much small-
er for three reasons. First, the rich syntax of object-
oriented languages contains much information about
structural (architectural) features of design patterns.
We do not attempt to analyze software in non-oo lan-
guages. Second, the semantics of a structural design
pattern are closely coupled to its syntactic representa-
tion and therefore relatively easy to recognize (except
for the problem of false positives). Third, a small set

of possible pragmatic intentions is packaged in the de-
scription of a design pattern; see Section 1. Therefore,
structural design patterns allow to infer program prag-
matics from syntactic source code features with mod-
erately complex machine deduction and only a modest
amount of additional interpretation by the user. In
particular, design pattern search does not call for au-
tomatic concept assignment [3] and the output is useful
without a domain model.

Koenig [7] suggests the notion of antipatterns that cap-
ture bad or non-working designs that are frequently
\reused". Should structural antipatterns exist, our ap-
proach could be used as a design quality checker by
searching for antipattern instances.

4 The Paradigm Plus ooCASE tool

Paradigm Plus 2.01 [10] by Platinum (formerly Proto-
Soft) is an object-oriented CASE tool for all phases of
the software lifecycle. Several methods and notations
are supported, one of them OMT. Modeling informa-
tion is stored in an object repository and is accessed
by textual and graphical editors and an internal pro-
gramming language, which is a BASIC dialect with ex-
tensions.

The most interesting aspect of Paradigm Plus for our
purpose is structural analysis facility called \import"
that extracts information about classes directly from
C++ header �les. The extracted information relevant
for us is class names, attribute names, method names
and properties, inheritance relations, and association
and aggregation relations. In a class A, members of
the form B x or B x[n] or B x[] etc. are considered
aggregations; members of the form B *x or B &x etc.
are considered associations.

4.1 Limitations

Paradigm Plus cannot �nd associations or aggregations

3



that are implemented in any other way, such as with
tables or graph managers. Pat can thus only �nd pat-
tern instances whose aggregation or association rela-
tions are based on the direct means listed above. Thus,
in all subsequent discussion we will consider this set of
pattern instances only.

Unfortunately, other information that would also be
relevant for a precise search for pattern instances is not
at all extracted by the structural analysis of Paradigm
Plus. This missing information is the category of a
class (abstract or concrete; all classes are considered
concrete), the semantic kind of a method (construc-
tor, destructor, selector, iterator, or modi�er; no meth-
ods are considered iterators or modi�ers), complete
discrimination of aggregation and association (as de-
scribed above), call compatibility of parameter lists,
and delegation of method calls (this is not visible from
header �les).

Some of this information is usually di�cult to compute
| even impossible in the general case. This is true for
the semantic kind of methods, discrimination of aggre-
gation and association, and call delegation. Heuristic
methods could handle the most frequent cases, though.

5 Prolog representation

5.1 Source code

We represent the C++ header �les by Prolog facts.
As an example, the class declaration

class zPane:public zChildWin {

zDisplay* curDisp;

/* ... */

public:

virtual void show(int=SW_SHOWNORMAL);

/* ... */

};

would result in these Prolog facts:

class(concrete, zPane).

inheritance (zChildWin, zPane).

attribute (zPane, curDisp).

operation(virtual, selector, zPane, show,

public, "int,", "void").

The information that is not reliably available from
Paradigm Plus will have to be ignored (using Prolog
wildcard variables) in the pattern rules. For instance,
the above show is called a selector although it is a mod-
i�er. The encoding used for these facts is

class(Category, Name): There is a class Name of the
given Category (abstract or concrete).

attribute(Class, Name): There is a data member
Name in Class.

operation(Category, Kind, Class, Name,

Scope, Params, ReturnType): There is a method
Name of visibility Scope (public, protected, or
private) in Class. No reliable results for Category,
Kind, Params, and ReturnType will be available from
Paradigm Plus; therefore, these items should be ig-
nored later on.

aggregation(Class1, Multiplicity1, Class2,

Multiplicity2): There is an aggregation of Class2
in Class1, i.e., Class1 contains either one data mem-
ber (Multiplicity2 is exactlyone) of type Class2 or
an array of such members (Multiplicity2 is many).

association(Class1, Class2): There is a reference
to a Class2 instance in a Class1 instance.

inheritance(Class, Subclass): Subclass is a sub-
class of Class.

