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Abstract quired by the slowest versus the fastest programmer (from a set
of 12) each solving the same task. This number has since be-

How long do different software engineers take to solve the saffpdne quite famo.us and is being quoteq over and over [7]. The
gsent work validates and corrects this claim, using a broader

task? In 1967, Grant and Sackman published their now fam&l . .

number of 28:1 interpersonal performance differences, wh d more solid foundatlon, namely data from a larger nymber
is both incorrect and misleading. of programmers, more different task types, and experiments
This article presents the analysis of a larger dataset of sH?f’—lt are not as old.
ware engineering work time data taken from various controlled
experiments. It corrects the false 28:1 value, proposes mer
appropriate metrics, presents the results for the larger dataset,

and further analyzes the data for distribution shapes and effect . . . . . L
Y P 1Ltfahe next section will describe the historical motivation for

Article overview

S1zes. the present work, namely the Grant/Sackman experiment and
its weaknesses. Section 3 introduces the dataset used in the
. present study and discusses several caveats regarding the valid-
1 Introduction ity and interpretation of the results.

The results of the present study are discussed in Sections 4
All software development managers and most software engroygh 7. The main topic, interpersonal variability of work

neers are aware that large differences in the capabilities figrs in software engineering experiments, will be treated in
tween individual softw are engineers exist. A less talented 0§€cion 4. Variability statistics characterize one aspect of the
may take several times as long for solving the same task a5y time distribution by a single number. Section 5 will com-
very talented one — and will often still produce a less rellabl&emem these statistics by an assessment of the oséiae
harder-to-maintain program. From a management perspeciifghe distributions. An third aspect, the size of the difference
such differences are very important. First, it is insufficient g average performandgetweergroups (the so-called “effect
know the average performance of a set of software enginegfss) is discussed in Section 6. The comparative performance

because for instance the size of the task assigned to eachPiterent statistical tests is shortly discussed in Section 7.
needs to be compatible with his or her speed etc. Second, if

the performance of the individual staff members is unknowrinally, the main observations are summarized and conse-
knowing the size of the differences allows for assessing the rékences are derived in Section 8.

incurred by assigning tasks randomly. Third, since part of the

differences is due to different knowledge and training (rather

than being hard-wired into the individual), the size of the di ~ The 1967 Grant/Sackman experiment
ferences is useful information for judging the possible benefits

f itional traini f hi . . .
fom additional training or from coaching etc In 1967, Grant and Sackman published a controlled experiment

In 1967, Grant and Sackman published a controlled experimimtcomparing online and offline programming [9]. Six subjects
[9] in which they stated a ratio of 28:1 for the work time reeach debugged a program using an interactive session at a text
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terminal (“online”) and six others debugged the program us- Coding Debugging
ing batch operation with fixed two-hour turnaround time (“of- CAlge. CMaze DAlge. D Maze
fline”). The program, calledVaze had to compute the only from [9] 16 25 28 26
way through a 20-by-20-maze. Each program to be debugged SFp 12.6 12.5 14.2 12.5
had been designed and coded by the same person just before. SFas 7.0 8.0 5.8 4.2
All twelve subjects were experienced professional program-  SFso 3.7 7.2 3.3 2.4

mers. The groups were then switched and the exercise was re-

peated with a different program, callédgebra that computed Table 1: Various measures of variability for each of the four
the value of algebraic expressioins pairs of groups from the Grant/Sackman experiment. The raw

data are taken from [9]. Each entry in lines 2 to 4 represents the
In their article [9], Grant and Sackman state that “perhaps geup with the higher variability; sometimes “online”, sometimes
most important practical finding of this study, overshadowiﬁ@ff””e"- Each entry in line 1 refers to SFy for the union of both
on-line/off-line differences, concerned the large and strikiS§PYPS:
individual differences in programmer performance.” They re-
ported the now-famous ratio of the total working time requirezl_z
for the debugging process from the slowest to the fastest subject

of 28:1 (170 hours versus 6 hours).

How should we measure variability?

