
Experience Report: Teaching and Using

the Personal Software Process (PSP)

Lutz Prechelt (prechelt@ira.uka.de)
Barbara Unger (unger@ira.uka.de)

Oliver Gramberg (gramberg@ira.uka.de)
Fakult�at f�ur Informatik
Universit�at Karlsruhe

D-76128 Karlsruhe, Germany
+49/721/608-4068, Fax: +49/721/694092

Submission to ESEC 1997

January 16, 1997

Keywords: software process, software quality,
metrics, measurement, process tools, empirical
evaluation.

Abstract

PSP is a methodology for an individual soft-
ware engineer's continuous self-improvement.
Currently, few PSP experience reports are
available from non-US sources, and hardly any
from people other than the PSP inventor Watts
Humphrey. We describe independent experi-
ences with PSP. We �nd that PSP is a vi-
able and useful approach and has quanti�able,
positive impact. Problems in teaching PSP
are in keeping students motivated and keep-
ing them focused on general ideas instead of
details. Problems in using a personal software
process are keeping enough self-discipline and
�nding proper tool support.

1 The Personal Software Pro-
cess (PSP)

The Personal Software Process (PSP) frame-
work is an approach suggested by Watts
Humphrey in 1995[1]. It describes a method-

ology that leads an individual software en-
gineer towards disciplined, well-de�ned work
with continuous self-improvement. The PSP
ideas are independent of programming lan-
guage, application domain, and team organi-
zation; they can be applied to programming as
well as to many non-programming tasks.

Humphrey suggests to learn PSP in form of a
15 week course (e�ort: one 90-minute lecture
and one exercise of 3 to 10 hours each week)
that trains a set of techniques that form the
basis of a personal software process. The stu-
dent should then vary and optimize these tech-
niques for his/her needs and introduce other
techniques if required (therefore the name Per-
sonal Software Process).

The core ideas of the PSP framework are

1. to base the process on measurements, be-
cause \many people have feelings and
opinions, but few people have data"
(Humphrey) and

2. to make the process well-de�ned, because
you can only improve what you do if you
know what you do.

For further details see the appendix.

A problem with PSP (and the PSP course) as
suggested by Humphrey is that it was more
or less designed from the perspective of but a

1



single person, and not all of its aspects easily
transfer to the needs of others. However, as
far as we know only Humphrey has published
PSP experiences in widely accessible publica-
tions, e.g. [2].

In the following we describe our experiences
with teaching and using PSP, based on our
courses for graduate students, researchers, and
professional software engineers. There is one
section on quantitative results with PSP, one
on learning PSP and teaching the course, and
one on using a personal software process.

2 Quantitative results

This section presents some quantitative results
obtained in our �rst PSP course. These results
con�rm those published by Humphrey and add
information about students' appraisal of the
PSP course.

2.1 Student performance

The course performance of 20 university stu-
dents is shown in the �gures below. Figures 1
and 2 show the development of the defect den-
sities over the 10 exercises of the course. We see
in the thick trendline of Figure 1 that the total
number of defects found during development
per 1000 lines of code decreases signi�cantly
over time and the number of defects found late,
namely in the test phase (Figure 2), exhibits a
still more pronounced decrease. Figure 3 shows
that the productivity is hardly impaired by the
PSP during the course, despite the large frac-
tion of bookkeeping e�ort involved.

But students do not only learn to produce soft-
ware with less defects, they also learn to esti-
mate more precisely how long it will take them
to deliver the product. The absolute values
of the time estimation error (in percent) are
shown in Figure 4. The trendline in this case
goes down from about 80% estimation error in
the �rst exercise to about 30% in the last. As
we see, average estimation errors are reduced
signi�cantly over the PSP course even though
the process used keeps changing from one ex-
ercise to the next.

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Linear (Avg)

Figure 1: Total number of defects found per 1000
lines of code in each exercise for �rst course of univer-
sity students. Left to right: course exercises number 1
to 10. Top line: maximum defect density of all course
participants. Middle line: average defect density. Bot-
tom line: minimum defect density of all course partic-
ipants. Thick line: linear regression (trend) of middle
line.