5.2 Patterns

The Prolog rule for each pattern gathers the facts re-
quired to diagnose a pattern instance. As an example,
see again the Adapter pattern in Figure 1. This OMT
object model is converted into the following Prolog
rule:
adapter(Target,Adapter,Adaptee):-

class(_,Target),

class(concrete,Adapter),

class(concrete,Adaptee),

operation(_,_,Target,Request,_,_,_),

operation(_,_,Adapter,Request,_,_,_),

operation(_,_,Adaptee,

SpecificRequest,_,_,_),

inheritance(Target,Adapter),

association(Adapter,Adaptee).

This rule describes necessary but not su�cient prop-
erties of classes to form an Adapter pattern instance.
Gamma's Adapter pattern demands that there exists
a delegation from the method Adapter::Request to
Adaptee::SpecificRequest. However, because the
structural analysis of Paradigm Plus cannot extract
delegations, the delegation must not be modeled in our
Prolog rule or else the rule could never be matched.
The client is not modeled because an Adapter is still
an Adapter if it occurs stand-alone without any actual
client, e.g. in a library. Besides the above-mentioned
structural properties that remain unchecked in Pat,
there are also further semantic and pragmatic aspects
in a pattern that cannot be detected reliably by auto-
mated tools. Similar restrictions apply for the Prolog
rules of the other design patterns.

4



The actual Prolog rules used in Pat have two ad-
ditions over the ones shown here. First, they con-
tain local cuts (getbacktrack/cutbacktrack pairs)
to restrict the rules to match one method per
operation clause only and ignore the rest. Second,
classes are checked for inequality with clauses like
Target <> Adapter etc. to avoid senseless matches.

Here are the Prolog representations of the other four
structural design patterns. You may want to skip the
rest of this section if you are not familiar with design
patterns.

A Bridge consists of four classes: abstraction, re�ned
abstraction, implementor, and concrete implementor.

bridge(Abstr,RefAbstr,Impl,ConcrImpl):-

class(_,Abstr),

class(concrete,RefAbstr),

class(_,Impl),

class(concrete,ConcImpl),

operation(_,_,Abstr,Op,_,_,_),

operation(_,_,Impl,OpImpl,_,_,_),

operation(_,_,ConcrImpl,OpImpl,_,_,_),

inheritance(Abstr,RefAbstr),

inheritance(Impl,ConcrImpl),

aggregation(Abstr,exactlyone,

Impl,exactlyone).

This rule does not model the delegation from
Abstr::Op to Impl::OpImpl.

AComposite consists of three classes: the component
superclass, a leaf subclass (usually there are several of
these), and the composite subclass.

composite(Cpnt,Leaf,Compos):-

class(_,Cpnt),

class(concrete,Leaf),

class(concrete,Compos),

operation(_,_,Cpnt,Op,_,_,_),

operation(_,_,Leaf,Op,_,_,_),

operation(_,_,Compos,Op,_,_,_),

operation(_,_,Cpnt,Add,_,_,_),

operation(_,_,Cpnt,Remove,_,_,_),

operation(_,_,Cpnt,GetCh,_,_,_),

operation(_,_,Compos,Add,_,_,_),

operation(_,_,Compos,Remove,_,_,_),

operation(_,_,Compos,GetCh,_,_,_),

inheritance(Cpnt,Leaf),

inheritance(Cpnt,Compos),

aggregation(Compos,exactlyone,Cpnt,many).

This rule ignores the realization of Compos::Op as a
loop of Op calls for all children and ignores the se-
mantics of Add, Remove and GetCh | all because no
such semantic information is available. If several of the
classes have many operations, the combinatorial explo-
sion in the operation clauses of this rule makes the

rule impractical. In such cases, we drop all operation
clauses from the rule.