The second problem is much more obvious. If we compare

There are three problems with this number: the fastest to the slowest, we will obtain almost arbitrarily high
ratios if only we have enough subjects at hand: somebody may
1. Itis wrong. always take still a little longer.

2. Comparing the fastest with the slowest is inappropriate” 9roupsize-independent measure of variability is the ratio
s/m of the standard deviationand the meam. It is indepen-
3. One should use more data to make such a claim. dent of group size, but still has the disadvantage that extreme

values in the group influence the value a lot.

I will now discuss each of these problems in order. But if we partition the group into a slower and a faster half, we
can consider the ratio of the medians of these halfs. This value
) ) is robust against outliers as well as easy to interpret: How many
2.1 28:1justisn’t true! times longer did the average “slow” subject compared to the
average “fast” subject? We might call this value the slow/fast
The original publication [9] contains a complete table of thratio SF'. Mathematically, this is the ratio of the 75% quantile
raw data, but appeared in a not-so-well-known journal, tb&the time distribution to the 25% quantil&F' = SF5y :=
IEEE Transactions on Human Factors in Electroni¢fie sec- q¢75/qzs.

ond, more well-known and more accessible source f@mm- . . .
munications of the ACN24] does not contain this raw data’Ve may also ignore the middle half of the subjects and com-

Possibly this is the reason, why two methodological mistak¥¥® the medians of the slowest and fastest quafiets :=
in the derivation of the 28:1 value are still not widely knowr{s7.5/¢12,5- Using this notation, the ratio of maximum to mini-
Dickey published about these mistakes in 1981 [7], but was f8§™M would beSFy := g100/qo-

late to eradicate the false quotations. | suggest to usesFy, and SF»; as robust and easily inter-
What is wrong with 28:1? First, it refers to the union of thBrétable measures of interpersonal variability.

groupsdebug Maze onlinanddebug Maze offlineSince sys- 1q yajyes of these measures for the four tasks from the

tematic group differences between online and offline grougs, hysackman experiment are shown in Table 1. As we see,
exist, this increases the ratio. If we consider the groups Sgps v ica| representative of the faster half of the subjects is

arately, the maximum difference is only 14:1. Second, thigg, \+ two to seven times as fast as the typical slower half sub-

of the twelve subjects did not use the recommended high-leye} “\ote thats 72,5 is not robust against even a single outlier
language JTS for solving the task, but rather programme

’ ) _mhis particular case, because with a group size of only 6 per-
assembly language instead. Two of these three in fact requggﬂS’ the second fastest is alreaglys, but we are using.s,

the longest working times of all subjects. One might argue thaly ¢ the result contains fractions of the times required by the
the decision for using assembly is part of the individual diffefsgest (and slowest) subject. Only with groups of size 9 or

ences, but presumably most programmers would not agree faate \yiil 5 7., be completely free of any direct influence of
doing the program in assembly is the same task as doing it @ fastest and smallest person.

high-level language. If we ignore the assembly programmers,

the maximum difference drops to 9.5:1. Similar reductions deigure 1 shows the individual data points of each person in
cur for the other three pairs of groups in the experiment. Heneach group, including a corresponding box plot (explained in
the real differences are only half as large as claimed, but gtikk caption). We clearly see that the high valueS 8§ usually
justify the oft-stated “order of magnitude difference”. stem from only a single person that was very slow.
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not answer my request or said they no longer had access to the
! L data.

D_maze online .. .
The data from the original datasets was translated into a com-

mon format, which | will now describevariance.data
contains one data point for each work time measurement of
a complete (sub)task performed by an experiment participant.
The dependent variable of each data point is the work time in
minutes. Each work time is described by the following inde-
pendent variables:

D_maze offline
D_algebra online
D_algebra offline

C_maze online

C_maze offline

C_algebra online

C_algebra offline e source areference to the article or techreport in which the

experiment is described.

old] o o
I T T T T I

0 2000 4000 6000 8000 10000
time of each individual person [minutes] e id: a symbolic identifier for the experiment participant.
Figure 1: Work times of the individual subjects in the groups MU'_t'p|e measurementsfor the same person within one ex-
of the Grant/Sackman experiment. The box plot indicates the periment use the same id.

quantiles at 10%/90% (whiskers), 25%/75% (box), and 50% (fat
dot), the mean (M), and the standard error of the mean (dashed
line).

e group A shortname for the experiment conditions (except
for task, see below) used for this measurement. In most
cases this simply refers to either the experiment group or

2.3 Only 12 people even after 30 years? the control group, but in a few cases there are more than

two groups being compared.

