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Abstract

How long do different software engineers take to solve the same
task? In 1967, Grant and Sackman published their now famous
number of 28:1 interpersonal performance differences, which
is both incorrect and misleading.
This article presents the analysis of a larger dataset of soft-
ware engineering work time data taken from various controlled
experiments. It corrects the false 28:1 value, proposes more
appropriate metrics, presents the results for the larger dataset,
and further analyzes the data for distribution shapes and effect
sizes.

1 Introduction

All software development managers and most software engi-
neers are aware that large differences in the capabilities be-
tween individual softw are engineers exist. A less talented one
may take several times as long for solving the same task as a
very talented one — and will often still produce a less reliable,
harder-to-maintain program. From a management perspective,
such differences are very important. First, it is insufficient to
know the average performance of a set of software engineers,
because for instance the size of the task assigned to each one
needs to be compatible with his or her speed etc. Second, if
the performance of the individual staff members is unknown,
knowing the size of the differences allows for assessing the risk
incurred by assigning tasks randomly. Third, since part of the
differences is due to different knowledge and training (rather
than being hard-wired into the individual), the size of the dif-
ferences is useful information for judging the possible benefits
from additional training or from coaching etc.

In 1967, Grant and Sackman published a controlled experiment
[9] in which they stated a ratio of 28:1 for the work time re-

quired by the slowest versus the fastest programmer (from a set
of 12) each solving the same task. This number has since be-
come quite famous and is being quoted over and over [7]. The
present work validates and corrects this claim, using a broader
and more solid foundation, namely data from a larger number
of programmers, more different task types, and experiments
that are not as old.

1.1 Article overview

The next section will describe the historical motivation for
the present work, namely the Grant/Sackman experiment and
its weaknesses. Section 3 introduces the dataset used in the
present study and discusses several caveats regarding the valid-
ity and interpretation of the results.

The results of the present study are discussed in Sections 4
through 7. The main topic, interpersonal variability of work
times in software engineering experiments, will be treated in
Section 4. Variability statistics characterize one aspect of the
work time distribution by a single number. Section 5 will com-
plement these statistics by an assessment of the overallshape
of the distributions. An third aspect, the size of the difference
of average performancebetweengroups (the so-called “effect
size”), is discussed in Section 6. The comparative performance
of different statistical tests is shortly discussed in Section 7.

Finally, the main observations are summarized and conse-
quences are derived in Section 8.

2 The 1967 Grant/Sackman experiment

In 1967, Grant and Sackman published a controlled experiment
for comparing online and offline programming [9]. Six subjects
each debugged a program using an interactive session at a text
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terminal (“online”) and six others debugged the program us-
ing batch operation with fixed two-hour turnaround time (“of-
fline”). The program, calledMaze, had to compute the only
way through a 20-by-20-maze. Each program to be debugged
had been designed and coded by the same person just before.
All twelve subjects were experienced professional program-
mers. The groups were then switched and the exercise was re-
peated with a different program, calledAlgebra, that computed
the value of algebraic expressions.

In their article [9], Grant and Sackman state that “perhaps the
most important practical finding of this study, overshadowing
on-line/off-line differences, concerned the large and striking
individual differences in programmer performance.” They re-
ported the now-famous ratio of the total working time required
for the debugging process from the slowest to the fastest subject
of 28:1 (170 hours versus 6 hours).

There are three problems with this number:

1. It is wrong.

2. Comparing the fastest with the slowest is inappropriate.

3. One should use more data to make such a claim.

I will now discuss each of these problems in order.

2.1 28:1 just isn’t true!

The original publication [9] contains a complete table of the
raw data, but appeared in a not-so-well-known journal, the
IEEE Transactions on Human Factors in Electronics. The sec-
ond, more well-known and more accessible source fromCom-
munications of the ACM[24] does not contain this raw data.
Possibly this is the reason, why two methodological mistakes
in the derivation of the 28:1 value are still not widely known.
Dickey published about these mistakes in 1981 [7], but was too
late to eradicate the false quotations.

