
The Need for Inner-Procedural Re�nements

Lutz Prechelt (prechelt@ira.uka.de)
Institut f�ur Programmstrukturen und Datenorganisation

Universit�at Karlsruhe
D{7500 Karlsruhe, Germany

November 23, 1992

Abstract

Today one of the most widely accepted paradigms of software engineering is the
Top-Down method. Based on the hypothesises that (a) Top-Down is a good way to go
and (b) programmers are lazy by their very nature, I show here that with most modern
imperative programming languages, we stop the Top-Down process at least one level
too early. What languages need is the concept of re�nements within procedures, so
the Top-Down development process can continue arbitrarily deep inside each proce-
dure. This leads to better-structured code with improved understandability. Existing
languages can be extended to support the notion of inner-procedural re�nements. It
is described how this was done with a fast preprocessor for C and C++ and what the
experiences with it are.

Key words: re�nements, C, programming language extension, Top-Down method

The Top-Down design process

Let us take a quick look on why Top-Down is a good method. We will see that the ultimate
reason lies in the human nature.

Today we build a huge software system by �rst decomposing it into subsystems that
interact through a (hopefully) well designed protocol. Each of these subsystems is then
divided into a hierarchical collection of modules and/or classes. Each of these modules or
classes consists (among other things) of several procedures or other kinds of subprograms,
some of which represent the interface of the module or class, and some of which are merely
there to master the complexity of the module or class. (In this respect object-oriented
programming is just a particular form of the Top-Down method.)

The underlying paradigm of Top-Down design and development is `divide and conquer'.
From a cognitive point of view this means to separate the task of answering the question
what must I do from the task of answering the question how should I do it , then solving
these two problems one after the other and applying the same method to each of the
emerging subproblems recursively.

1

This is a relatively disciplined way to use ones mind, and thus should not at all be expected
to be comfortable for a human being. So, why is it that widely used? The answer is:
because Top-Down can be used in a way that it means always think as late as possible,
and this is of course highly attractive to lazy minds.

Where we stop today

The common imperative programming languages that explicitly support Top-Down design
and programming like ADA, Modula{2 and C++ have two main concepts for Top-Down
decomposition: The module or class and the procedure or function (or the like).

These languages were designed from a software engineering perspective; and in fact every-
thing seems to be alright from a pure software engineering point of view: data abstraction,
algorithmic abstraction and data encapsulation are supported; it is possible to hide imple-
mentation decisions concerning the data structures and the algorithms used. This leads to
a certain degree of independence of the modules; big software systems become manageable
and everything looks �ne.

Why we should go further

But remember the second main assumption: programmers are lazy.

As we already have seen, Top-Down suits this �ne: as long as you go from top down, you
constantly defer parts of the heavy task of thinking. It is easy to see that it would be
nice for the programmer to continue with this mode of operation until the level of single
statements or small statement groups and simple expressions is reached.

Today, what do you do, when your procedure gets complicated? You can break it up into
several procedures. But will you really always do that? No. The work that is necessary
due to the syntactic overhead of this action will often hinder you. Consider the following
examples:

Example 1: A procedure is 50 lines long, no tricky code, but control structures (ifs, loops
etc.) have to be nested 5 levels deep.

Example 2: A procedure performs its task in 5 stages. Nothing complicated, but more
than 100 lines long.

Example 3: A procedure consists of an if{then{else{if with 8 parts. The boolean expres-
sions each have about 10 factors.

In probably none of these cases an average programmer would see the need for further
Top-Down decomposition, but the resulting code will be di�cult to read. Sometimes
heavy commenting will be used or temporary variables, but this is neither self evident,
because these are steps that take some e�ort to perform instead of saving e�ort, nor is it
su�cient, because the layout of the code will still be complicated and will not make the
underlying structure easy for people to �nd.

What could solve the problem, is a way to replace the nested parts or stages or subexpres-
sions with symbolic names, provided that the e�ort necessary to introduce these names is

2

close to zero. The decomposition with such symbolic names would recursively be applied
until the remaining pieces of code have a size of about, say, 10 statements or 2 factors in
an expression. Such names must be local to the procedure to avoid name conicts. The
pieces of code can thus be called inner-procedural re�nements or just re�nements and the
resulting style of programming can be viewed as a low-level application of the principle of
stepwise re�nement as described by Wirth [1].

How to do it

What properties must such inner-procedural re�nements have in order to be useful ?

First, one must be able to use a re�nement before its de�nition, so that one can easily
defer thinking about what exactly he/she means with it but nevertheless write down the
program without having to hop backwards textually. Second, no lengthy keywords or the
like must be necessary to declare or use a re�nement. Third, since this part of the Top-
Down process is local to the procedure, the re�nements have to be local to the procedure,
too.

As far as I know, the only imperative programming language that incorporates these
considerations in its design is ELAN [2].

The C{Re�ne Preprocessor

Existing languages can be extended to support re�nements. The following syntax for the
extension of C [3] satis�es the above needs. It is implemented in a preprocessor called
C{Re�ne.

Example (just to show the syntax):

void an_example_for_refinements (a, b, x, y)

{

if (`some test) /* The overall structure of */

`my first refinement; /* the function can be seen */

else /* at once */

`my second refinement;

`some test:

a < b && `some subtest

`some subtest:

a != 0 || b != 0

`my first refinement:

`my first subrefinement;

statement2;

`my first subrefinement:

while (x) {

3

/* some statements here */

if (y)

leave `my first refinement; /* structured "goto" */

/* ...lots of what-to-do-else here */

}

/* ...more lots of what-to-do-else here */

`my second refinement:

/* and so on... */

}

The syntax is based on the use of a special character (the back quote) which is used
to mark the names of re�nements and on the formatting convention that a re�nement
declaration must begin in column 0.

