
SKaMPI� A Detailed� Accurate MPI Benchmark

Ralf Reussner�� Peter Sanders�� Lutz Prechelt�� and Matthias M�uller�

� University of Karlsruhe� D������ Karlsruhe
� Max�Planck Institute for Computer Science� D������ Saarbr�ucken

e�mail	 skampi�ira�uka�de

Abstract� SKaMPI is a benchmark for MPI implementations
 Its pur�
pose is the detailed analysis of the runtime of individual MPI operations
and comparison of these for di�erent implementations of MPI
 SKaMPI
can be con�gured and tuned in many ways	 operations� measurement pre�
cision� communication modes� packet sizes� number of processors used
etc
 The technically most interesting feature of SKaMPI are measure�
ment mechanisms which combine accuracy� e
ciency and robustness

Postprocessors support graphical presentation and comparisons of di�er�
ent sets of results which are collected in a public web�site
 We describe
the SKaMPI design and implementation and illustrate its main aspects
with actual measurements

� The Role of Benchmarking in Parallel Programming

The primary purpose of parallel �as opposed to sequential� programming is
achieving high processing speed� There are two basic approaches to parallel pro�
gramming� The high�level approach tries to maintain ease of programming as
much as possible and is exempli�ed in languages such as HPF ��	� The low�level
approach attempts to achieve maximum speed
 the programmer devises all dis�
tribution of data and processing explicitly and manually optimizes the program
for the idiosyncratic behavior of a particular target machine� This approach is
exempli�ed by message passing programming�

Historically� message passing programs were very machine�speci�c and hardly
portable� libraries such as PVM and MPI overcome this de�ciency� However� one
must not assume that functional portability also means performance portability

Often what works on one machine will still work on another� but be �relatively�
much slower� Worse yet� the same may also happen when switching from one
MPI implementation to another on the same machine�

Signi�cant investments into performance evaluation tools have been made
which can help to identify optimization possibilities� However� these tools have
a number of limitations� They require all target con�gurations to be available
for development which is often not the case if a program has to perform well on
several platforms or if production runs involve more processors than available

� c� by Springer�Verlag
 Appeared in Recent Advances in Parallel Virtual and Message
Passing Interface
 �th European PVM�MPI Users� Group Meeting� Liverpool� UK�
September ����
 Lecture Notes in Computer Science ����

for development� Also� these tools can only be applied in late development when
the performance�critical parts of the program are already working� Finally� the
measurement process itself can distort the results� in particular for the most
challenging applications which use many processors and �ne�grained communi�
cation�

Therefore� we consider a benchmark suite covering all important communica�
tion functions to be essential for developing e�cient MPI�programs� It must be
easy to use and produce detailed� accurate� and reliable results in a reasonable
amount of time� If standardized measurements for a wide spectrum of platforms
are collected in a publicly available data�base� such a benchmark makes it pos�
sible to plan for portable e�ciency already in the design stage� thus leading to
higher performance at lower development cost� At the same time� the benchmark
must be
exible enough to be adapted to special needs and expandable� e�g�� to
incorporate the functionality of MPI���

The SKaMPI benchmark was designed with these goals in mind� As a side
e�ect� it can be used to compare di�erent machines and MPI�implementations�
Section � provides an overview of the benchmark architecture� The speci�c capa�
bilities of SKaMPI and mechanisms for measurements are disussed in Section ��
Section � illustrates some of the techniques with actual measurement results�

Related work

Benchmarking has always played an important role in high performance com�
puting� but most benchmarks have di�erent goals or are less sophisticated than
SKaMPI � Benchmarking of applications or application kernels is a good way of
evaluating machines �e�g� ��� �	� but can only indirectly guide the development
of e�cient programs� A widely used MPI benchmark is the one shipped with
the mpich� implementation of MPI� it measures nearly all MPI operations� Its
primary goal is to validate mpich on the given machine� hence it is less
exible
than SKaMPI � has less re�ned measurement mechanisms and is not designed for
portability beyond mpich�

The low level part of the PARKBENCH benchmarks ��	 measure communi�
cation performance and have a managed result database� but do not give much
information about the performance of individual MPI operations�

P� J� Mucci�s� mpbench pursues similar goals as SKaMPI but it covers less
functions and makes only rather rough measurements assuming a �dead quite�
machine�

The Pallas MPI Benchmark �PMB�� is easy to use and has a simple well
de�ned measurement procedure but has no graphical evaluation yet and only
covers relatively few functions�

� http���www�mcs�anl�gov�Projects�mpi�mpich�
� http���netlib��cs�utk�edu�performance�html�PDStop�html
� http���www�cs�utk�edu��mucci�mpbench�
� http���www�pallas�de�pages�pmbd�htm

Many studies measure a few functions in more detail ��� �� �� �	 but these codes
are usually not publicly available� not user con�gurable� and are not designed
for ease of use� portability� and robust measurements�

� Overview of SKaMPI

The SKaMPI benchmark package consists of three parts
 �a� the benchmarking
program itself� �b� a postprocessing program and �c� a report generation tool�
For ease of portability the benchmarking and postprocessing program are both
ANSI�C programs� installed by just a single call of the compiler� The report
generator is a Perl script which calls gnuplot and LaTeX�

The �skampi run�time parameter �le describes all measurements with speci�c
parameters� For a default run� only NODE� NETWORK and USER need to be speci�ed
by the user in order to identify the measurement con�guration� but very many
other customizations are also possible without changing the source code�

The benchmark program produces an ASCII text �le skampi�out in a doc�
umented format ��	� it can be further processed for various purposes�

The postprocessing program is only needed when the benchmark is run sev�
eral times� refer to Section ��� for details�

The report generator reads the output �le and generates a postscript �le
containing a graphical representation of the results� This includes comparisons
of selected measurements� The report generator is also adjustable through a
parameter �le�

Reports �actually
 output �les� are collected in the SKaMPI result database
in Karlsruhe� where they are fed through the report generator and latex�html�

��� Structuring measurements

Since we investigate parallel operations� we have to coordinate several processes�
Measurements with similar coordination structure are grouped into a pattern�
Thus� when extending the benchmark to a new MPI function one only has to add
a small core function� the measurement infrastructure is automatically reused�
We now give an overview of the four patterns used by SKaMPI
 ping�pong�
collective� master�worker� and simple�

The ping�pong pattern benchmarks point�to�point communication between a
pair of processors� For good reasons� MPI provides many variants� so we currently
measure nine cases including MPI Send� MPI Ssend� MPI Isend� MPI Bsend�
MPI Sendrecv and MPI Sendrecv replace� The ping�pong pattern uses two pro�
cessors with maximum ping�pong latency in order to avoid misleading results on
clusters of SMP machines�

The collective pattern measures functions such as MPI Bcast� MPI Barrier�

MPI Reduce� MPI Alltoall� MPI Scan� or MPI Comm split� in which a sub�
set of the processes works together� We synchronize the processors using

� http���wwwipd�ira�uka�de��skampi�

MPI Barrier� measure the time on process �� and subtract the running time
of the barrier synchronization�

Ping�pong cannot model performance�relevant aspects such as the contention
arising when one processor communicates with several others at once� Some MPI
functions like MPI Waitsome are speci�cally designed for such situations� We
measure this using the master�worker�pattern which models the following fre�
quent situation
 A master process partitions a problem into smaller pieces and
dispatches them to several worker processes� These workers send their results
back to the master which assembles them into a complete solution� We currently
measure nine di�erent implementations focusing either on contention for receiv�
ing results or the capability to send out work using di�erent MPI functions�

Finally� we have a simple pattern� which measures MPI�operations called
on just a single node such as MPI Wtime� MPI Comm rank� and unsuccessful
MPI Iprobe�

� Measurement Mechanisms

We now describe SKaMPI �s approach to e�ciently measuring execution times
to a given relative accuracy �� The same methods are also useful for other bench�
marking purposes�

��� A Single Parameter Setting

Each SKaMPI result is eventually derived from multiple measurements of single
calls to a particular communication pattern� e�g�� a ping�pong exchange of two
messages of a given length� For each measurement� the number n of repetitions is
determined individually to achieve the minimum e�ort required for the accuracy
requested� We need to control both the systematic and the statistical error �

Systematic error occurs due to the measurement overhead including the call
of MPI Wtime� It is usually small and can be corrected by subtracting the time
for an empty measurement� Additionally� we warm�up the cache by a dummy
call of the measurement routine before actually starting to measure�

Individual measurements are repeated in order to control three sources of
statistical error
 �nite clock resolution� execution time
uctuations from various
sources� and outliers�

The total time for all repetitions must be at least MPI WTick�� in order to
adapt to the �nite resolution of the clock�

Execution time �uctuations are controlled by monitoring the standard error
��x
� ��

p
n where n is the number of measurements� � �

pP
n

i��
�xi � �x���n is

the measured standard deviation� and �x �
Pn

i��
xi�n is the average execution

time� The repetition is stopped as soon as ��x��x � �� Additionally� we impose an
upper and a lower bound on the number of repetitions�

Under some operating conditions one will observe huge outliers due to exter�
nal delays such as operating system interrupts or other jobs� These can render
�x highly inaccurate� Therefore� we ignore the ��� slowest and the ��� fastest

run times for computing the average� Note that we cannot just use the median
because its accuracy is limited by the resolution of the clock�

��� Adaptive Parameter Re�nement

In general� we would like to know the behavior of some communication routine
over a range of possible values for the message length m and the number P of
processors involved� SKaMPI varies only one of these parameters at a time� two�
dimensional measurements are written as an explicit sequence of one�dimensional
measurements�

Let us focus on the case were we want to �nd the execution time tP �m� for
a �xed P and message lengths in �mmin�mmax	�

First� we measure atmmax and atmmin�
k for all k such thatmmin�

k � mmax�
with � � �� On a logarithmic scale these values are equidistant�

Now the idea is to adaptively subdivide those segments where a linear inter�
polation would be most inaccurate� Since nonlinear behavior of tP �m� between
two measurements can be overlooked� the initial stepwidth � should not be too
large �� �

p
� or � � � are typical values�� Fig� � shows a line segment between

measured points �mb� tb� and �mc� tc� and its two surrounding segments� Either
of the surrounding segments can be extrapolated to �predict� the opposite point
of the middle segment�

∆ 1
∆ 2

d

cb

a
(m ,t) (m ,t)

(m ,t)

(m ,t)a

b c

d

Fig� �� Deciding about re�ning a segment �mb� tb�� �mc� tc�

Let �� and �� denote the prediction errors� We use
min�j��j �tb� j��j �tc� �mc � mb��mb� as an estimate for the error incurred
by not subdividing the middle segment�� We keep all segments in a priority
queue� If mb and mc are the abscissae of the segment with largest error� we

� We also considered using the maximum of j��j �tb and j��j �tc but this leads to many
super�uous measurements near jumps or sharp bends which occur due to changes of
communication mechanisms for di�erent message lengths

subdivide it at
p
mbmc� We stop when the maximum error drops below � or

a bound on the number of measurements is exceeded� In the latter case� the
priority queue will ensure that the maximum error is minimized given the
available computational resources�

��� Multiple Runs

If a measurement run crashed� the user can simply start the benchmark again�
SKaMPI will identify the measurement which caused the crash� try all functions
not measured yet� and will only �nally retry the function which led to the crash�
This process can be repeated�

If no crash occurred� all measurements are repeated yielding another out�
put �le� Multiple output �les can be fed to a postprocessor which generates an
output �le containing the medians of the individual measurements� In this way
the remaining outliers can be �ltered out which may have been caused by jobs
competing for resources or system interrupts taking exceptionally long�

� Example Measurements

Naturally� it is di�cult to demonstrate the entire range of functions measured
by SKaMPI � We therefore refer to http���wwwipd�ira�uka�de��skampi for
details and concentrate on two condensed examples of particularly interesting
measurements�

Fig� � shows the execution time of MPI Reduce on �� processors of an IBM SP
���� MHz POWER�� processors� and a Cray T�E with ��� MHz processors�
While the Cray achieves an order of magnitude lower latency for small mes�
sages� the IBM has higher bandwidth for long messages� Apparently� at message
lengths of about ��KByte� it switches to a pipelined implementation� The mea�
surement shows that for this machine con�guration� the switch should happen
earlier� Similar e�ects can be observed for MPI Bcast and MPI Alltoall� In an
application where vector�valued collective operations dominate communication
costs �which are not uncommon� �ne�tuning for the IBM�SP might therefore
require to arti�cially in
ate certain vectors�

Fig� � compares MPI Send and MPI Ssend on an IBM SP and on a Cray T�E�
MPI Ssend has twice as much peak bandwidth than MPI Send on the Cray while
the latter incurs a lower startup overhead� Hence� for optimal performance one
needs to have an idea about the message size going to be used in order to select
the right function� The IBM apparently switches to MPI Ssend automatically�

� Conclusions and Future Work

The SKaMPI benchmark infrastructure provides fast and accurate individual
measurements� adaptive argument re�nement� and a publicly accessible database
of detailed MPI measurements on a number of platforms� This makes SKaMPI

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000 100000 1e+06 1e+07

t [
m

ic
ro

se
co

nd
s]

m [bytes]

IBM SP
Cray T3E

Fig� �� MPI Reduce execution time by message length on the IBM SP and Cray T�E

100

1000

10000

100000

10 100 1000 10000 100000 1e+06

t [
m

ic
ro

se
co

nd
s]

m [bytes]

IBM Send
IBM Ssend
Cray Send

Cray Ssend

Fig� �� Point�to�point communication on the IBM SP and Cray T�E

a unique tool for the design of performance�portable MPI programs� The data
can also be used to evaluate machines and MPI implementations or to build
quantitative performance models of parallel programs�

Nevertheless� many things remain to be done� We are continuing to re�ne the
measurement mechanisms� These are also useful for other applications so that it
might make sense to factor them out as a reusable library� SKaMPI should even�
tually encompass an even more complete set of measurements including MPI��
and more complicated communication patterns including the communication as�
pects of common application kernels� The current report generator is only a �rst
step in evaluating the results� More compact evaluations including comparisons
of di�erent machines could be generated automatically and we even might derive
piecewise closed form expressions for the cost of the functions which could then
be used in sophisticated adaptive programs which automatically choose the most
e�cient algorithm depending on problem size and machine con�guration�

References

�
 D
 Bailey� E
 Barszcz� J
 Barton� D
 Browning� and R
 Carter
 The NAS parallel
benchmarks
 Technical Report RNR�������� RNR� ����

�
 Vladimir Getov� Emilio Hernandez� and Tony Hey
 Message�Passing Performance
on Parallel Computers
 In C
 Lengauer� M
 Griebl� and S
 Gorlatch� editors� Euro�
Par ���� pages ���������� New York� ����
 Springer
 LNCS ����

�
 Charles H
 Koelbel� David B
 Loveman� Robert S
 Schreiber� Guy L
 Steele� and
Mary E
 Zosel
 The High Performance Fortran Handbook
 MIT Press� Cambridge�
MA� ����

�
 Parkbench Committee
 Public International Benchmarks for Parallel Computers

Scienti�c Programming� ����	�������� ����
 Report �

�
 J
 Piernas� A
 Flores� and J
 M
 Garcia
 Analyzing the performance of MPI in
a cluster of workstations based on fast ethernet
 In Fourth European PVM�MPI
User�s Group Meeting� pages ������ New York� November ����
 Springer
 LNCS
����

�
 M
 Resch� H
 Berger� and T
 Boenisch
 A comparison of MPI performance in dif�
ferent MPPs
 In Fourth European PVM�MPI User�s Group Meeting� pages ������
New York� November ����
 Springer
 LNCS ����

�
 R
 Reussner
 Portable Leistungsmessung des Message Passing Interfaces
 Diplo�
marbeit� Universit�at Karlsruhe� Germany� ����

�
 C
O
 Wahl
 Evaluierung von Implementationen des Message Passing Interface
�MPI��Standards auf heterogenen Workstation�clustern
 Diplomarbeit� RWTH
Aachen� Germany� ����

