The 28:1 Grant/Sackman legend
IS misleading,
or:
How large is interpersonal variation
really?

Lutz Prechelt (prechelt@ira.uka.de)
Fakultat flr Informatik
Universitat Karlsruhe

D-76128 Karlsruhe, Germany
+49/721/608-4068, Fax: +49/721/608-7343
http://wwwipd.ira.uka.de/EIR/

Technical Report 1999-18
December 20, 1999

Abstract

How long do different programmers take to solve the same task? In 1967, Grant and Sackman
published their now famous number of 28:1 interpersonal performance differences, which is both
incorrect and misleading.

This report presents the analysis of a much larger dataset of software engineering work time data
with respect to the same question. It corrects the false 28:1 value, proposes more appropriate
metrics, presents the results for the larger dataset, and presents results of several further analyses:
distribution shapes, effect sizes, and the performance of various significance tests.

2

Contents

1

7

The 1966 experiment of Grant and Sackman

1.1 28:ljustisnttrue!
1.2 How should we measure variability?.

variance.data . A larger dataset

2.1 Contentsandstructure,
2.2 Warning about the interpretation of thedata

The size of interpersonal work time differences

3.1 Slowest versus fastestindividual
3.2 Slowestversus fastestquarter
3.3 Slowerversusfasterhalf

3.4 Standard deviation relativetothemean
35 Summary

The shape of work time distributions

4.2 Examples of actual distributions
4.3 Estimating “natural” work time distributions...
4.4 SUMMAIY ot e e e e e e e

Effect sizes

5.1 Definition
5.2 Expectations about effectsize
5.3 Effectsize distribution

Assessing different statistical tests for group differences

6.1 Thesetoftestsconsidered
6.2 p-valuesobtained
6.3 Estimation of power andtypelerror
6.4 Power and type | error of t-Test vs. Wilcoxon-Test.
6.5 Powerandtypelerroroverview

Summary and consequences

Bibliography

CONTENTS

............. 3

1 The 1966 experiment of Grant and Sackman

In 1966, Grant and Sackman performed a controlled experiment for comparing online and offline programming.
Six subjects each debugged a program using an interactive session at a text terminal (“online”) and six others
debugged the program using batch operation with fixed two-hour turnaround time (“offline”). The program,
called Maze had to compute the only way through a 20-by-20-maze. Each program to be debugged had
been designed and coded by the same person just before. All twelve subjects were experienced professional
programmers. The groups were then switched and the exercise was repeated with a different program, called
Algebra that computed the value of algebraic expressions.

In their article [10], Grant and Sackman state that “perhaps the most important practical finding of this study,
overshadowing on-line/off-line differences, concerned the large and striking individual differences in program-
mer performance.” They reported a ratio of the total working time required for the debugging process from the
slowest to the fastest subject of 28:1 (170 hours versus 6 hours). This value of 28:1 interpersonal performance
differences has since become quite famous. It is being quoted over and over [7].

There are three problems with this number:

1. Itis wrong.
2. Comparing the best with the worst is inappropriate.

3. One should use more data to make such a claim.

We will now discuss each of these problems in order.

1.1 28:1justisn’ttrue!

The original publication [10] contains a complete table of the raw data, but appeared in a not-so-well-known
journal. The second, more readily accessible source [24] does not contain this raw data. Possibly this is the
reason, why two methodological mistakes in the derivation of the 28:1 value are still not widely known. Dickey
published about these mistakes in 1981 [7], but was too late to eradicate the false quotations.

What is wrong with 28:17? First, it refers to the union of the grodebug Maze onlinenddebug Maze offline

Since systematic group differences between online and offline groups exist, this increases the ratio. If we

consider the groups separately, the maximum difference is only 14:1. Second, three of the twelve subjects did
not use the recommended high-level language JTS for solving the task, but rather programmed in assembly
language instead. Two of these three in fact required the longest working times of all subjects. One might argue
that the decision for using assembly is part of the individual differences, but presumably most programmers

would not agree that doing the program in assembly is the same task as doing it in a high-level language. If

we ignore the assembly programmers, the maximum difference drops to 9.5:1. Similar reductions occur for the

other three pairs of groups in the experiment. The real differences are only half as large as claimed, but still

justify the oft-stated “order of magnitude difference”.

1.2 How should we measure variability?

The second problem is much more obvious. If we compare the best to the worst, we will obtain almost arbi-
trarily high ratios if only we have enough subjects at hand: somebody will always take still a little longer.

A more appropriate measure of variability is the ratjon of the standard deviation and the meam. It is
independent of group size, but still has the disadvantage that extreme values in the group influence the value a
lot.

4 1 THE 1966 EXPERIMENT OF GRANT AND SACKMAN

Coding Debugging
Wert C Algebra C Maze D Algebra D Maze
from [10] 16 25 28 26
SFy 12.6 125 14.2 12.5
SFos 7.0 8.0 5.8 4.2
SFs 3.7 7.2 3.3 2.4

Table 1: Various measures of variability for each of the four pairs of groups from the Grant/Sackman exper-
iment. The raw data are taken from [10]. Each entry in lines 2 to 4 represents the group with the higher
variability; sometimes “online”, sometimes “offline”. Each entry in line 1 refer§'1¢ for the union of both
groups.

But if we partition the group into a slower and a faster half, we can consider the ratio of the medians of
these halfs. This value is robust against outliers as well as easy to interpret: How many times longer did
the average “slow” subject compared to the average “fast” subject? We might call this value the slow/fast
ratio SF'. Mathematically, this is the ratio of the 75% quantile of the time distribution to the 25% quantile:
SF = SFso := qr5/qos.

We may also ignore the middle half of the subjects and compare the medians of the slowest and fastest quarters
SFys = qg75/q12,5.- Using this notation, the ratio of maximum to minimum as used historically would be
SFy := q100/q0-

| suggest to usé F5y and S Fy5 as robust and easily interpretable measures of programmer variability.