What is wrong with 28:1? First, it refers to the union of the
groupsdebug Maze onlineanddebug Maze offline. Since sys-
tematic group differences between online and offline groups
exist, this increases the ratio. If we consider the groups sep-
arately, the maximum difference is only 14:1. Second, three
of the twelve subjects did not use the recommended high-level
language JTS for solving the task, but rather programmed in
assembly language instead. Two of these three in fact required
the longest working times of all subjects. One might argue that
the decision for using assembly is part of the individual differ-
ences, but presumably most programmers would not agree that
doing the program in assembly is the same task as doing it in a
high-level language. If we ignore the assembly programmers,
the maximum difference drops to 9.5:1. Similar reductions oc-
cur for the other three pairs of groups in the experiment. Hence,
the real differences are only half as large as claimed, but still
justify the oft-stated “order of magnitude difference”.

Coding Debugging
C Alge. C Maze D Alge. D Maze

from [9] 16 25 28 26
SF0 12.6 12.5 14.2 12.5
SF25 7.0 8.0 5.8 4.2
SF50 3.7 7.2 3.3 2.4

Table 1: Various measures of variability for each of the four
pairs of groups from the Grant/Sackman experiment. The raw
data are taken from [9]. Each entry in lines 2 to 4 represents the
group with the higher variability; sometimes “online”, sometimes
“offline”. Each entry in line 1 refers to SF0 for the union of both
groups.

2.2 How should we measure variability?

The second problem is much more obvious. If we compare
the fastest to the slowest, we will obtain almost arbitrarily high
ratios if only we have enough subjects at hand: somebody may
always take still a little longer.

A groupsize-independent measure of variability is the ratio
s=m of the standard deviations and the meanm. It is indepen-
dent of group size, but still has the disadvantage that extreme
values in the group influence the value a lot.

But if we partition the group into a slower and a faster half, we
can consider the ratio of the medians of these halfs. This value
is robust against outliers as well as easy to interpret: How many
times longer did the average “slow” subject compared to the
average “fast” subject? We might call this value the slow/fast
ratioSF . Mathematically, this is the ratio of the 75% quantile
of the time distribution to the 25% quantile:SF = SF50 :=
q75=q25.

We may also ignore the middle half of the subjects and com-
pare the medians of the slowest and fastest quartersSF25 :=
q87;5=q12;5. Using this notation, the ratio of maximum to mini-
mum would beSF0 := q100=q0.

I suggest to useSF50 and SF25 as robust and easily inter-
pretable measures of interpersonal variability.

The values of these measures for the four tasks from the
Grant/Sackman experiment are shown in Table 1. As we see,
the typical representative of the faster half of the subjects is
about two to seven times as fast as the typical slower half sub-
ject. Note thatSF25 is not robust against even a single outlier
in this particular case, because with a group size of only 6 per-
sons, the second fastest is alreadyq16:67, but we are usingq12:5,
so that the result contains fractions of the times required by the
fastest (and slowest) subject. Only with groups of size 9 or
more will SF25 be completely free of any direct influence of
the fastest and smallest person.

Figure 1 shows the individual data points of each person in
each group, including a corresponding box plot (explained in
the caption). We clearly see that the high values ofSF0 usually
stem from only a single person that was very slow.
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Figure 1: Work times of the individual subjects in the groups
of the Grant/Sackman experiment. The box plot indicates the
quantiles at 10%/90% (whiskers), 25%/75% (box), and 50% (fat
dot), the mean (M), and the standard error of the mean (dashed
line).

2.3 Only 12 people even after 30 years?

The possibly most amazing fact about the Grant/Sackman data
is that despite the large interest in the 28:1 figure, nobody so far
has ever systematically collected a larger amount of data about
this phenomenon. Everybody still refers to that one case, based
on only 12 programmers.

From time to time, individual researchers address the interper-
sonal variability for one of their own datasets (Curtis once even
wrote a short article just for this purpose [3]), but as far as I
know, an investigation analyzing data from several different ex-
periments together did not exist before the current work.