The possibly most amazing fact about the Grant/Sackman datg {55k g symbolic name for the task to be solved. Each

is that despite the large interest in the 28:1 figure, nobody so far experiment group withivariance.data is hence de-
has ever systematically collected a larger amount of data about ¢riped by a unique combination sburce task and

this phenomenon. Everybody still refers to that one case, based group.

on only 12 programmers.
) ) o . e type the kind of task. This value is always identical
From time to time, individual researchers address the interper- gy gl persons within one group. This variable partitions

sonal variability for one of their own datasets (Curtis once even he whole dataset into parts with somewhat homogeneous
wrote a short article just for this purpose [3]), but as far as I properties. The following values exist:

know, an investigation analyzing data from several different ex-
periments together did not exist before the current work.

maintain (understanding and modifying/extending),
understand (i.e., answering specific questions),
test/debug (testing or debugging or both),

3 variance.data . A larger dataset — review (inspecting for finding defects),
— program (design, implementation, and test-
The rest of this report presents the analysis of work time data ing/debugging),
collected from 61 different controlled experiments (or parts of — design,
experiments) in software engineering. These data were ob-  _ ¢code (implementation).

tained either directly from experiments conducted by our re-
search group, from tables printed in journal articles or techni- In case of doubt, either “program” or “maintain” will be
cal reports, or were sent to me by one of the 17 researchers used. Since the types “design” and “code” are rare, they
that | contacted by email. Data was used only if all persons Will be included into type “program” in all analyses pre-
of a group solved the same task under roughly the same condi- sented below.

tions — the Grant/Sackman experiment with its heterogeneity,

. . ~~"Je seq the sequence number of this task for this person in
of programming languages is in fact an unusual example in this

this experiment (e.g. 2 if this is the second task performed

respect. by this person). This variable allows to assess sequence
effects, but will not be used for the analyses shown here.
3.1 Contents and structure Overall, the dataset contains 1491 observations made for 614

different subjects from 137 experiment groups ranging in size
The dataset contains data from the following experiments: [ffpm 2 to 38 persons (mean 10.9, see also Figure 2) and work-
2], [3]. [4], [5], [8]. [9, 24], [10], [11], [12, 19, 21], [14], [15, ing on 61 different tasks. 14 groups consisting of less than 5
16], [17, 18], [20], [22], and [25]. Data from several othesubjects each will subsequently be ignored, resulting in a total
experiments was not available because the authors eithergilmip size mean of 11.9 and median of 9.
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the expense of product quality (whether that was a conscious
| | | | choice or not). It is difficut to assess the extent to which that

understand D“—g ; happened. However, a similar statement is true for real soft-
,,,,,,,,,, ware development as well: Given typical schedule and market
testidebug E - i pressures, work time is often cut down in a way that decreases
review L R product quality. The extentto which this happens, however, can
only be judged on a case-by-case basis.

program H.eo ™
o — Hence, it is left to the reader to decide when the results from
maintain oimo0 Waaafrs o * | this study apply to some specific software engineering reality
(‘) 1‘0 2‘0 3‘0 and when they do not. But at least it appears sensible to as-

sume that the results will hold for similar controlled software

number of subjects in each group . ) X
engineering experiments.

Figure 2:Distribution of group sizes in variance.data . There
is the following number of groups in each task type cate-
gory: understand:28, test/debug:10, review:22 (but mostly very

small), program:23, maintain:54. 4 The size of interpersonal work time
3.2 Internal and external validity: Warning di
: : ifferences
about the interpretation of the data

Some caveats have to be kept in mind in order to avoid misirhis section discusses the core of the matter. To improve the
terpretations: homogeneity of the data, we partition it according to task type.