The values of these measures for the four tasks from the Grant/Sackman experiment are shown in Table 1. As
we see, the typical representative of the faster half of the subjects is about two to seven times as fast as the
typical slower half subject. Note th&tFy,5 is not robust against even a single outlier in this particular case,
because with a group size of only 6 persons, the second fastest is ajfgadybut we are using 5, S0 that

the result contains fractions of the times required by the fastest (and slowest) subject. Only with groups of size
9 or more will S F»5 be completely free of any direct influence of the fastest and smallest person.

D_maze online
D_maze offline

D_algebra online

D_algebra offline
C_maze online
C_maze offline

C_algebra online

C_algebra offline

T T T
0 2000 4000 6000 8000 10000
time of each individual person

Figure 1:Work times of the individual subjects in the groups of the Grant/Sackman experiment. The box plot
indicates the quantiles at 10%/90% (whiskers), 25%/75% (box), and 50% (fat dot), the mean (M), and the
standard error of the mean (dashed line).

Figure 1 shows the individual data points of each person in each group, including a corresponding box plot. We
clearly see that the high values 8f(usually stem from only a single person that was very slow.

1.3 Only 12 programmers even after 30 years? 5

1.3 Only 12 programmers even after 30 years?

The possibly most amazing fact about the Grant/Sackman data is that despite the large interest the 28:1 figure
has created, nobody so far has ever systematically collected a larger amount of data about this phenomenon.
Everybody still refers to that one single case, based on only 12 programmers.

From time to time, individual researchers address the interpersonal variability for one of their own datasets
(Curtis once even wrote a short article just for this purpose [3]), but as far as | know, an investigation analyzing
data from several different experiments together did not exist before the current work.

1.4 Overview of this report

The main subject of this report, interpersonal variability of work times in software engineering experiments,
will be treated in Section 3, right after the dataset on which the investigation will be based has been introduced
in Section 2.

Variability statistics characterize one aspect of the work time distribution by a single number. Section 4 will
complement these statistics by an assessment of the osleagibof the distributions.

Another aspect, the size of the difference of average performasteeeergroups (the so-called “effect size”),
is discussed in Section 5.

Section 6 then discusses another related matter: the behavior and performance of various statistical tests
(that compare means or medians of work times between two subject groups) for the pairs of groups found
in variance.data

Finally, the main observations are summarized and consequences are derived in Section 7.

2 variance.data . A larger dataset

The rest of this report presents the analysis of work time data collected from 61 different controlled experiments

(or parts of experiments) in software engineering. These data were obtained either directly from experiments
conducted by our research group, from tables printed in journal articles or technical reports, or were sent to

me by one of the 17 researchers that | contacted by email. Data was used only if all persons of a group solved
the same task under roughly the same conditions — the Grant/Sackman experiment with its heterogeneity of
programming languages is in fact an unusual example in this respect.

2.1 Contents and structure

The dataset contains data from the following experiments: [15, 16], [13, 21, 19], [20], [22], [18, 17], [14],
[25], [11], [0, 24], [5], [2], [1]. [9], [3], [4], and [12]. Data from several other experiments was not available
because the authors either did not answer my request or said they no longer had access to the data.

The dataset contains one data point for each work time measurement of a complete (sub)task performed by an
experiment participant. The dependent variable of each data point is the work time in minutes. Each such value
is described by the following independent variables:

e source a reference to the article or techreport in which the experiment is described.

e id: a symbolic identifier for the experiment participant. Multiple measurements for the same person
within one experiment use the same id.

6 2 VARIANCE.DATA A LARGER DATASET

e group A short name for the experiment conditions (except for task, see below) used for this measure-
ment. In most cases this is simply refers to either the experiment group or the control group, but some-
times there are more than two groups being compared.

e task a symbolic name for the task to be solved. Groups of values that can be compared directly (as
groups) are identical fasourceandtaskand are different fogroup

e type the kind of task. This value is always identical for all persons within one task. This variable
partitions the whole dataset into experiment parts with similar properties. The following values exist:

maintain (understanding and modifying/extending),

understand (i.e., answering specific questions),

test/debug,

— review (reviewing for finding defects),

— program (design, implementation, testing/debugging),
— design,

— code (implementation).
In case of doubt, either “program” or “maintain” will be used.

e seq the sequence number of this task for this person in this experiment (e.g. 2 if this is the second task
performed by this person). This variable allows to assess sequence effects, but will not be used for the
analyses in this report.

In the analysis presented below, the data for task types “design” and “code” will be included in “program” to
avoid too small type groups or dubious type group boundaries.

Overall, the dataset contains 1491 observations made for 614 different subjects from 137 experiment groups
ranging in size from 2 to 38 persons (mean 10.9, see also Figure 2) and working on 61 different tasks. 14 groups
consisting of less than 5 subjects each will subsequently be ignored.

understand DM—A @
test/debug | -- } fff [V l

review e ", | 0
program H . e : 0
maintain 00§70 aeu °o ° o
| | | |
0 10 20 30
number of subjects in each group
Figure 2:Distribution group sizes in variance.data . There is the following number of groups in each task

type category: understand:28, test/debug:10, review:22 (but mostly very small), program:23, maintain:54.

2.2 Warning about the interpretation of the data 7

2.2 Warning about the interpretation of the data

Some caveats have to be kept in mind in order to avoid misinterpretations:

¢ In principle, the dataset contains only data for which no explicit time limit was mentioned to have been
enforced. It is possible, though, that such a limitation was present but was not mentioned by the authors
or was overlooked by me.

e If multiple subjects started their work in the same room at the same time, social pressure may have
reduced the work time differences (“*Oh, somebody'’s already finishing. | should hurry.”)

e For most of these experiments, work time was not the only variable that describes the performance of
the subjects. However, other measures that may warrant or explain very short or very long work times
are not considered here, because work time is the only quantitative variable that is available for all of the
experiments.

e For some of the experiments work time was not an important performance variable.

e The resolution and accuracy of the time measurement is often unknown. In most cases, resolution is
either one minute or five minutes. In many cases, the times were recorded by the subjects themselves,
hence accuracy is hard to estimate.