3 variance.data : A larger dataset

The rest of this report presents the analysis of work time data
collected from 61 different controlled experiments (or parts of
experiments) in software engineering. These data were ob-
tained either directly from experiments conducted by our re-
search group, from tables printed in journal articles or techni-
cal reports, or were sent to me by one of the 17 researchers
that I contacted by email. Data was used only if all persons
of a group solved the same task under roughly the same condi-
tions — the Grant/Sackman experiment with its heterogeneity
of programming languages is in fact an unusual example in this
respect.

3.1 Contents and structure

The dataset contains data from the following experiments: [1],
[2], [3], [4], [5], [8], [9, 24], [10], [11], [12, 19, 21], [14], [15,
16], [17, 18], [20], [22], and [25]. Data from several other
experiments was not available because the authors either did

not answer my request or said they no longer had access to the
data.

The data from the original datasets was translated into a com-
mon format, which I will now describe.variance.data
contains one data point for each work time measurement of
a complete (sub)task performed by an experiment participant.
The dependent variable of each data point is the work time in
minutes. Each work time is described by the following inde-
pendent variables:

� source: a reference to the article or techreport in which the
experiment is described.

� id: a symbolic identifier for the experiment participant.
Multiple measurements for the same person within one ex-
periment use the same id.

� group: A short name for the experiment conditions (except
for task, see below) used for this measurement. In most
cases this simply refers to either the experiment group or
the control group, but in a few cases there are more than
two groups being compared.

� task: a symbolic name for the task to be solved. Each
experiment group withinvariance.data is hence de-
scribed by a unique combination ofsource, task, and
group.

� type: the kind of task. This value is always identical
for all persons within one group. This variable partitions
the whole dataset into parts with somewhat homogeneous
properties. The following values exist:

– maintain (understanding and modifying/extending),

– understand (i.e., answering specific questions),

– test/debug (testing or debugging or both),

– review (inspecting for finding defects),

– program (design, implementation, and test-
ing/debugging),

– design,

– code (implementation).

In case of doubt, either “program” or “maintain” will be
used. Since the types “design” and “code” are rare, they
will be included into type “program” in all analyses pre-
sented below.

� seq: the sequence number of this task for this person in
this experiment (e.g. 2 if this is the second task performed
by this person). This variable allows to assess sequence
effects, but will not be used for the analyses shown here.

Overall, the dataset contains 1491 observations made for 614
different subjects from 137 experiment groups ranging in size
from 2 to 38 persons (mean 10.9, see also Figure 2) and work-
ing on 61 different tasks. 14 groups consisting of less than 5
subjects each will subsequently be ignored, resulting in a total
group size mean of 11.9 and median of 9.
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Figure 2:Distribution of group sizes in variance.data . There
is the following number of groups in each task type cate-
gory: understand:28, test/debug:10, review:22 (but mostly very
small), program:23, maintain:54.

3.2 Internal and external validity: Warning
about the interpretation of the data

Some caveats have to be kept in mind in order to avoid misin-
terpretations:

� In principle, the dataset contains only data for which no
explicit time limit was mentioned to have been enforced.
It is possible, though, that such a limitation was present
but was not mentioned by the authors or was overlooked
by me.

� If multiple subjects started their work in the same room
at the same time, social pressure may have reduced the
work time differences (“Oh, somebody’s already finish-
ing. I should hurry.”)

� For most of these experiments, work time was not the only
variable that describes the performance of the subjects.
However, other measures that may warrant or explain very
short or very long work times are not considered here,
because no quantitative variable other than work time is
available for any large number of experiments.

� For some of the experiments work time was not an impor-
tant performance variable.

� The resolution and accuracy of the time measurement is
often unknown. In most cases, resolution is either one
minute or five minutes. In many cases, the times were
recorded by the subjects themselves, hence assessing ac-
curacy is difficult.

The main message of the above is the following: Only in a
few experiments all participants have worked until their task
was solved completely and correctly. Therefore only in a few
experiments the work time information is sufficient to charac-
terize subject performance.