¢ In principle, the dataset contains only data for which no
explicit time limit was mentioned to have been enforced.1  S|owest versus fastest individual
It is possible, though, that such a limitation was present

but was not mentioned by the authors or was overlooked i , . )
by me. Let us start with the maximum/minimum ratio as used by Grant

and Sackman — except that we will properly discriminate dif-
o If multiple subjects started their work in the same roofarent experimental conditions. This statistic is shown in Fig-
at the same time, social pressure may have reduceduh=3.
work time differences (“Oh, somebody’s already finish-
ing. | should hurry.”)

¢ For most of these experiments, work time was not the onlé(nderstand
variable that describes the performance of the subjects.
However, other measures that may warrant or explain vergstdebug
short or very long work times are not considered here, ) =
because no quantitative variable other than work time is """ i#¥T
available for any large number of experiments. program

e For some of the experiments work time was not an impor- maintain 5
tant performance variable. w
. . . 2 4 8 16 32
e The resolution and accuracy of the time measurement is maximum/minimum quotient SFO
often unknown. In most cases, resolution is either oEe
. . . ’ . igure 3: Distribution of the ratio SF, of the slowest to the
minute or five minutes. In many cases, the times wefreq 0

ded bv th biects th | h . _fastest subject within each group. Each point represents one
recoraed Dy the subjects themselves, hence assessm%r%ﬁb of measurements for the same task under the same ex-

curacy is difficult. perimental conditions. Note the logarithmic scale.

The main message of the above is the following: Only in S _ - .
% we see, large individual variations similar to those seen in

few experiments all participants have worked until th_elr ta§ne Grant/Sackman experiment (that is, 12 to 14 or mdee)
was solved completely and correctly. Therefore only in a few

) T S - accur, but are not at all typical. Except for the task type “pro-
experiments the work time information is sufficient to charac- . . L L .
i . gramming”, which exhibits the largest variation of variations,
terize subject performance. . .
interpersonal differences of more than factor 10 are rare. Be-
With respect to the generalizability (external validity) of the rdere we interpret too much into this figure, let us switch to
sults found in the present work, consider the following: N& more robust representation: The ratio of the slowest to the

doubt some subjects will have reduced their work time faistest quarter.
4



understand o understand QO@OU—JN
test/debug | test/debug
review review }B‘—{ .
program program . qulaun I T l—] ' 5
maintain maintain ﬂ@;&w
\ T T T T \ T T T
0 2 4 6 8 0 2 4 6

g87,5/q12,5 quotient SF25 g75/925 quotient SF50

Figure 4: Distribution of the ratio SF»; of the medians of the
slowest and fastest quarter of each group, for all groups with 9
or more subjects. (SF»s is not robust for groups smaller than
9, because the minimum and maximum value would then still
influence the result.) One point of “test/debug” is outside of the
plot at 11.4; likewise two points of “programming” at 10.9 and at
12.

4.2 Slowest versus fastest quarter

Figure 5: Distribution of the ratio SFso of the medians of the
faster and slower half of the subjects for each group.

variability may often be larger than the distributions shown in
Figure 5 suggest.

Another explanation could be based on the observation that
the absolute work times of the Grant/Sackman experiment are
longer than the work times of the other experiments. Maybe
. o ) larger tasks result in higher variability? No, the plot$fs,

SFys is plotted in Figure 4. It appears that 2 to 3 is the typjersus mean work time for all experiment groups (Figure 6) in-

cal median for this performance ratio (for all task types excefitates no such trend at all — the opposite appears to be more
review). Thus, if we ignore the most extreme cases, the diffgga)y.

ences between the slowest and the fastest individuals are by far
not as dramatic as the 28:1 figure suggests. The large values
of 4 to 8 found for the Grant/Sackman experiment are unusual

compared to most of the rest. i

n4 202 1 4 16
1

| | | | | L
test/debug understand

We note a rather narrow distribution for reviews. Apparently | 0 L,
the individual capability differences will be converted mostly | o o | L,
into quality differences rather than time differences for this tagk | %o _Qﬁ “““““
type. There are two possible reasons: First, in contrast to @n
other task type, one can declare an inspection finished at essen| o
tially any time. Second, in some of the experiments, a certain | o 00 ° N
review speed (in lines per hour) was recommended to the sub-] i - 9,