A Decorator consists of four classes: the component
top class with a concrete component subclass and a
decorator subclass; the latter has one or several further
subclasses called concrete decorators.

decorator(Cpnt,ConcrCpnt,Deco,ConcrDeco):-

class(_,Cpnt),

class(concrete,ConcrCpnt),

class(_,Deco),

class(concrete,ConcrDeco),

operation(_,_,Cpnt,Op,_,_,_),

operation(_,_,ConcrCpnt,Op,_,_,_),

operation(_,_,Deco,Op,_,_,_),

operation(_,_,ConcrDeco,Op,_,_,_),

inheritance(Cpnt,ConcrCpnt),

inheritance(Cpnt,Deco),

inheritance(Deco,ConcrDeco),

aggregation(Deco,exactlyone,

Cpnt,exactlyone).

This rule ignores the delegations from Deco::Op to Op

of the decorator's aggregated component and the im-
plementation of ConcrDeco::Op as a call to Deco::Op

plus some added behavior.

A Proxy consists of three classes: a real subject class,
its proxy class and their common subject superclass.

proxy(Subj,RealSubj,Proxy):-

class(_,Subj),

class(concrete,RealSubj),

class(concrete,Proxy),

operation(_,_,Subj,Op,_,_,_),

operation(_,_,RealSubj,Op,_,_,_),

operation(_,_,Proxy,Op,_,_,_),

inheritance(Subj,RealSubj),

inheritance(Subj,Proxy),

association(Proxy,RealSubject).

This rule ignores the delegation from Proxy::Op to
RealSubj::Op.

6 Implementation details

The Pat system was developed with the Paradigm Plus
2.01 ooCASE tool [10] and the Visual Prolog 4.0 Beta
(Professional Version) compiler system [9].

The programs P2prolog and D2prolog are written in
the BASIC dialect provided by Paradigm Plus and are
executed directly by Paradigm Plus. Therefore they
have direct access to the repository. The Prolog rules
and facts generated by the programs are written into
text �les to be consulted by Visual Prolog .

5



These rules and facts �les are complemented by anoth-
er �le containing declarations and the generic query
that starts the search for the pattern instances. This
�le is compiled into executable code, the other two are
consulted at run time.

The executable Prolog program performs the search
and generates one output line per pattern instance
found. Each line has the form of a LaTeX macro call
such as for instance
\adapter{zchildwin}{zpane}{zdisplay}

These pattern instance candidate lists are then �ltered
for duplicates. A �le with suitable de�nitions for the
LaTeXmacros is used to convert the resulting instances
into graphical OMT form (Figure 1 is an example) to
provide a basis for a reverse-engineered design docu-
ment.

7 Evaluation

Three questions arise, given a design recovery system
such as Pat:

1. What fraction of all pattern instances is found?

2. What fraction of the output consists of false posi-
tives (spurious instances)?

3. How useful is the output for actual program un-
derstanding and maintenance tasks?

We cannot answer the third question at this time, as
it requires a rather costly empirical study.

The �rst two questions are answered in terms of the
information retrieval quality measures called precision
and recall [5]. Assume that Pat outputs C pattern
instance candidates after the automatic postprocess-
ing. Assume further that the design analyzed actu-
ally contains I true pattern instances and that F of
them are found by Pat. Then precision = F=C and
recall = F=I. Furthermore, we measured the execu-
tion time needed for the automatic search and the time
needed for human �ltering of the results to remove false
positives.

7.1 The benchmarks

Four di�erent sets of classes were examined: Network
Management Environment Browser (NME), Library of
E�cient Datatypes and Algorithms (LEDA, [8]), the
zApp class library (zApp, [6]), and Automatic Call Dis-
tribution (ACD). NME and ACD are telecommunica-
tion software developed at Computec, the other two
are widely used class libraries.

None of these four benchmarks included explicit design
information; all data was extracted from C++ header
�les as described above. Table 1 characterizes the size
of the benchmark applications as found by the struc-
tural analysis step and as obtained from the D2prolog
conversion.