2.2 Course evaluation by the stu-

dents

After this course, students answered a ques-
tionnaire with the following results (18 partic-
ipants). The students spent between 4 and 20
hours per week overall for the course (average:
9.7). They judged the di�culty of the lectures
slightly low on a scale from 1 (much too low)
to 5 (much too high), namely 2.8 average, the
di�culty of the exercises just right (3.1 aver-
age). On a scale from 1 (best) to 5 (worst),
they found the course very relevant for their

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Linear (Avg)

Figure 2: Number of defects found in test phase.

2



0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Figure 3: Total productivity in lines of code per hour
over whole exercise.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Max

Avg

Min

Linear
(Avg)

Figure 4: Time estimation error: 100 � jTestimated �
Tactualj=Testimated

education (1.7 average), yet were only mod-
erately well motivated (2.3 average). In the
future, we hope to raise motivation by intro-
ducing reviews earlier. Overall, the course got
quite high grades: 1.7 for the lectures and 1.9
for the exercises.

3 Learning and teaching PSP

After learning PSP ourselves (with a course
group of �ve) we have now tought it four
times: Twice to university students, once to ju-
nior university research associates, and once to
professional software engineers. Two of these
courses with 15 participants are still underway,
44 participants have already completed. This
section reports our teaching experiences.

The university students were German infor-
matics diploma students in their �fth semester
or above (i.e., more than half through to the
diploma). They have a solid theoretical educa-
tion but typically rather limited programming
experience. The research associates were all
candidates for an informatics doctoral degree;
they have a lot more programming experience
from larger research projects. The profession-
als were junior and senior software engineers
from a large software company.

We learned important lessons in three areas:
providing and maintaining motivation for the
course, keeping students focused on the impor-
tant things, and properly running the course.

3.1 Motivation

The �rst half of the course deals mostly with
estimating and planning, which compromises
motivation: Subjectively, the amount of book-
keeping e�ort required for PSP planning ap-
pears unreasonable for two reasons. First, the
fraction of bookkeeping e�ort in the course is
indeed large, because the exercises are rather
small. Second, at least students with little
team project experience do not recognize why
good planning is important at all.1

Therefore, we recommend to introduce reviews
much earlier in the course than [1] suggests.
Students then have the constant motivation to
strive for zero defect programs and there is no
longer emphasis on planning alone. In our next
course we plan to introduce reviews in week 3
or 4 instead of week 8.

Another motivation problem regards taking the
course at all: While our informatics students
are highly motivated to attend the course, pro-
fessional software engineers either are some-
what cynical and do not believe that anything
could help them to improve their engineering
practice, or they do not accept a course of 15
days length.

1As a result, students tend to personalize their per-
sonal software process in such a way that they \optimize
away" several of its components and do not learn them
at all.

3



To overcome this problem, we have developed
a set of questions2 which convinced every soft-
ware engineer we have encountered so far that
s/he has severe software process de�ciencies.
By linking the groups of problems addressed
in these questions to PSP course contents,
we can assure most programmers that a PSP
course could help them. Overcoming the cyni-
cism would require even harder proof of suc-
cess of the PSP course than the metrics we
currently supply. Therefore, we are currently
de�ning a controlled experiment to compare
the productivity and quality produced by PSP-
trained students compared to non-PSP-trained
students of comparable quali�cation. To re-
duce the course length we are currently devel-
oping a compact course of three modules of two
days each.

3.2 Focus

The second signi�cant problem in teaching PSP
is that students tend to concentrate too much
on the �ne details of the individual methods
suggested. For instance they concentrate so
much on the questions which values of the �0
regression parameter for time estimation are
acceptable ones, that they do not understand
why regression is used at all and which alter-
native methods are used when and why.

As some of the details are indeed complicated,
we �nd it very important to keep the students'
focus on the general ideas of PSP and on the
general ideas of how to implement them instead
of on the details of the speci�c implementation
suggested in the course. On the part of the
teacher, this requires in particular not to be
picky judging the exercises, to emphasize the
rationale of each method over its actual con-
tent, and to emphasize that all methods taught
in the course are only suggestions and must
be optimized based on personal data after the
course. University students must be supplied
with examples from industrial working condi-
tions so they can understand the rationale of
the methods suggested. Students that do not
see the big picture will probably not be able to

2http://wwwipd.ira.uka.de/PSP/documents/ques-
tions.html

make improvements on their personal software
process after the course.