The main message of the above is the following: Only in a few experiments have all participants worked
until their task was solved completely and correctly. Therefore only in a few experiments is the work time
information sufficient to characterize subject performance. In contrast, most experiments also contain data
points in which the subjects reduced their work time at the expense of product quality — whether that was a
conscious choice or not. On the other hand, we find similar behavior in real software development as well,
hence we may consider the effect (and thus the time differences) realistic.

3 The size of interpersonal work time differences

This section discusses the core of the matter. To improve the homogeneity of the data, we partition it according
to task type.

3.1 Slowest versus fastest individual

Let us start with the maximum/minimum ratio as used by Grant and Sackman — except that we will properly
discriminate different experimental conditions. This statistic is shown in Figure 3.

As we see, large individual variations similar to those seen in the Grant/Sackman experiment (that is, 12 to 14
or more)dooccur, but are not at all typical. Except for the task type “programming”, which exhibits the largest
variation of variations, interpersonal differences of more than factor 10 are rare. And before we even start to
interpret too much into this figure, let us switch to a more meaningful representation: The ratio of the slowest
to the fastest quarter.

8 3 THE SIZE OF INTERPERSONAL WORK TIME DIFFERENCES

understand o o o
test/debug o
review 0
program o o Ioo—oh o
maintain . 0
T T T T T

2 4 8 16 32
maximum/minimum quotient

Figure 3: Distribution of the ratio SF; of the slowest to the fastest subject within each group. Each point

represents one group of measurements for the same task under the same experimental conditions. Note the
logarithmic scale.

understand) I 0

test/debug

review @

program

maintain

g87,5/g12,5 quotient SF25

Figure 4:Distribution of the ratio SF,5 of the medians of the slowest and fastest quarter of each group, for all
groups with 9 or more subjects. One point of “test/debug” is at 11.4 (that is, outside of the plot); likewise two
points of “programming” at 10.9 and at 12.

3.2 Slowest versus fastest quarter

SFys is plotted in Figure 4. It appears that 2 to 3 is the typical range for this performance ratio. Thus, if we
ignore the most extreme cases, the differences between best and worst are by far not as dramatic as the 28:1
figure suggests. The large values (4 to 8) found for the Grant/Sackman experiment are unusual compared to the
rest.

We note a rather narrow distribution for reviews. Apparently the individual capability differences will be
converted mostly into quality differences rather than time differences for this task type. There are two possible
reasons: First, in contrast to any other task type, one can declare an inspection finished at essentially any time.
Second, in some of the experiments, a certain review speed (in lines per hour) was recommended to the subjects.

3.3 Slower versus faster half

Next, see Figure 5: If we consider the slower and faster half instead of the slowest and fastest quarter of each
group, the differences shrink further.

3.3 Slower versus faster half

understand

test/debug

review

program

maintain

g75/q25 quotient SF50

Figure 5: Distribution of the ratio SFs, of the medians of the faster and slower half of the subjects for each
group.

The difference between the slower and faster half is usually less than factor two, again except for task type
“programming”. And again, the high values in the Grant/Sackman data (2.4 to 7.2, as seen in Table 1) are
rather unusual. | conclude that these values may be misleading and atypical for more recent tasks and subject
populations. However, a different explanation is possible as well. The programming education of programmers
in 1967 was certainly more inhomogeneous than the education of CS students in the 1980s and 1990s (which
most of the subject populations of the other experiments come from). Perhaps this inhomogeneity has caused
the higher variance. Since, in practical software engineering contexts the background of programmers is be-
coming more diverse again (because increasingly more of them do not have a formal CS or SE education), this
explanation suggests that in practical situations the variability may be larger than the distributions shown in
Figure 5 suggest.

Another explanation could be based on the observation that the absolute work times of the Grant/Sackman
experiment are longer than the work times of the other experiments. Maybe larger tasks result in higher vari-
ability? No, the plot ofS F5, versus mean work time for all experiment groups (Figure 6) indicates no such
trend at all — the opposite appears to be more likely.

274 272 1 4 16

1 1 1 1 1 1 1 1 1 1
test/debug understand

i o 0 L,
F-—-=- 00-6—-— - = —__
=) 0 0 e
0 L :
m maintain program review
16 — -
0 N
87 (¢} \ B
0 [0X0) Y
i L0 N L
4 *\§ go \\
2 089 09~ -9 >0
0 L)
T T T
1

T T
14 202

T
4

T
16

work time [hours]

Figure 6:SF5, depending on the mean work time of each experiment group. The dashed trend line is a robust
L, (minimum absolute distance) regression line. Both axes are logarithmic.

10 4 THE SHAPE OF WORK TIME DISTRIBUTIONS

A medianS F5 of about 2 matches well will the results of the fascinating 1984 field study of DeMarco and
Lister [6]. In that study 166 professional developers from 35 different organizations had solved the same task
under very different local work conditions a5, was 1.9.

3.4 Standard deviation relative to the mean

For sake of completeness, let us have a look at the ratio of standard deviation and mean, which also characterizes
variability. Figure 7 shows that this ratio is typically about 0.5. This means that on the average a programmer
will take about 50 percent more or less time than the average.

understand o obo . 3 3 o o 0O
test/debug H o @M . I——| o
review m 5 0

program

maintain

0.0 0.2 0.4 0.6 0.8 1.0 1.2
stddev/mean quotient

Figure 7:Distribution of the ratio of standard deviation and arithmetic mean for each group.

3.5 Summary

In summary we can say thspical work time differences between slower and faster programmers are more on
the order of 2:1 — much less impressive than the oft-cited 28:1. Still, these differences are much larger than the
typical differences between two different experimental conditions (see Section 5) and are hence clearly worthy
our attention in terms of improving the software development process.

4 The shape of work time distributions

Beneath summary indicators of variability such as the ones presented, a more general question is lurking: What
is theshapeof a work time distribution in software engineering?

The answer to this question is a key to solving a number of problems such as correct and efficient statisti-
cal inference in controlled experiments, more accurate schedule and staff planning in projects, improved risk
detection in projects, etc.

This section will therefore investigate the shape of the work time distributions preseatiamce.data
for the various task types.