7.2 Evaluation procedure and results

Each of the four resulting Prolog facts �les was used
in a separate pattern search run. The results are sum-
marized in Table 2. For each application the tables
gives for each design pattern the number of pattern in-
stances found by the search mechanism (\found") and
the number of these that were not spurious (\true").
Below that you �nd total recall and precision values
over all patterns and the runtime in seconds taken by
the Prolog program. As for the runtimes, the struc-
tural analysis and D2prolog steps take up to two hours,
i.e., much longer than the actual pattern search.

Perfect recall occurs although our pattern rules could
have missed some pattern instances because the struc-
tural analysis may mistake some aggregations (imple-
mented by pointers) for associations. However, we have
checked1 that in our four benchmarks none of these cas-
es would reveal another correct pattern instance. This
seems to be a result of good programming style. Recall
would have been below 100 percent had more aggrega-
tions been realized using pointers instead of arrays in
the benchmarks' classes.

Because our pattern rules do not represent su�cient
conditions for pattern instances, precision is not per-
fect. Some constructions will be detected incorrectly as
pattern instances because they lack required properties
that were not tested.

How does one decide what is such a false positive and
what is a true pattern instance? We took the following
approach: (1) In many cases false positives are obvi-
ous when the class and method names clearly indicate
unrelated classes. (2) In other cases correct pattern
instances are obvious via class and method names in-
dicating the semantics required by the pattern. In the
remaining cases, the pattern instance has to be checked
by manually consulting (3) available documentation or
(4) source code. It turns out that plausibility checks
of pattern instance candidates can often be done quite

1The check was made by re-running all of the experiments

with an additional rule that allowed to interpret any association

as an aggregation. This led to more than twice as much output,

none of which contained any more correct pattern instances than

the output obtained without the rule.

6



classes attrib. operat. aggr. assoc. inherit. kByte facts

NME 9 34 131 0 10 6 13
LEDA 150 501 4084 91 151 67 243
zApp 240 1176 3590 143 155 145 205
ACD 343 1506 2879 457 461 191 204

Table 1. Number of classes, attributes, operations, aggregations, associations, and inheritances found by Paradigm
Plus in each of the applications and size of the generated Prolog facts �le in kByte.

NME LEDA zApp ACD
found true found true found true found true

Adapter 2 1 1 0 20 �12 150 �69
Bridge 0 0 59 �10 7 0 0 0
Composite 0 0 6 0 0 0 0 0
Decorator 0 0 3 0 0 0 0 0
Proxy 0 0 1 0 1 0 17 0
Recall 100% 100% 100% 100%
Precision 50% �14% �43% �41%
Prec. deleg. 100% �53% 100% 100%
Runtime (sec) 1 2 3 36

Table 2. Number of pattern instances found by Pat and approximate number of true instances, resulting recall,

precision, and Prolog runtimes measured on a PCI-Bus PC with Pentium P133 and 32 MByte RAM running

under Microsoft Windows 95.

rapidly using only methods (1) through (3). We ap-
plied methods (1) and (2) for all projects and also
method (3) for LEDA and zApp. We did not check
source code at all.

Our evaluation approach implies that the precision val-
ues in Table 2 are approximations. The line labeled
`precision' in Table 2 gives the precision values that re-
sult directly from dividing `true' by `found'. The line
labeled `prec. deleg.' shows precision values that would
result if Paradigm Plus were able to detect all simple
call delegations and our pattern rules contained checks
for them, making most of the false positives disappear
| all spurious Adapters and Bridges lack the correct
delegations. The following sections discuss additional
aspects of interest for each of the four benchmarks.

NME

The original designer of the software con�rmed that
Pat found one true and one spurious Adapter. The
spurious Adapter would have been rejected had dele-
gations been checked.

LEDA

We decided which of the pattern instances to consider
correct by consulting the LEDA manual. This work
took about one hour for a programmer without prior
knowledge of LEDA. 56 of the 59 Bridges occur because
each of the 8 classes circle, line, p dictionary,

point, polygon, real, segment, string (all sub-
classes of handle base) seems to form a Bridge
with each of the 7 classes circle rep, line rep,

point rep, polygon rep, rrep, segment rep, and
string rep (all subclasses of handle rep). If Pat
could check for the correct delegations, only the cor-
rect 7 of these 56 pairs should remain. The 6 false
Composites were found using a relaxed rule (without
operation clauses) as described in the modeling sec-
tion.

zApp

The evaluation of the output for zApp was also done
with the manual. This work took one hour. All of the
false positives could have been suppressed by checking
for correct delegations in the Adapter candidates.