2 O____0 0§800 o= N

; T

review

- N

: [0}
jects.
T T T T T T T ih

16 2n4 272 1 4 16

work time [hours]

4.3 Slower versus faster half
Figure 6: SF5o depending on the mean work time of each ex-

Next, see Figure 5: If we consider the slower and faster hBffiment group. The dashed trend line is a robust L (minimum

instead of the slowest and fastest quarter of each group, qhéolute distance) regression line. Both axes are logarithmic.

differences shrink further. A medianS Fi, of about 2 matches well with the results of the

The difference between the slower and faster half is usudmgcinating 1984 field study of DeMarco and Lister [6]. In that
less than factor two, again except for task type “programmingtudy 166 professional developers from 35 different organiza-
And again, the high values in the Grant/Sackman data (2.41@#1s had solved the same task (of type “program”) under very
7.2, as seen in Table 1) are rather unusual. How can those Kigi¢rent local work conditions anflF5, was 1.9.

values be explained? The programming education of program-

mers in 1967 was certainly more inhomogeneous than the edu- o )

cation of CS students in the 1980s and 1990s (which mostof thé¢  Standard deviation relative to the mean

subject populations of the other experiments come from). Per-

haps this inhomogeneity has caused the higher variance. Skmesake of completeness, let us have a look at the ratio of stan-
in some practical software engineering contexts the backgrodiadd deviation and mean, which also characterizes variability.
of programmers is becoming more diverse again (becauseHigure 7 shows that this ratio is typically about 0.5. This means
creasingly more of them do not have a formal CS or SE edhat on the average a programmer will take about 50 percent
cation), this explanation suggests that in practical situations there or less time than the average programmer does.
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understand //
/
8 | o
/
test/debug I—D—{ e o
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review £ 4 /6 0 o o o
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N
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program 0 ® §o
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maintain 0§ bk Yeuf o oo o 0 0
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 T T T T
stddev/mean quotient 4 16 64 256

Figure 7:Distribution of the ratio of standard deviation and arith- SF25 Ideal (assuming normal distribution)

metic mean for each group. Figure 8: Comparison of the actual value of SF»5 for each ex-
periment group with a theoretical value of SF»; based on a nor-
mal distribution assumption and computed from mean and stan-
dard deviation. The axes are logarithmic.

4.5 Summary

In summary we can say thatpical work time differences be- 5.2 Examples of actual distributions

tween slower and faster individuals are more on the order of ) _

2:1 if we consider the slower versus faster h&l#,) or 3:1 Just to get a feel for the issues involved, let us look at a few
to 4:1 if we consider the slowest and fastest quarters only. Sfgmples of what such distributions actually look like. For
any case, the differences are much smaller than the oft-cit8efll experiment groups we cannot get a clear view of the
28:1. Still, these differences are much larger than the typi@gfual distribution, but for larger groups, a density estimator
differences between two different experimental conditions (d¥8¢tion (in our case based on Gaussian kernels) can provide

Section 6) and are hence clearly worthy our attention in terifs With & reasonable approximation of the actual distribution.
of improving the software development process. Figure 9 shows the thus-estimated distributions of four groups

from [12].

5 The shape of work time distributions

uka_T nodoc_uka

T sy uka_T doc_uka
The summary indicators of variability such as the ones pre-

sented above address but a single aspect of a more general qURS— nodoc_uka
tion: What is theshapeof a work time distribution in software

engineering? uka_E doc_uka
T T T T T T I

The answer to this question is a key to solving a number of 0 20 40 60 80 100 120

problems such as more accurate schedule and staff planning in time of each individual person [minutes]

large projects, improved risk detection in projects, correct aghre 9:Estimated probability density functions for four groups
efficient statistical inference in controlled experiments, etc. fom [12], each having between 36 and 38 subjects. Each dot