4.1 The normal distribution assumption 11

o
/
/0
© 0
2 o4 /60 06y ©° -
Q P % 0 o)
% 0 o}
‘93 80
8 L
00
T T T T
4 16 64 256

LS25 ideal (assuming normal distribution)

Figure 8: Comparison of the actual value of SFs5 for each experiment group with a theoretical value of S Fys
based on a normal distribution assumption and computed from mean and standard deviation. The axes are
logarithmic.

4.1 The normal distribution assumption

For each group of values, we take their mean and standard deviation and compute ha#Flgrgeuld be,

if this group of values was exactly normally distributed. Figure 8 compares these theoretical values to the
actual ones. As we see, the normal distribution assumption will almost always over-estimate thé& Bgjual
variability of a group, often by far. Obviously, a normal distribution assumption is often not warranted.

4.2 Examples of actual distributions

So let us look at a few examples of what such distributions actually look like. For small experiment groups we
cannot get a clear view of the actual distribution, but for larger groups, a density estimator function (in our case
based on Gaussian kernels) can provide us with a reasonable approximation of the actual distribution. Figure 9
shows the thus-estimated distributions of four groups from [13].

uka_T nodoc_uka

uka_T doc_uka

uka_E nodoc_uka

uka_E doc_uka

0 20 40 60 80 100 120
time of each individual person

Figure 9: Estimated probability density functions for four groups from [13], each having between 36 and 38
subjects. Each dot represents one work time value.

The estimation uses a common rule for thumb for selecting the amount of smoothing in the estimation: For a
sampleX, the standard deviation of the Gaussian kernel functioRs(isiax(X) — min(X))/ log,(| X|). Fora

12 4 THE SHAPE OF WORK TIME DISTRIBUTIONS

sample of which we expect that it may be normally distributed, but don't take this assumption for granted, this
amount of smoothing reduces irritating discontinuities in the data, but still allows to see severe deviations from
normality, if present. In our case, fairly interesting phenomena appear — different ones for different experiment
groups: While the first (uppermost) and fourth distribution could be accepted as normal, the second one has
too much weight on the right side and the third one even looks like it might have two peaks. Unfortunately, we
cannot be sure that these phenomena are real for the underlying distribution, because samples of the given size
sometimes look quite weird even if thep come from a normal distribution.

t2 pretest

t1 pretest

0 20 40 60
time of each individual person

Figure 10: Estimated probability density functions for the two groups from [3], 27 subjects each. The times
were reported as ranges instead of with a precision of one minute.

So let us look at another example. The two groups from Figure 10 both have a right tail that is longer than in a
normal distribution. This is called positive skewness and is a common phenomenon for time data, because one
can take arbitrarily long, but not arbitrarily short (0 is the limit). The lower distribution also looks like it might
perhaps have two peaks. This could mean that the different subjects applied either of two different methods for
solving the task. Each of the two methods results in a normal distribution, but for the less appropriate method,
the mean of this distribution is higher than for the other.

It is plausible that positive skewness is typical of software engineering work time data. But so far this was only
an assumption.

4.3 Estimating “natural” work time distributions

The large amount of data in our dataset, however, allows producing a fairly accurate estimate of the actual
shape of the average work time distribution accross a diverse set of programmers and tasks. For obtaining this
estimation we normalize all our data by dividing each work time value by its experiment group average. The
resulting values thus have a mean of 1 and show a certain “natural” variance structure — if such a thing exists.

Figure 11 shows the work time distributions of the resulting virtual groups by task type. With the exception
of “review”, all task types show a clearly positive skewness, which ranges from 1.25 for “maintain” (the 90%
confidence interval is 0.86 to 1.64) up to 1.95 for “test/debug” (confidence interval 1.17 to 2.49). The skewness
of review tends to be negative, but is unsure (confidence interval2 to 0.19).

4.4 Summary

The following can be said about the working time distributions founekinance.data

e Along right tail is indeed a typical phenomenon for software engineering work time distributions. The
typical skewness is about 1 to 2.

13

understand

test/debug

review %

program

maintain

summarized groups (normalized to mean 1)

Figure 11:Estimated probability density functions for virtual groups created by normalizing each group mean
to 1. These virtual groups consist of (top to bottom) 238, 118, 86, 236, and 780 data points, respectively.

e The work time variability tends to be larger for task type “test/debug” (meEf = 2.4, SFy; = 3.2)
and even more for “programming” (mea¥s, = 2.4, SFy; = 7.1) than it is for “maintain” (mean
SF5y = 1.7, SFy; = 2.4) or for “understand” (meal§ F5g = 1.8, SFy; = 2.9).

¢ Inspections are special. They exhibit both low variability (médny, = 1.1, SFy; = 1.3) and low
skewness.

5 Effect sizes

Viewed from an engineering perspective, the purpose of experiments is identifying better ways of software
development. Therefore, we want to find not just that one group performs better than the other, but also how
large that difference actually is. If the difference is too small, the better technique may not be worth the effort
required for introducing itvariance.data allows for asking “How large are the effects of the experiment
variable on the average work time?” and to analyze a whole distribution of such effect sizes.

5.1 Definition

What is the effect size? Given two experiment grodpand B and their work time measurement vectoys
andip, let us assume that is faster on average. Then we can define effect size in two different ways: Either
the relative difference of the means o
t
E:E:=2_-1
ta

or the absolute difference of the means in proportion to the pooled standard deviation

FEy: FE := @

U(tAuB)

In the statistical literaturez, is more common, because it is closely related to the power of statistical tests. For
practical purposes, howevdr; is more relevant, because it directly tells us how much we can expect to gain
by switching from one method to another. Furthermore, Greenland [23, S. 671f] argués taat mislead in
effect size comparisons. Hence, | will usg below. However, we should be aware that higher variability in
the samples increases the stochastic error when meaguring

14 5 EFFECT SIZES

5.2 Expectations about effect size

We might expect the following:

e For one, some experiments do not find an expected work time effect and for many experiments the effect
does not (or not mainly) influence work time. Therefore, we should expect to find a large proportion of
small effect sizes.

e Furthermore, if we had a comparison with a giant effect, we would not need a controlled experiment to
assess it. Hardly anybody, for instance, would come up with the idea of comparing the time required for
coding a database query in SQL versus in assembler. Therefore, we should expect that the size of the
largest effects in our effect size distribution is rather modest. Effect sizes of 0.1 to 0.4 appear realistic;
much larger ones should be rare.