With respect to the generalizability (external validity) of the re-
sults found in the present work, consider the following: No
doubt some subjects will have reduced their work time at

the expense of product quality (whether that was a conscious
choice or not). It is difficut to assess the extent to which that
happened. However, a similar statement is true for real soft-
ware development as well: Given typical schedule and market
pressures, work time is often cut down in a way that decreases
product quality. The extent to which this happens, however, can
only be judged on a case-by-case basis.

Hence, it is left to the reader to decide when the results from
this study apply to some specific software engineering reality
and when they do not. But at least it appears sensible to as-
sume that the results will hold for similar controlled software
engineering experiments.

4 The size of interpersonal work time
differences

This section discusses the core of the matter. To improve the
homogeneity of the data, we partition it according to task type.

4.1 Slowest versus fastest individual

Let us start with the maximum/minimum ratio as used by Grant
and Sackman — except that we will properly discriminate dif-
ferent experimental conditions. This statistic is shown in Fig-
ure 3.
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Figure 3: Distribution of the ratio SF0 of the slowest to the
fastest subject within each group. Each point represents one
group of measurements for the same task under the same ex-
perimental conditions. Note the logarithmic scale.

As we see, large individual variations similar to those seen in
the Grant/Sackman experiment (that is, 12 to 14 or more)do
occur, but are not at all typical. Except for the task type “pro-
gramming”, which exhibits the largest variation of variations,
interpersonal differences of more than factor 10 are rare. Be-
fore we interpret too much into this figure, let us switch to
a more robust representation: The ratio of the slowest to the
fastest quarter.
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Figure 4: Distribution of the ratio SF25 of the medians of the
slowest and fastest quarter of each group, for all groups with 9
or more subjects. (SF25 is not robust for groups smaller than
9, because the minimum and maximum value would then still
influence the result.) One point of “test/debug” is outside of the
plot at 11.4; likewise two points of “programming” at 10.9 and at
12.

4.2 Slowest versus fastest quarter

SF25 is plotted in Figure 4. It appears that 2 to 3 is the typi-
cal median for this performance ratio (for all task types except
review). Thus, if we ignore the most extreme cases, the differ-
ences between the slowest and the fastest individuals are by far
not as dramatic as the 28:1 figure suggests. The large values
of 4 to 8 found for the Grant/Sackman experiment are unusual
compared to most of the rest.

We note a rather narrow distribution for reviews. Apparently
the individual capability differences will be converted mostly
into quality differences rather than time differences for this task
type. There are two possible reasons: First, in contrast to any
other task type, one can declare an inspection finished at essen-
tially any time. Second, in some of the experiments, a certain
review speed (in lines per hour) was recommended to the sub-
jects.

4.3 Slower versus faster half

Next, see Figure 5: If we consider the slower and faster half
instead of the slowest and fastest quarter of each group, the
differences shrink further.

The difference between the slower and faster half is usually
less than factor two, again except for task type “programming”.
And again, the high values in the Grant/Sackman data (2.4 to
7.2, as seen in Table 1) are rather unusual. How can those high
values be explained? The programming education of program-
mers in 1967 was certainly more inhomogeneous than the edu-
cation of CS students in the 1980s and 1990s (which most of the
subject populations of the other experiments come from). Per-
haps this inhomogeneity has caused the higher variance. Since
in some practical software engineering contexts the background
of programmers is becoming more diverse again (because in-
creasingly more of them do not have a formal CS or SE edu-
cation), this explanation suggests that in practical situations the
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Figure 5: Distribution of the ratio SF50 of the medians of the
faster and slower half of the subjects for each group.

variability may often be larger than the distributions shown in
Figure 5 suggest.

Another explanation could be based on the observation that
the absolute work times of the Grant/Sackman experiment are
longer than the work times of the other experiments. Maybe
larger tasks result in higher variability? No, the plot ofSF50

versus mean work time for all experiment groups (Figure 6) in-
dicates no such trend at all — the opposite appears to be more
likely.
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Figure 6:SF50 depending on the mean work time of each ex-
periment group. The dashed trend line is a robust L1 (minimum
absolute distance) regression line. Both axes are logarithmic.