. ) . ) ) represents one work time value.
This section will therefore investigate the shape of the woref<
time distributions present wariance.data for the various The estimation uses a common rule for thumb for selecting
task types. the amount of smoothing in the estimation: For a sample
X, the standard deviation of the Gaussian kernel functions is
2 (max(X)—min(X))/log,(|X|). For a sample of which we
expect that it may be normally distributed, but don’t take this
assumption for granted, this amount of smoothing reduces irri-
tating discontinuities in the data, but still allows to see severe
For each group of values, we take their mean and standarddsations from normality, if present. In our case, several in-
viation and compute how largeFs; would be, if this group of teresting phenomena appear — different ones for different ex-
values was exactly normally distributed. Figure 8 compangsriment groups: While the first (uppermost) distribution could
these theoretical values to the actual ones. As we see, the heraccepted as normal, the second one has too much weight on
mal distribution assumption will almost always over-estimatie right side, the third one even looks like it might have two
the actualS F»5 variability of a group, often by far. Thus, a norpeaks, and the fourth is too heavy on both sides of the peak.
mal distribution assumption is probably often not warranted.Unfortunately, we cannot be sure that these phenomena are real
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for the underlying distribution, because samples of the given

size sometimes look quite weird even if thdg come from

a normal distribution. However, a two-sided composite Kolunderstand
mogorov/Smirnov goodness-of-fit test (KS-test) for normality
returnsp-values in the range 0.04 to 0.12 for the latter threg®svdebus
distributions, suggesting that a normality assumption would be  review

risky at least. "M

program

maintain

| | | | T T T T T
0 1 2 3 4
work time (virtual groups, normalized to mean 1)

t2 pretest

Figure 11: Estimated probability density functions for virtual
groups created by normalizing each group mean to 1. These
virtual groups consist of (top to bottom) 238, 118, 86, 236, and
780 data points, respectively.

tl pretest

0 20 40 60
time of each individual person [minutes]

Figure 10: Estimated probability density functions for the two 2.4 ~Summary

groups from [3], 27 subjects each. These times were originally

reported as a histogram with 5-minute ranges only, hence the The following can be said about the working time distributions
granularity. found invariance.data

So let us look at another example. The two groups from Fig-e A long right tail is indeed a typical phenomenon for soft-
ure 10 both have a right tail that is longer than in a normal ware engineering work time distributions. The typical
distribution (KS-tesp < 0.002). This is called positive skew- skewness is about 1 to 2.

ness and is a common phenomenon for time data, because one
can take arbitrarily long, but not arbitrarily short (O is the limit).
The lower distribution also looks like it might perhaps have two
peaks. This could mean that the different subjects applied ei-
ther of two different methods for solving the task. Each of the
two methods results in a normal distribution, but for the less
appropriate method, the mean of this distribution is higher thare Task type “review” is special. It exhibits both low vari-
for the other. ability (SF5o = 1.1, SF35 = 1.3) and low skewness.

The work time variability tends to be larger for task type
“test/debug” 6 Fy5o = 2.4, SF»5 = 3.2) and even more for
“programming” G F5o = 2.4, SFy; = 7.1) than it is for
“maintain” (S F5o = 1.7, SF>5 = 2.4) or for “understand”
(SFs = 1.8, SFys = 2.9).

neering work time data. But so far this was only an assumptigig 5, the above values 8%, andSFy; correctly reflect the
different group sizes withimariance.data

5.3 Estimating “natural” work time distribu- ]
tions 6 Effect sizes

The large amount of data in our dataset, however, allows puewed from an engineering perspective, the purpose of ex-
ducing a fairly accurate estimate of the actual shape of the B@fiments is identifying better ways of software development.
erage work time distribution across a diverse set of individudigerefore, we want to know not just that one group performs
and tasks. For obtaining this estimation we normalize all dagtter than the other, but also how large that difference actually
data by dividing each work time value by its experiment groifp If the difference is too small, the better technique may not be
average. The resulting values thus have a mean of 1 and wirth the effort required for introducing iariance.data

exhibit a certain “natural” variance structure — if such a thirgjlows for asking “How large are the effects of the experiment

exists. variable on the average work time?” and to analyze a whole
distribution of such effect sizes. We will look at these results in