7



ACD

ACD is a large project and created so much output that
we were unable to check correctness completely. In-
stead, we relied on common sense judgement from the
class names combined with another plausibility check:
In the case of the Adapters we assumed that exactly
those are correct where the name of Request is equal
to the name of SpecificRequest. In the case of prox-
ies we drew conclusions from the class names alone; no
Proxy seemed to be in ACD. Evaluating the solutions
for ACD in this manner took 30 minutes.

8 Conclusion

Automated search for instances of the �ve structural
design patterns Adapter, Bridge, Composite, Decora-
tor, and Proxy is feasible. The approach we propose,
the Pat system, builds on structural analysis capabili-
ties of a commercial ooCASE tool and the search capa-
bilities of Prolog, making the implementation simple
and e�cient.

Often all design pattern instances that are present are
recovered from the C++ source code (i.e., recall is 100
percent). In addition, the Pat output contains a num-
ber of false positives. In our four benchmark applica-
tions, detection precision is between 14 and 50 percent.
This precision is acceptable. It would be much higher
if Pat could also check for correct method call delega-
tions. This would require that the structural analysis
detects such delegations. Precision would then be be-
tween 53 and 100 percent. The remaining false posi-
tives, if any, can be sorted out with a modest amount
of manual work (typically a few minutes per pattern
instance).

We conclude that the Pat system is a fast and simple
way to recover design information from source code.

Automatic detection of design pattern instances is
probably a useful aid for maintenance purposes, for
quickly �nding places where extensions and changes
are most easily applied. How useful automatic pattern
�nding is should be the subject of further study.

Further work could also try to apply the approach pre-
sented here to a larger number of more detailed pat-
terns, probably using a staged recognition approach to
achieve high precision and recall. We should also ex-
plore how well a similar approach can be used to detect
behavioral patterns instead of structural ones.

References

[1] K. Beck, J.O. Coplien, R. Crocker, L. Dominick,
G. Meszaros, F. Paulisch, and J. Vlissides. In-
dustrial experience with design patterns. In 18th
Intl. Conf. on Software Engineering, pages 103{
114, Berlin, March 1996. IEEE CS press.

[2] Ted J. Biggersta�. Design recovery for mainte-
nance and reuse. IEEE Computer, 22(7):36{49,
July 1989.

[3] Ted J. Biggersta�, Bharat G. Mitbander, and Dal-
las E. Webster. Program understanding and the
concept assignment problem. Communications of
the ACM, 37(5):72{83, May 1994.

[4] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA, 1995.

[5] H.S. Heaps. Information Retrieval. Academic
Press, 1978.

[6] Inmark Development Corporation, Mountain
View, CA. zApp Programmer's Guide, 1994.

[7] Andrew Koenig. Patterns and antipatterns. Jour-
nal of Object Oriented Programming, 8(1):46{48,
March 1995.

[8] Stefan N�aher. LEDA User Manual Version 3.0.
Fachbereich Informatik, Universit�at des Saarlan-
des, Saarbr�ucken, Germany, 1992.

[9] Prolog Development Center, Br�ndby, Danmark.
Visual Prolog 4.0 (Professional Version), 1996.

[10] ProtoSoft Inc., Houston, TX. Paradigm Plus 2.01
Reference Manual, 1994.

[11] Charles Rich and Richard C. Waters. The Pro-
grammer's Apprentice. Frontier Series. acm press,
Addison-Wesley, New York, NY, Reading, MA,
1990.

[12] James Rumbaugh. Object-Oriented Modeling and
Design. Prentice-Hall, Englewood Cli�s, NJ, 1991.

[13] Peter G. Selfridge, Richard C. Waters, and El-
liot J. Chikofsky. Challenges to the �eld of reverse
engineering. In Proc. Working Conf. on Reverse
Engineering, 1993.

8