A medianSF50 of about 2 matches well with the results of the
fascinating 1984 field study of DeMarco and Lister [6]. In that
study 166 professional developers from 35 different organiza-
tions had solved the same task (of type “program”) under very
different local work conditions andSF50 was 1.9.

4.4 Standard deviation relative to the mean

For sake of completeness, let us have a look at the ratio of stan-
dard deviation and mean, which also characterizes variability.
Figure 7 shows that this ratio is typically about 0.5. This means
that on the average a programmer will take about 50 percent
more or less time than the average programmer does.
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Figure 7:Distribution of the ratio of standard deviation and arith-
metic mean for each group.

4.5 Summary

In summary we can say thattypical work time differences be-
tween slower and faster individuals are more on the order of
2:1 if we consider the slower versus faster half (SF50) or 3:1
to 4:1 if we consider the slowest and fastest quarters only. In
any case, the differences are much smaller than the oft-cited
28:1. Still, these differences are much larger than the typical
differences between two different experimental conditions (see
Section 6) and are hence clearly worthy our attention in terms
of improving the software development process.

5 The shape of work time distributions

The summary indicators of variability such as the ones pre-
sented above address but a single aspect of a more general ques-
tion: What is theshapeof a work time distribution in software
engineering?

The answer to this question is a key to solving a number of
problems such as more accurate schedule and staff planning in
large projects, improved risk detection in projects, correct and
efficient statistical inference in controlled experiments, etc.

This section will therefore investigate the shape of the work
time distributions present invariance.data for the various
task types.

5.1 The normal distribution assumption

For each group of values, we take their mean and standard de-
viation and compute how largeSF25 would be, if this group of
values was exactly normally distributed. Figure 8 compares
these theoretical values to the actual ones. As we see, the nor-
mal distribution assumption will almost always over-estimate
the actualSF25 variability of a group, often by far. Thus, a nor-
mal distribution assumption is probably often not warranted.
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Figure 8:Comparison of the actual value of SF25 for each ex-
periment group with a theoretical value of SF25 based on a nor-
mal distribution assumption and computed from mean and stan-
dard deviation. The axes are logarithmic.

5.2 Examples of actual distributions

Just to get a feel for the issues involved, let us look at a few
examples of what such distributions actually look like. For
small experiment groups we cannot get a clear view of the
actual distribution, but for larger groups, a density estimator
function (in our case based on Gaussian kernels) can provide
us with a reasonable approximation of the actual distribution.
Figure 9 shows the thus-estimated distributions of four groups
from [12].
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Figure 9:Estimated probability density functions for four groups
from [12], each having between 36 and 38 subjects. Each dot
represents one work time value.

The estimation uses a common rule for thumb for selecting
the amount of smoothing in the estimation: For a sample
X , the standard deviation of the Gaussian kernel functions is
2 � (max(X)�min(X))= log2(jX j). For a sample of which we
expect that it may be normally distributed, but don’t take this
assumption for granted, this amount of smoothing reduces irri-
tating discontinuities in the data, but still allows to see severe
deviations from normality, if present. In our case, several in-
teresting phenomena appear — different ones for different ex-
periment groups: While the first (uppermost) distribution could
be accepted as normal, the second one has too much weight on
the right side, the third one even looks like it might have two
peaks, and the fourth is too heavy on both sides of the peak.
Unfortunately, we cannot be sure that these phenomena are real
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for the underlying distribution, because samples of the given
size sometimes look quite weird even if theydo come from
a normal distribution. However, a two-sided composite Kol-
mogorov/Smirnov goodness-of-fit test (KS-test) for normality
returnsp-values in the range 0.04 to 0.12 for the latter three
distributions, suggesting that a normality assumption would be
risky at least.
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Figure 10: Estimated probability density functions for the two
groups from [3], 27 subjects each. These times were originally
reported as a histogram with 5-minute ranges only, hence the
granularity.