Figure 11 shows the work time distributions of the resultingie present section.

virtual groups by task type. With the exception of “review”, all

task types show a clearly positive skewness, which ranges from

1.25 for “maintain” (the bootstrapped 90% confidence inten@l1l  Definition

is 0.86 to 1.64) up to 1.95 for “test/debug” (confidence interval

1.17 to 2.49). The skewness of “review” tends to be negativghat is the effect size? Given two experiment groupand

but is unsure (confidence intervall .42 to 0.19). B and their work time measurement vectéisandtg, let us
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assume thatl is faster on average. Then we can define effaudt as frequent as expected. Also, about one third of all effects
size in two different ways: Either the relative difference of this larger than 0.5, 10 percent are even larger than 1.0. Figure 13

means o shows the same data partitioned by task type.
t
E:E:=2_1
ta
or the absolute difference of the means in proportion to the 1
pooled standard deviation understand
tn —1ta test/debug
Ey:E = B~ tA
U(tAUB) review *
In the statistical literatureE, is more common, because it is Prodgram H ° . ¥ —
closely related to the power of statistical tests. For practical yainin | . . eb—1 . .
purposes, howevek;; is more relevant, because it directly tells ‘ ‘ ‘ ‘ ‘

us how much we can expect to gain by switching from method 0.0 0.5 1.0 15 2.0

A to B. Furthermore, Greenland [23, p.671] argues thiat
can mislead in effect size comparisons. Hence, | will Bse

below. However, we should be aware that higher variability in

work time effect size

Figure 13:Work time effect sizes by task type.

the samples increases the stochastic error when measiiring\yat should we think of the effect size distribution? The mod-

6.2 Expectations about effect size

We might expect the following:

d
e Some experiments do not find an expected work time gﬁ
fect and for many experiments the effect of the indep

est fraction of small effects can partially be explained by the
small size of most experiment groups as follows. The mea-
sured effect size is the sum of the true effect (caused by switch-
ing the experimental condition) and a random effect (caused
by incidental group differences). The contribution of the ran-
m effect grows with increasing variability within the groups
d with decreasing group size, because individual differences

®ave less chance to balance out in smaller groups. And indeed

dent variable does not (or not mainly) influence work timg o i that the effects tend to be larger for smaller groups; see

Therefore, we should expect to find a large proportion gf

small effect sizes. gure 14.
e Furthermore, if we had a situation with a giant effect,

we would not need a controlled experiment to assess it. — : : : : : :

Hardly anybody, for instance, would come up with the®® | B

idea of comparing the working time required for coding 8

a database query in SQL versus in assembler. It is just£00’ | 0 B

clear that (and why) we will find a huge difference. Therg- o 0

fore, we should expect that the size of the largest effe@tls‘;o | 0 i

in our effect size distribution is rather modest. Effect sizé% s 8o o %o i

of 0.1 to 0.4 appear realistic; much larger ones should®e 6 ° o0 o o

rare. 0, ° § o o° 0
00 1 (\) 08 8\ T - T T T T -

5 10 15 20 25 30 35
6.3 Effect size distribution group size

Figure 14:Effect size depending on group size. The effect has a
random component which tends to be larger in smaller groups,

L L L L L as the regression line suggests.

VI
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Figure 12: Effect sizes: Each point represents the quotient- ‘ ‘ ‘ ‘ ‘

T T T T T
0.0 0.5 1.0 15 2.0

. f M
work time effect size &g‘gyo s 00 o m{o § o

1 1 1 1 1

minus-1 of the mean work times of the slowest versus the fastest 0.0 05 1.0 15 2.0

group for each experiment task.

work time effect size (conservative)

Given these expectations, the actual distribution of effect sizetgure 15:Effect size after approximate removal of the random
as shown in Figure 12 is surprising. Small effects exist, but &wnponent.
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We can subtract the mean random effect (standard error of tfiebservations and analyses (numerical, graphical, and quali-
effect size) from the effect size. This results in approximatditive) that is as diverse as possible in a given situation.

the effect size distribution shown in Figure 15, which comes

much closer to our expectations.