3.3 Running the course

A few more remarks on how to run the PSP
course: First, we found many of the PSP slides3

to be too verbose for our teaching style and
some slides contain material that the students
already know | either from previous slides or
from other courses.

Therefore, we have prepared a much di�erent
set of slides for our courses, waiving most re-
dundant material. In particular, we combine
the lecture pairs 3/4, 9/10, and 12/13 into one
lecture each so that our course has three weeks
without a lecture (but still with an exercise).
These weeks can be used to compensate for
holidays or to carry out extended discussion of
experiences among the students.

Second, it is essential to provide su�cient room
for such discussion in normal course weeks as
well.

We reserve the �rst 10 to 15 minutes of each lec-
ture for experience reports and feedback. We
encourage students to tell success as well as fail-
ure stories. Most students �nd it very motivat-
ing to learn that their colleagues have much the
same problems as they have themselves.

Third, this mutual motivation process works
only if most or all students have already per-
formed last week's exercise.

Therefore, it is important to enforce a rela-
tively strict discipline with the time given for
the exercises; all students have to deliver their
exercise before the end of the course week, in
contrast to the liberal delivery modalities most
German students and professional software en-
gineers seem to be used to.

3provided by Humphrey on the teacher's disk, which
is a supplement to the PSP book.

4



4 Using a personal software
process

Although a personal software process is very
useful in principle, its use is hampered by a
number of severe problems. We discuss each of
the most important ones in a separate section.

4.1 Lack of discipline

The single most important lesson we learned on
using PSP is this: Properly using and improv-
ing a personal software process requires a lot
of discipline; more than many people appear
to be able to come up with.

Often, introducing appropriate PSP support
tools (see also Section 4.2) will reduce the prob-
lem. For some people, the solution to the prob-
lem might be to �nd a group of colleagues that
also use a personal software process. Such a
group can keep up a process of mutual motiva-
tion, much similar to our PSP course groups.
For others this might still not be su�cient. The
key to successful PSP use for them might be to
drop most of the standard PSP elements and
use only what appears most useful for them.
The latter is the mode of PSP use that all three
authors apply 18 months after their own PSP
course. For instance, we all do not use plan-
ning, because in a research setting this is rarely
practical and often super
uous.

4.2 Tool support

As mentioned above, the bookkeeping required
for measurements, gathering historical data,
planning, and process improvement data anal-
ysis is a nuisance. Manual bookkeeping costs
time, detracts from the main task, and pro-
vokes errors.

The bookkeeping issues to be addressed in a
personal software process are the following:

1. making measurements (time per phase,
product size, defects),

2. collecting and organizing historical mea-
surement data,

3. analyzing historical data for process un-
derstanding and improvement,

4. computing plans and predictions from es-
timates and historical data.

Therefore, for industrial use of a personal
software process, support tools are required.
We have experimented with two measurement
tools, several kinds of spreadsheets for data
collection and analysis, and one specialized
analysis program. You can �nd pointers to
all these tools on the PSP resource page
http://wwwipd.ira.uka.de/PSP/.

4.2.1 Titrax

Titrax (or TimeTracker, formerly known as
Timex ) is a simple X11 freeware timekeeping
program by Harald Alvestrand; see the screen-
shot in Figure 5. The user de�nes a number of

Figure 5: Screenshot of Titrax timekeeping tool

activities and the program measures the num-
ber of minutes the cursor spends on each. The
user has to click once each time s/he changes to
a di�erent activity. Titrax produces one small
time sum �le per day and can produce week-
wise summaries. We have built an extension
to produce summaries for particular activities
or groups of activities over arbitrary periods of
time.

In our experience, Titrax is a nice tool for gen-
eral timekeeping but is not �ne-grained enough
for PSP use. Gathering defect correction time
data with Titrax would be painful. Some of us
use Titrax in their normal daily work but we
all prefer psplog (see Section 4.2.3) for actual
PSP time and error logging.