So let us look at another example. The two groups from Fig-
ure 10 both have a right tail that is longer than in a normal
distribution (KS-testp < 0:002). This is called positive skew-
ness and is a common phenomenon for time data, because one
can take arbitrarily long, but not arbitrarily short (0 is the limit).
The lower distribution also looks like it might perhaps have two
peaks. This could mean that the different subjects applied ei-
ther of two different methods for solving the task. Each of the
two methods results in a normal distribution, but for the less
appropriate method, the mean of this distribution is higher than
for the other.

It is plausible that positive skewness is typical of software engi-
neering work time data. But so far this was only an assumption.

5.3 Estimating “natural” work time distribu-
tions

The large amount of data in our dataset, however, allows pro-
ducing a fairly accurate estimate of the actual shape of the av-
erage work time distribution across a diverse set of individuals
and tasks. For obtaining this estimation we normalize all our
data by dividing each work time value by its experiment group
average. The resulting values thus have a mean of 1 and will
exhibit a certain “natural” variance structure — if such a thing
exists.

Figure 11 shows the work time distributions of the resulting
virtual groups by task type. With the exception of “review”, all
task types show a clearly positive skewness, which ranges from
1.25 for “maintain” (the bootstrapped 90% confidence interval
is 0.86 to 1.64) up to 1.95 for “test/debug” (confidence interval
1.17 to 2.49). The skewness of “review” tends to be negative,
but is unsure (confidence interval�1:42 to 0.19).
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Figure 11: Estimated probability density functions for virtual
groups created by normalizing each group mean to 1. These
virtual groups consist of (top to bottom) 238, 118, 86, 236, and
780 data points, respectively.

5.4 Summary

The following can be said about the working time distributions
found invariance.data :

� A long right tail is indeed a typical phenomenon for soft-
ware engineering work time distributions. The typical
skewness is about 1 to 2.

� The work time variability tends to be larger for task type
“test/debug” (SF50 = 2:4,SF25 = 3:2) and even more for
“programming” (SF50 = 2:4, SF25 = 7:1) than it is for
“maintain” (SF50 = 1:7,SF25 = 2:4) or for “understand”
( SF50 = 1:8, SF25 = 2:9).

� Task type “review” is special. It exhibits both low vari-
ability (SF50 = 1:1, SF25 = 1:3) and low skewness.

Note that in contrast to the means or medians from Figures 4
and 5, the above values ofSF50 andSF25 correctly reflect the
different group sizes withinvariance.data .

6 Effect sizes

Viewed from an engineering perspective, the purpose of ex-
periments is identifying better ways of software development.
Therefore, we want to know not just that one group performs
better than the other, but also how large that difference actually
is. If the difference is too small, the better technique may not be
worth the effort required for introducing it.variance.data
allows for asking “How large are the effects of the experiment
variable on the average work time?” and to analyze a whole
distribution of such effect sizes. We will look at these results in
the present section.

6.1 Definition

What is the effect size? Given two experiment groupsA and
B and their work time measurement vectorstA andtB , let us
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assume thatA is faster on average. Then we can define effect
size in two different ways: Either the relative difference of the
means

E1 : E :=
tB
tA

� 1

or the absolute difference of the means in proportion to the
pooled standard deviation

E2 : E :=
tB � tA
�(tA[B)

In the statistical literature,E2 is more common, because it is
closely related to the power of statistical tests. For practical
purposes, however,E1 is more relevant, because it directly tells
us how much we can expect to gain by switching from method
A to B. Furthermore, Greenland [23, p. 671] argues thatE2

can mislead in effect size comparisons. Hence, I will useE1

below. However, we should be aware that higher variability in
the samples increases the stochastic error when measuringE1.

6.2 Expectations about effect size

We might expect the following:

� Some experiments do not find an expected work time ef-
fect and for many experiments the effect of the indepen-
dent variable does not (or not mainly) influence work time.
Therefore, we should expect to find a large proportion of
small effect sizes.