However, the very large effects in this distribution are quite i~ Summary and conclusions

pressive even after this correction. Such a large effect suggests

that either the concrete task to be solved in the experiment was S . S

biased towards one of the experiment conditions or a very rﬁ%e main findings from this |nyest|gat|on of 'the dataset
row aspect of software engineering has been measured inv%rﬁance.data can be summarized as follows:
unrealistically pure form.

e The interpersonal variability in working time is rather dif-

But whatever we think of the extremes of the effect size dis- ferent for different types of tasks.

tribution, its median can be used to make an important point.

Only half of all experiments found an effect that was largers More robust than comparing the slowest to the fastest in-
than 14 percent. ThUS, an eXperImenter should not Usua”y €X- dividual is a Comparison Of, for examp|e, the slowest to

pect to see a larger effect and reviewers should not reject ex- the fastest quarter (precisely: the medians of the quarters)
perimental research work just because its effect size is small. of the subjects, called F;.

Most progress in software engineering, as everywhere, comes

in rather small steps. e The ratio of slowest versus fastest quarter is rarely larger
than 4:1, even for task types with high variability. Typ-
ical ratios are in the range 2:1 to 3:1. The data from

7 Onthe performance of statistical tests the Grant/Sackman experiment (with values up to 8:1) is
rather unusual in comparison.

In addition to the analyses discussed above, one can use theCaveat: Maybe most experiments represented in
data for studying the behavior of different statistical tests on vyariance.data underestimate the realistic interper-
such software engineering data. Such tests form the core of the sonal variability somewhat, because in practical contexts
statistical evaluation in most articles about controlled experi- the popu|ati0n of software engineering staff will often be

ments today — in particular the t-test (which compares the  more inhomogeneous than the populations (typically CS
means of two samples using a normal distribution assumption) students) used in most experiments.

or the Wilcoxon Rank Sum test (also known as Mann/Whitney

U-test, which compares the medians of two samples assuming Still only little is known about the shape of working time
only that the distribution is non-discrete). distributions. Howeveryariance.data exhibits a
clear trend towards positive skewness for task types with

| have performed a comparative analysis fevalue distribu- large variability.

tions, actual type | errors, and the power of five different tests

using the group pairs fromariance.data  as the empiri- o The effect size (relative difference of the work time group
cal basis. Since this analysis has many technical caveats, | will means) is very different from one experiment to the next.
not delve into the details here (please refer to [13] instead) and The median is about 14%.

just point out the main conclusion: Depending on the actual

data samples, any single test can sometimes mislead and it & The oft-cited ratio of 28:1 for slowest to fastest work time
therefore advisable to use several tests at once and present theirin the Grant/Sackman experiment is plain wrong. The cor-
results side-by-side in order to provide a broader and more re- rect value is 14:1.

liable basis for understanding the data.

In particular, the Wilcoxon test is not just an inferior replacé\s a consequence of these results, | suggest the following:

ment for the t-test to be used if sample normality is violated on Although the data showed the individual variation to be

dubious, but rather is always a useful (sometimes even supg- . o

: . i .~ lower than previously assumed, it is still much larger than

rior) complement. Since the Wilcoxon test assesses something . . .
the effect of the experimental variables. Therefore, it

quite different (namely medians instead of means), both tests would be valuable to have simple and reliable tests that

should routinely be used together. predict the performance of an individual for a certain kind
Such an approach also suggests that researchers should nobf task. Experimenters could use such tests for proper
be transfixed by a certain significance threshold such as 0.05. grouping, blocking, or matching of their subjects, thus in-
More reasonablyy-values should only be taken as one indica- creasing the sensitivity of their experiments. Practitioners
tor among others and conclusions should be derived from a set could use the same tests to optimize task assignments to
N . . , . project staff. After some interest in such tests in the 1960s
ote, that whenever clear group differences exist, confidence intervals

should be provided, because they are much more useful information than bare .(mOStly fpr traine_e selection), nobody appears to be work-
hypothesis test results. ing on this question any more.
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