5.3 Effect size distribution

M-
0%5000‘63%0 P o © © %5 o 0 o °o o

T T T T T
0.0 0.5 1.0 1.5 2.0
effect size

Figure 12: Effect sizes: Each point represents the quotient-minus-1 of the mean work times of the slowest
versus the fastest group for each experiment task.

Given this expectation, the actual distribution of effect sizes, as shown in Figure 12 is surprising. Small effects
exist, but are not as frequent as expected. Also, about one third of all effects is larger than 0.5, 10 percent are
even larger than 1.0. Figure 13 shows the same data partitioned by task type.

understand

test/debug

review l

program

maintain

0.0 0.5 1.0 1.5 2.0
effect size

Figure 13:Work time effect sizes by task type.

What should we think of the effect size distribution? The modest fraction of small effects can partially be
explained by the small size of most experiment groups as follows. The measured effect size is the sum of the
true effect (caused by switching the experimental condition) and a random effect (caused by incidental group
differences). The contribution of the random effect grows with increasing variability within the groups and with

15

decreasing group size, because individual differences have less chance to balance out in smaller groups. And
indeed we find that the effects tend to be larger for smaller groups; see Figure 14.

effect size
= = N
o ol o
| | |
an
T T T

o
(&)

0.0

group size

Figure 14:Effect size depending on group size. The effect has a random component which is larger in smaller
groups, as the regression line shows.

M
[]
000, o o
BB 9 g0 o [P0 o , o o o o ° o o

0.0 0.5 1.0 15
effect size (conservative)

Figure 15:Effect size after approximate removal of the random component.

We can subtract the mean random effect (standard error of the effect size) from the effect size. This results in
approximately the effect size distribution shown in Figure 15, which comes much closer to our expectations.

However, the very large effects in this distribution are quite impressive even after this correction. Such a
large effect suggests that either the concrete task to be solved in the experiment was biased towards one of the
experiment conditions or a very narrow aspect of software engineering has been measured in an unrealistically
pure form.

But whatever we think of the extremes of the effect size distribution, its median can be used to make an impor-
tant point. Only half of all experiments found an effect that was larger than 14 percent. Thus, an experimenter
should not usually expect to see a larger effect and reviewers should not reject experimental research work just
because its effect size is small. Most progress in software engineering, as everywhere, is made in rather small

steps.

6 Assessing different statistical tests for group differences

For a majority of all controlled experiments (in software engineering as well as elsewhere) a statistical hy-
pothesis test for differences between the group means or the group medians is the core of the statistical eval-
uation. Even though work time is not always the most important (let alone the only) performance measure,

16 6 ASSESSING DIFFERENT STATISTICAL TESTS FOR GROUP DIFFERENCES

variance.data provides a nice opportunity to review the p-values returned by various tests. What fraction
of tests will be successful? How do the results for different kinds of tests differ?

6.1 The set of tests considered
In this and the following section, we will consider five different tests for comparing two samgledy:

e The standard t-Test for differences in the means of independent samples. This test assumes the samples
are each taken from a normal distribution and that the variances of these distributions are equal. These
assumptions will more or less inappropriate for some of the group pairs.

e The “optimized” t-Test. This is like the standard t-Test, except that the either the sample values them-
selves or their square roots or their logarithms will be used for the testing, whichever transformation
leads to the best approximation for the normality assumption (as indicated by lower resulting p-values).
Furthermore if the variances of the (possibly transformed) samples differ by more than factor 2, a Welch

correction for unequal variance £ 7 (I)/Eﬁ (y)/\yl) will be applied to the test.

e The Wilcoxon Rank Sum Test (also known as Mann/Whitney U-Test) for differences in the median of
two samples. The only assumption is that both samples must come from a continuous distribution.

e A Bootstrap-based test for differences in the group means. This test, like the Wilcoxon-Test, works
without any strong assumptions but, unlike the Wilcoxon-Test, still compares means, not medians. It
works by repeatedly drawing samples (with replacement) of sizdrom z and of size|y| from y,
computing an empirical Bootstrap distribution for the difference of their means, and reading the p-value
from this distribution as the area beyond zero. This is the so-called percentile method for Bootstrap tests.
Confidence intervals for the difference can also be determined directly from this distribution. For an
introduction into Bootstrap techniques, see [8].

e The “optimized” Bootstrap-based test. Like above, but tests the square roots or logarithms of the values
if the optimized t-Test recommends it.

Although the t-Test is known to be fairly robust against deviations from normality in the data, such deviations
will make the test less sensitive (i.e. reduce its power). Many researchers thus use the Wilcoxon-Test if they
have reason to believe such deviations exist. However, the Wilcoxon-Test compares medians, not means, which
is often of less interest. Furthermore, the Wilcoxon test has allegedly lower power (i.e. a lower probability
of actually rejecting a false null hypothesis). Overall, it is quite interesting to compare the t-Test and the
Wilcoxon-Test directly for a number of pairs of work time samples from the software engineering domain and
to compare the other tests to both as possible alternatives.

6.2 p-values obtained

Let us first compare the t-Test and Wilcoxon-Test directly; see Figure 16. There are severe differences in
individual cases, but on the average the two tests perform quite similarly.

Figure 17 shows the distribution of p-values obtained from two-sided tests for all those pairs of groups whose
effect size is shown in Figure 12. The success rate is not very large. Only about 20% to 30% of all tests come
out below the most common threshold pf< 0.05. If one-sided tests are used, we must divide the plotted
values by 2 and about 30% to 40% of all tests will be successful.