� Furthermore, if we had a situation with a giant effect,
we would not need a controlled experiment to assess it.
Hardly anybody, for instance, would come up with the
idea of comparing the working time required for coding
a database query in SQL versus in assembler. It is just too
clear that (and why) we will find a huge difference. There-
fore, we should expect that the size of the largest effects
in our effect size distribution is rather modest. Effect sizes
of 0.1 to 0.4 appear realistic; much larger ones should be
rare.

6.3 Effect size distribution
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Figure 12: Effect sizes: Each point represents the quotient-
minus-1 of the mean work times of the slowest versus the fastest
group for each experiment task.

Given these expectations, the actual distribution of effect sizes,
as shown in Figure 12 is surprising. Small effects exist, but are

not as frequent as expected. Also, about one third of all effects
is larger than 0.5, 10 percent are even larger than 1.0. Figure 13
shows the same data partitioned by task type.
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Figure 13:Work time effect sizes by task type.

What should we think of the effect size distribution? The mod-
est fraction of small effects can partially be explained by the
small size of most experiment groups as follows. The mea-
sured effect size is the sum of the true effect (caused by switch-
ing the experimental condition) and a random effect (caused
by incidental group differences). The contribution of the ran-
dom effect grows with increasing variability within the groups
and with decreasing group size, because individual differences
have less chance to balance out in smaller groups. And indeed
we find that the effects tend to be larger for smaller groups; see
Figure 14.
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Figure 14:Effect size depending on group size. The effect has a
random component which tends to be larger in smaller groups,
as the regression line suggests.
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We can subtract the mean random effect (standard error of the
effect size) from the effect size. This results in approximately
the effect size distribution shown in Figure 15, which comes
much closer to our expectations.

However, the very large effects in this distribution are quite im-
pressive even after this correction. Such a large effect suggests
that either the concrete task to be solved in the experiment was
biased towards one of the experiment conditions or a very nar-
row aspect of software engineering has been measured in an
unrealistically pure form.

But whatever we think of the extremes of the effect size dis-
tribution, its median can be used to make an important point.
Only half of all experiments found an effect that was larger
than 14 percent. Thus, an experimenter should not usually ex-
pect to see a larger effect and reviewers should not reject ex-
perimental research work just because its effect size is small.
Most progress in software engineering, as everywhere, comes
in rather small steps.

7 On the performance of statistical tests

In addition to the analyses discussed above, one can use the
data for studying the behavior of different statistical tests on
such software engineering data. Such tests form the core of the
statistical evaluation in most articles about controlled experi-
ments today1 — in particular the t-test (which compares the
means of two samples using a normal distribution assumption)
or the Wilcoxon Rank Sum test (also known as Mann/Whitney
U-test, which compares the medians of two samples assuming
only that the distribution is non-discrete).

I have performed a comparative analysis forp-value distribu-
tions, actual type I errors, and the power of five different tests
using the group pairs fromvariance.data as the empiri-
cal basis. Since this analysis has many technical caveats, I will
not delve into the details here (please refer to [13] instead) and
just point out the main conclusion: Depending on the actual
data samples, any single test can sometimes mislead and it is
therefore advisable to use several tests at once and present their
results side-by-side in order to provide a broader and more re-
liable basis for understanding the data.

In particular, the Wilcoxon test is not just an inferior replace-
ment for the t-test to be used if sample normality is violated or
dubious, but rather is always a useful (sometimes even supe-
rior) complement. Since the Wilcoxon test assesses something
quite different (namely medians instead of means), both tests
should routinely be used together.

Such an approach also suggests that researchers should not
be transfixed by a certain significance threshold such as 0.05.
More reasonably,p-values should only be taken as one indica-
tor among others and conclusions should be derived from a set

1Note, that whenever clear group differences exist, confidence intervals
should be provided, because they are much more useful information than bare
hypothesis test results.

of observations and analyses (numerical, graphical, and quali-
tative) that is as diverse as possible in a given situation.