The leave construct generates a goto to the end of the body of the re�nement given with
it, so multiple levels of loops etc. can be exited from at once.

Implementation and Speed Considerations

The C{Re�ne preprocessor is bootstrapped and knows almost nothing about the syntax
and semantics of C. This has two e�ects: the same preprocessor can be used for all
languages that are similar to C (such as C++) and it is very fast.
The underlying algorithm can be described roughly as follows: read the input �le and
look for opening and closing braces. Any such block on the outermost level is considered
a function body. Copy everything that is outside any function body from input to output
and bu�er anything that is inside any function body. While reading a function body store
the positions of all re�nement bodys along with the names of the re�nements. Whenever a
function body is complete write the bu�ered lines to the output, replacing every re�nement
call with a copy of the corresponding re�nement body (recursively) and replacing every
leaveconstruct with a goto statement.

The actual algorithm is only a bit more complicated than this outline. The signi�cant
point is that no parsing of the language is needed, a simple scanner su�ces.

A test with a 14000 line input �le (concatenated from 35 real modules) took 2.5 seconds
on a Sun 4/20, 11 seconds on a Sun 3/160 and 14 seconds on a Sun 3/50. This is multiple
times faster than the C compiler on the same machines executes.

Since the preprocessor is so simple, it can easily be ported on any Unix machine. I have
already tried it on Sun-OS 3.5, 4.0.3 and 4.1, Ultrix 2.1 (DEC), a System V machine
(PCS) and even MS-DOS.

Experiences with C{Re�ne

Learning E�ort and Ease of Use

Since the syntax is very intuitive, almost all C programmers can (without any preparation)
read a C{Re�ne program after looking at it for a minute.

4

The experience shows that it is not always easy to convince a programmer, that using
C{Re�ne is advantageous. But once he or she is willing to try, the use is learnt in less
than an hour and all people who have ever tried C{Re�ne keep using it.

Real Applications

The C{Re�ne preprocessor has been used in at least two commercial projects with C
and is in heavy use for scienti�c programming in C++ [4]. We also apply it to MPL, the
C-derived language for the MasPar MP-1 massively parallel SIMD machine [5].

No technical problems have been encountered.

Observations

No empirical study with controlled conditions in order to quantify the usefulness of C{
Re�ne for the coding process has been conducted so far. Our observations in daily work
suggest the following:

1. It is much easier to read or modify other people's programs if they are written in
C{Re�ne as opposed to C. The analog is true for C++.

2. It is also much easier to read the own programs, be it after several months or while
the coding process is still going on.

3. Coding tends to be faster in C{Re�ne as opposed to C as soon as the procedures
have more than a certain degree of complexity. Coding may take a little longer for
very easy procedures. In either case, the observations (1) and (2) apply.

4. Sometimes programming errors are avoided by the following phenomenon: The pro-
grammer wants to skip some subtask intermediately when coding (\I'll do that la-
ter"). When using normal C, the corresponding statement(s) may simply be for-
gotten in the end, but when using C{Re�ne, it is common that one ends up with
an undeclared re�nement instead, since it is normal C{Re�ne style to write down a
name for something to be coded later.

5. Complex expressions (especially boolean expressions) contain less errors, because
they are systematically split into simpler ones and end up in an easily verifyable self
documenting form.

Why this really works

Now why should we think that just this method of solving the problem actually works
while most others do not ?

The reason is that with the above syntax the e�ort (measured in number of keystrokes) to
write a program down is increased only very little, but the e�ort to read it (measured in
number of seconds to see what its structure is and to understand what it does) is reduced
a lot. This is a fact that the programmer quickly gets in touch with, because a program

5

must be written only once, but will be read many many times even if we consider only the
day when it is actually programmed.

In this respect the basic idea behind C{Re�ne di�ers substantially from that of WEB [6]:
The goal is not to get a nice documentation for the program after some processing steps,
but instead to maximize the readability of the source code itself. This type of readability
can be exploited already in the ongoing coding process.

After this observation has been made by a certain programmer, he or she will use re�ne-
ments heavily and the advantageous e�ects described above emerge.

This reduction in the cognitive e�ort for reading a program, be it in the initial program-
ming process or in all the repititions of re-understanding the own or understanding an
unknown program, is probably the main reason why programming with inner-procedural
re�nements has proved to be a good idea.

References

[1] Nikolaus Wirth. Program development by stepwise re�nement. Communications of

the ACM, 14(4), April 1971.

[2] G�unther Hommel, Joachim J�ackel, Stefan J�ahnichen, Karl Kleine, Wilfried Koch, and
Kees Koster. ELAN Sprachbeschreibung. Akademische Verlagsgesellschaft, Wiesbaden,
Deutschland, 1979.

[3] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice
Hall, 1977.

[4] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison Wesley, Reading, Mass., 1990.

[5] MasPar Computers, Sunnyvale, Calif. MPL Language Reference Manual.

[6] Donald Ervin Knuth. The WEB system of structured documentation. Technical report,
Stanford University, Department of Computer Science, Stanford, Calif., 1983.

6