The Bootstrap-Tests typically return lower p-values than both t-Tests and Wilcoxon-Test and will hence reject
the null hypothesis more frequently. This can be seen more clearly in Figure 18. The Wilcoxon-Test exhibits

6.2 p-values obtained

17

o 0 o o o o o
o & og8d0 o“oo[p oo %% 0

-100

I I I I
-50 0 50 100
-100*(T/W-1) 100%(W/T-1)

Figure 16:Comparison of the p-values returned by the t-Test (T) and the Wilcoxon-Test (W). The plots shows
the difference (in percent) of the larger relative to the smaller value. This differences is plotted to the positive
side if W>T, to the negative side otherwise. A few extreme values lie outside of the plotted area.

opt. Boot.-Test

Bootstrap-Test

Wilcoxon-Test

opt. t-Test

t-Test

M-
Qé‘“’ﬁ“oo.oo 0o

- M- | |
B o v ® o 0% 00of5 %% T 0 o o

R]

o 0 9f®° o 00000 oof 5 —

.
9 o®p o 00 0 o % 990 lo 0000 °

0.0 0.2 0.4 0.6 0.8 1.0
p values

Figure 17: Distribution of the p-values returned by the various (two-sided) tests. Each point represents the

comparison of one pair of groups.

©
o
()]
@ i
©
(8]
s < |
o o
-
o
= T
=
c N ,/B
2 o T
o
5 /
_ T‘.;V'y
w
oS
o

B opt. Bootstrap-Test
b Bootstrap-Test

T opt t-Test

W Wilcoxon-Test

t t-Test

0.0

0.05 0.10 0.15 0.20

significance level (two-sided test)

Figure 18:Fraction of tests that reject the null hypothesis on different significance levels (0.01; 0.02; 0.05; 0.1;
0.2). Each point represents the success rate of all tests for all pair-wise group comparisons.

18 6 ASSESSING DIFFERENT STATISTICAL TESTS FOR GROUP DIFFERENCES

almost the same success rate than the standard t-Test. Unlike the claims often seen in experimental papers,
experiments willon the averagaot lose power if the Wilcoxon-Test is used instead of the t-Test.

6.3 Estimation of power and type | error

There are two ways how a statistical test may give an incorrect result:

e Type | Error: The null hypothesis is being rejected although there is no real difference indeed.

e Type Il Error: The null hypothesis is not being rejected although a real difference in fact exists.

The probability that either of these errors occurs in a statistical test is often eatled, respectively.

« is identical to the chosen significance level if the test functions perfectly. In practical situations, however,
there is usually some difference, because the assumptions of the test are fulfilled only approximately.

[decreases with increasing increasing sample size and and increasing appropriateness for the test with
respect to the actual distribution of the data- (is called thepowerof the test.

For a given pair of samples, we can use Bootstrapping to computexetid1 — 5 (power) in the following
fashion. Assume we want to assess the t-test for two sam@esly with different mean. Now the trick is to
consider these samples to be the population itself, so th&newthat a means differences in the population
does exist and thus also know that the test should reject the null hypothesis. To compute the power, we do now
repeatedly (say, 500 times) draw a resample fiofthat is, a sample of siZe| drawn fromz with replacement)

and a resample from, apply the t-test to the resample, and count in which fraction of the cases the test rejects
the null hypothesis for the resamples at a given fixed significance level. This fraction is the Bootstrap estimate
for the power of the test. Likewise, we can compute a modified sapiple y — 7 + Z such that we know

that no means difference between the populatiomasdy’ exists (so that the test should never reject the null
hypothesis) and apply the same process described above to the sarapthg to produce an estimate for the

type | errora.

Note that the values fat and power obtained by this method will only be approximations, because for small
sample sizes such as ours, equating the sample with the population is a rather crude operation.

For assessing the Wilcoxon test in this manner, there are two complications. First, we must align the medians
(instead of the means) for the estimationnofSecond, we must add a small amount of random noise to each
data value of each resample, because the Wilcoxon test in its default form cannot cope with ties in a sample but
resamples usually contain ties. The noise must be smaller than the minimum difference between any two values
from the unified sample U y. Alternatively, we can use a modified form of the Wilcoxon test that applies a
normal-theory approximation to accomodate the presence of ties in the samples. The difference of the results
of these two methods is quite small.

6.4 Power and type | error of t-Test vs. Wilcoxon-Test

Now let us apply this method to the various pairs of samples in our dataset and analyze the results.

Let us first consider a direct comparison of t-Test and Wilcoxon-Test again. For power (Figure 19) the behavior
is quite similar to that we found for the p-values. Large differences exist in individual cases, but the average
performance is almost the same for both tests.

The Bootstrap estimates of the actual type | error, however, are surprising; see Figure 20. First, most errors are
fairly far away from the nominal 0.05. Second, in most cases the differences are rather different for the two
tests; the correlation is only 0.42. The lesson to be learned from this plot is that relying on a single kind of test
is dangerous.

6.4 Power and type | error of t-Test vs. Wilcoxon-Test 19

0,05
[EnY
o
|

o
[ed
|

o
o
|

Power Wilcoxon test, p
o =]
N BN
| |

o
o
|

T

T T T T T
0.2 0.4 0.6 0.8 1.0
Power t-test, p=0,05

Figure 19: Comparison of the Bootstrap-estimated power of the t-Test and the Wilcoxon-Test for p = 0.05.

Each point represents one pair of groups that were compared. The dashed line indicates x = y, the full line is
a local regression trend line.

0.30 -
-

T} o -
3).25 — o ~ —
I -~
a o] -
3)0.20 — A L
Q
.15 =
x
$10
;.
g).OS — L
)

0.0 L

I I I I I I I
0.0 0.05 0.10 0.15 0.20 0.25 0.30

error t-Test, p=0,05

Figure 20:Comparison of the Bootstrap-estimated actual type | errors made by the t-Test and the Wilcoxon-
Test applied with a nominal significance level of p = 0.05. Each point represents one pair of groups that were
compared. The dashed line indicates x = y, the full line is a local regression trend line.