8 Summary and conclusions

The main findings from this investigation of the dataset
variance.data can be summarized as follows:

� The interpersonal variability in working time is rather dif-
ferent for different types of tasks.

� More robust than comparing the slowest to the fastest in-
dividual is a comparison of, for example, the slowest to
the fastest quarter (precisely: the medians of the quarters)
of the subjects, calledSF25.

� The ratio of slowest versus fastest quarter is rarely larger
than 4:1, even for task types with high variability. Typ-
ical ratios are in the range 2:1 to 3:1. The data from
the Grant/Sackman experiment (with values up to 8:1) is
rather unusual in comparison.

� Caveat: Maybe most experiments represented in
variance.data underestimate the realistic interper-
sonal variability somewhat, because in practical contexts
the population of software engineering staff will often be
more inhomogeneous than the populations (typically CS
students) used in most experiments.

� Still only little is known about the shape of working time
distributions. However,variance.data exhibits a
clear trend towards positive skewness for task types with
large variability.

� The effect size (relative difference of the work time group
means) is very different from one experiment to the next.
The median is about 14%.

� The oft-cited ratio of 28:1 for slowest to fastest work time
in the Grant/Sackman experiment is plain wrong. The cor-
rect value is 14:1.

As a consequence of these results, I suggest the following:

1. Although the data showed the individual variation to be
lower than previously assumed, it is still much larger than
the effect of the experimental variables. Therefore, it
would be valuable to have simple and reliable tests that
predict the performance of an individual for a certain kind
of task. Experimenters could use such tests for proper
grouping, blocking, or matching of their subjects, thus in-
creasing the sensitivity of their experiments. Practitioners
could use the same tests to optimize task assignments to
project staff. After some interest in such tests in the 1960s
(mostly for trainee selection), nobody appears to be work-
ing on this question any more.
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2. Robust measures of variability such asSF25 andSF50

should be used more frequently for describing soft-
ware engineering data. Reducing performance variabil-
ity across persons can be an important contribution of a
method or tool.

Acknowledgements

Thanks to all who offered or gave support obtaining datasets.
Kudos to the owners of several other datasets for publishing
their data. Thanks to Michael Philippsen for carefully ripping
apart a draft of this article.

References

[1] Victor R. Basili, Scott Green, Oliver Laitenberger,
Filippo Lanubile, Forrest Shull, Sivert Sørumg˚ard,
and M. Zelkowitz. The empirical investigation of
perspective-based reading.Empirical Software Engineer-
ing, 1(2):133–164, 1996.

[2] Michelle Cartwright. An empirical view of inheri-
tance. Information & Software Technology, 40(4):795–
799, 1998. http://dec.bournemouth.ac.uk/ESERG.

[3] Bill Curtis. Substantiating programmer variability.Pro-
ceedings of the IEEE, 69(7):846, July 1981.

[4] John Daly. Replication and a Multi-Method Approach
to Empirical Software Engineering Research. PhD the-
sis, Dept. of Computer Science, University of Strathclyde,
Glasgow, Scotland, 1996.

[5] John Daly, Andrew Brooks, James Miller, Marc Roper,
and Murray Wood. Evaluating inheritance depth on the
maintainability of object-oriented software.Empirical
Software Engineering, 1(2):109–132, 1996.

[6] Tom DeMarco and Timothy Lister. Programmer perfor-
mance and the effects of the workplace. InProc. 8th Intl.
Conf. on Software Engineering, pages 268–272, London,
UK, August 1985. IEEE CS Press.

[7] Thomas F. Dickey. Programmer variability.Proceedings
of the IEEE, 69(7):844–845, July 1981.

[8] Pierfrancesco Fusaro, Filippo Lanubile, and Guiseppe
Visaggio. A replicated experiment to assess requirements
inspections techniques.Empirical Software Engineering,
2(1):39–57, 1997.

[9] E. Eugene Grant and Harold Sackman. An exploratory
investigation of programmer performance under on-line
and off-line conditions.IEEE Trans. on Human Factors
in Electronics, 8(1):33–48, March 1967.
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