20 6 ASSESSING DIFFERENT STATISTICAL TESTS FOR GROUP DIFFERENCES

6.5 Power and type | error overview

opt. Boot.-Test @QJSOTL %0 0 BXo % o Boo o . T

Bootstrap-Test o ool B0 P00 Mg o as0 000 b w0}

Wilcoxon-Test glgim 8 % Booony o %0 %0 o 55 o o . o o080
opt. t-Test gJ% = I |

pt. 809800 oo 08w 00 o [0 T T ® 1 o oo

tTest | shpranfo ol o af——wor ok o w0

0.0 0.2 0.4 0.6 0.8 1.0
power (for p=0.05)
Figure 21:Distribution of the Bootstrap estimates of the power of the different tests at a nominal significance

level of p = 0.05. The estimates are based on 100 pairs of Bootstrap resamples. Each point represents one
pair of groups that were compared.

| | | | |
opt. Boot.-Test o 6 T3 B o o 0
Bootstrap-Test o e 6o 108®6s s 6 oo
Wilcoxon-Test s r T 1.8 b 6 0 0

opt. t-Test 8 T8 o 8 ° o
t-Test co F 8% e fo o oo o
T T T T T
0.0 0.05 0.10 0.15 0.20 0.25

error (for p=0.05)

Figure 22:Distribution of the Bootstrap estimates of the actual type | errors for the different tests at a nominal
significance level of p = 0.05. The estimates are based on 100 pairs of Bootstrap resamples. Each point
represents one pair of groups that were compared.

Looking at the distribution of power values (at nominal signficance level 0.05) for all tests at once (Figure 21)
we arrive at the same conclusions as after the analysis of the p-values obtained. The power of the Boostrap-
based tests is indeed somewhat higher than the power of the conventional tests. Due to the large humber
of cases, for example the difference in median power between Bootstrap-Test and optimized t-Test is highly
significant withp = 0.001.

However, looking at the type | errors (for the same nominal significance level of 0.05, shown in Figure 22)
we see the downside of this difference: Along with the high power of the Bootstrap-based test we buy a lower
reliability. The actual error probabilities obtained by, for instance, the optimized Bootstrap-Test are almost
twice as large as the expected ones. The other tests are too optimistic as well (which may indicate some bias
introduced by the Boostrap error estimation procedure), but less so.

For all tests the variability in the actual error is rather conspicous. To some degree this can be explained by the
small size of the groups in many of the experiments in our dataset. Small groups result in higher fragility of
both the statistical tests themselves and the Bootstrap resampling used for computing the errors.

opt. Boot.-Test
Bootstrap-Test
Wilcoxon-Test

opt. t-Test

t-Test

Figure 23:Like Figure 21, but shows only the data for groups of 12 or more subjects.

opt. Boot.-Test

Bootstrap-Test

Wilcoxon-Test

opt. t-Test

t-Test

Figure 24:Like Figure 22, but shows only the data for groups of 12 or more subjects.

0.2 0.4 0.6 0.8 1.0
power (for p=0.05), at least 12 subjects

0.0 0.05 0.10 0.15 0.20 0.25

error (for p=0.05), at least 12 subjects

21

If we remove the small groups from the evaluation and look at the results for groups of at least 12 subjects only,
we obtain somewhat higher power (Figure 23) and more modest distributions of error (Figure 24). The average
power, however, is still below 0.4. Only a minority of all experiments can have found significant differences

for working time.

These trends stay fairly consistent if we change the nominal significance level, as Figures 25 (for power) and
Figure 25 (for type | error) show. There is one exception, though: The Wilcoxon test performs much better with
respect to its error at smaller nominal significance levels (strict tests) compared to larger levels (loose tests).

7 Summary and consequences

The main findings from this investigation of the datasmtiance.data

can be summarized as follows:

e The oft-cited ratio of 28:1 for slowest to fastest work time in the Grant/Sackman experiment is plain
wrong. The correct value is 14:1.

e More appropriate than comparing the slowest to the fastest individual is a comparison of, for example,
the slowest to the fastest quarter (precisely: the medians of the quarters) of the subjects;églled

22

7 SUMMARY AND CONSEQUENCES

©
o
=
@ i
Q
S
o ¥ |
g 3
IS
g -
3
T oo B opt. Bootstrap-Test
g ° N b Bootstrap-Test
g i T opt t-Test
W Wilcoxon-Test
o | t tTest
© T T T T T
0.0 0.05 0.10 0.15 0.20

significance level (two-sided test)

Figure 25:Mean power of the tests for different nominal significance levels. Each point represents the arith-
metic mean from all pairwise group comparisons using one kind of test.

o
(Y)_ -
e B opt. Bootstrap-Test
N b Bootstrap-Test ,,\g
T opt. t-Test ==
8_ . w Wilcoxon-Test
© t t-Test

0.10
1
A\
A\
\\}
W
A)
— ="
A

type 1 error (arithmetic mean)
1

0.0 0.05 0.10 0.15 0.20

significance level (two-sided test)

Figure 26:Mean size of the type | error for all tests at different nominal significance levels. Each point repre-
sents the arithmetic mean from all pairwise group comparisons using one kind of test.

The variability in interpersonal performance is rather different for different types of tasks.

SFys is rarely larger than 4, even for task types with high variability The data from the Grant/Sackman
experiment (with values up to 8) looks almost like an outlier in comparison.

Caveat: Maybe the experiments representedaimance.data underestimate the interpersonal vari-
ability somewhat, because in practical contexts the programmer population will often be more inhomo-
geneous than the populations (typically CS students) used in most experiments.

Still only little is known about the shape of working time distributions. For some tasks we may expect
to see two-peaked or n-peaked distributions due to different approaches with non-equivalent suitability
taken by different persons. Howevegriance.data exhibits a clear trend towards positive skewness

for task types with large variability.

The effect size (relative difference of the work time group means) is very different from one experiment
to the next. The de-biased median is 14%.

23

e The Boostrap-based test for differences of group means appears to have (on average) higher power but
also higher type | error than conventional tests such as t-Test and Wilcoxon Rank Sum Test.

e The type | error of all tests varies a lot from one application to another — not necessarily in the same
way for each kind of test.

As a consequence of these results, | suggest the following:

1. Although the data showed the individual variation to be lower than previously assumed, it is still much
larger than the effect of the experimental variables. Therefore, it would be valuable to have simple and
reliable tests that predict the performance of an individual for a certain kind of task. Experimenters could
use such tests for proper grouping, blocking, or matching of their subjects, thus increasing the sensitivity
of their experiments. Practitioners could use the same tests to optimize task assignments to project staff.
After some interest in such tests in the 1960s (mostly for trainee selection), nobody appears to be working
on this question any more.

2. Robust measures of variability such$s,; andS F5o should be used more frequently for describing soft-
ware engineering data. Reducing performance variability across persons can be an important contribution
of a method or tool.

3. The dubious reliability of any single kind of statistical test seen in our dataset suggests to always present
the results of several different test side-by-side when analyzing work time data.

4. For the same reason, researchers should not be transfixed by a certain significance threshold such as 0.05.
More reasonably, p-values should only be taken as one indicator among others and conclusions should
be derived from a set of observations and analyses (both quantitative and qualitative) that is as diverse as
possible in a given situation.

24

REFERENCES

References

[1]

2]

3]
[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Victor R. Basili, Scott Green, Oliver Laitenberger, Filippo Lanubile, Forrest Shull, Sivert S@amanaid
M. Zelkowitz. The empirical investigation of perspective-based readingpirical Software Engineering
1(2):133-164, 1996.

Michelle Cartwright. An empirical view of inheritancénformation & Software Technology0(4):795—
799, 1998. http://dec.bournemouth.ac.uk/ESERG.

Bill Curtis. Substantiating programmer variabilitffroceedings of the IEEB9(7):846, July 1981.

John Daly.Replication and a Multi-Method Approach to Empirical Software Engineering ReseBHhdb
thesis, Dept. of Computer Science, University of Strathclyde, Glasgow, Scotland, 1996.

John Daly, Andrew Brooks, James Miller, Marc Roper, and Murray Wood. Evaluating inheritance depth
on the maintainability of object-oriented softwatmpirical Software Engineerind.(2):109-132, 1996.

Tom DeMarco and Timothy Lister. Programmer performance and the effects of the workpla@mcin
8th Intl. Conf. on Software Engineeringages 268—272, London, UK, August 1985. IEEE CS Press.

Thomas F. Dickey. Programmer variabilitiProceedings of the IEEB9(7):844—-845, July 1981.

Bradley Efron and Robert TibshiraniAn introduction to the BootstrapMonographs on statistics and
applied probability 57. Chapman and Hall, New York, London, 1993.

Pierfrancesco Fusaro, Filippo Lanubile, and Guiseppe Visaggio. A replicated experiment to assess re-
quirements inspections techniqué&npirical Software Engineerin@(1):39-57, 1997.

E. Eugene Grant and Harold Sackman. An exploratory investigation of programmer performance under
on-line and off-line conditionslEEE Trans. on Human Factors in Electronjé(1):33—-48, March 1967.

Christian K@mer. Ein Assistent zum Verstehen von Softwarestruktwieddva. Master's thesis, Fakaflt”
Informatik, Universiéit Karlsruhe, June 1999.

Christopher Lott. A controlled experiment to evaluate on-line process guidaBogirical Software
Engineering 2(3):269-289, 1997.

Lutz Prechelt. An experiment on the usefulness of design patterns: Detailed description and evalu-
ation. Technical Report 9/1997, Falatltfiir Informatik, Universiéit Karlsruhe, Germany, June 1997.
ftp.ira.uka.de.

Lutz Prechelt and Georg Gitér. Accelerating learning from experience: Avoiding defects faskEE
Software .(.):., . . Submitted April 1999.

Lutz Prechelt and Walter F. Tichy. A controlled experiment measuring the impact of procedure argument
type checking on programmer productivity. Technical Report CMU/SEI-96-TR-014, Software Engineer-
ing Institute, Carnegie Mellon University, Pittsburgh, PA, June 1996.

Lutz Prechelt and Walter F. Tichy. A controlled experiment to assess the benefits of procedure argument
type checkinglEEE Trans. on Software Engineeringg(4):302—312, April 1998.

Lutz Prechelt and Barbara Unger. A controlled experiment measuring the effects of Personal Software
Process (PSP) trainingEEE Trans. on Software Engineering.):., . . submitted September 1999.

Lutz Prechelt and Barbara Unger. A controlled experiment on the effects of PSP training: Detailed
description and evaluation. Technical Report 1/1999, Fakfilt Informatik, Universiét Karlsruhe, Ger-
many, March 1999. ftp.ira.uka.de.

REFERENCES 25

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Lutz Prechelt, Barbara Unger, Michael Philippsen, and Walter Tichy. Two controlled experiments assess-
ing the usefulness of design pattern information during program mainten#gE& Trans. on Software
Engineering.(.):., . . submitted August 1999.

Lutz Prechelt, Barbara Unger, Michael Philippsen, and Walter F. Tichy. A controlled experiment on in-
heritance depth as a cost factor for maintenaff€EE Trans. on Software Engineering.):., . . submitted
September 1999.

Lutz Prechelt, Barbara Unger, and Douglas Schmidt. Replication of the first controlled ex-
periment on the usefulness of design patterns: Detailed description and evaluation. Tech-
nical Report wucs-97-34, Washington University, Dept. of CS, St. Louis, December 1997.
http://ww.cs.wustl.edu/cs/cs/publications.html.

Lutz Prechelt, Barbara Unger, Walter F. Tichy, Peteo®8tér, and Lawrence G. Votta. A controlled
experiment in maintenance comparing design patterns to simpler solutiBB& Trans. on Software
Engineering January 1999. Submitted. http://wwwipd.ira.uka.de/"prechelt/Biblio/.

Kenneth Rothman and Sander Greenlaibdern Epidemiology Lippincott-Raven, Philadelphia, PA,
2nd edition, 1998.

H. Sackman, W.J. Erikson, and E.E. Grant. Exploratory experimental studies comparing online and offline
programming performancé&ommunications of the ACM1(1):3-11, January 1968.

Rainer Typke. Die Ntzlichkeit von Zusicherungen als Hilfsmittel beim Programmieren: Ein kontrol-
liertes Experiment. Master’s thesis, Faktlfiir Informatik, Universiéit Karlsruhe, Germany, April 1999.
http://wwwipd.ira.uka.de/EIR/.