5



4.2.2 Spreadsheets

Humphrey o�ers a set of Excel spreadsheets on
a support disk as a supplement to the PSP
book. These spreadsheets support collecting
and organizing the measurement data for the
10 exercises of the PSP course, but they are
too in
exible and specialized for general pro-
fessional PSP use.

We have written a large Excel spreadsheet that
is more powerful and 
exible; it supports parts
of the estimation procedures and allows to se-
lect subsets of the data for use.

This spreadsheet can be a useful tool for pro-
fessional PSP use in many cases. However, it is
so large that it is di�cult to master, and still is
often not 
exible enough or requires too much
handwork.

4.2.3 psplog

In order to simplify the task of logging time and
error data, we implemented a logging feature
called psplog in the Emacs editor. It automates
window switching and time stamp insertion on
a single keypress. Figure 6 shows an excerpt
from a psplog bu�er.

This simple editor extension has proven a very
helpful and practical tool. It is very 
exible
and su�ciently robust for professional use. The
tight integration into the editor allows for accu-
rate and most �ne-grain time and error logging
with a minimum of user detraction and e�ort.

4.2.4 evalpsp

To process the data gathered with psplog we
have written a Perl script called evalpsp. It
parses one or several psplog �les and produces
many sorts of statistics and summary tables in
ASCII format, e.g. time spent per phase or
per error type, number, percentage, or cost of
errors introduced or removed per phase, etc.;
14 tables overall.

evalpsp makes the analysis of time and (in par-
ticular) defect data so simple that it becomes
convenient to review such data for individual

projects or in summary from time to time.
The data produced by evalpsp is a good ba-
sis for �nding candidate elements for process
improvement. However, it would be helpful to
get the consistency checking that is performed
by evalpsp done during data gathering, i.e., in-
tegrated into psplog , as data gathering errors
are the easier to resolve the earlier they are de-
tected.

4.2.5 Tool perspective

The above tools provide reasonable support for
data gathering and error data analysis. Less
disciplined users will at times �nd parts of their
gathered data missing or in disorder, because
the tools can neither enforce correct data gath-
ering (or any data gathering at all) nor do they
perform early consistency checking. However,
disciplined users will �nd the available tools
su�cient.

However, the current tool support for han-
dling historical time, size, and error data for
PSP planning and estimating purposes lacks

exibility and integration with the data gath-
ering tools on the PSP side as well as with
project management and con�guration man-
agement tools on the team side. It might be
rather di�cult to de�ne a tool that is both
adaptable to di�erent personal software pro-
cesses, yet still neatly integrated into larger
software project tools. We are currently work-
ing on planning tools that provide at least part
of such integration.

4.3 Personalization versus standard-

ization

The �nal PSP problem concerns personaliza-
tion. On one hand, adapting and �ne tuning
the PSP techniques to individual preferences
and experimenting with new techniques will,
for many software engineers, increase the power
and quality of their personal process. On the
other hand, such improvements not only con-
sume precious worktime, with unpredictable
payo�, but also reduce the ease with which a
team can work together and can share data.

6



Jan 8 00:16:52 1997 bcr

Jan 8 00:18:16 1997 be 50 cd om wrong order and names of Jbox() params

Jan 8 00:19:09 1997 ee

Jan 8 00:35:29 1997 be 80 ds om forgot to assign xB = xBnew and yB = yBnew

Jan 8 00:35:49 1997 b

Jan 8 00:36:54 1997 e

Jan 8 00:37:09 1997 ee

Jan 8 00:44:47 1997 be 60 cd cm paintBox() must only sometimes make a jump

Jan 8 00:47:21 1997 ee

Jan 8 01:11:28 1997 ecr

Jan 8 13:11:38 1997 bcp

Figure 6: Emacs psplog bu�er with 11 event entries: begin of code review phase (bcr) on January 8th,
1997, 16 minutes after midnight, 3 begin error/end error pairs (be, ee), one interruption begin/end pair
(b,e), end code review phase (ecr), and �nally many hours later begin compile phase (bcp). The error
entries are annotated with an error class, error insertion phase, error reason (omission, commission, education,
communication etc.), and error description.

For instance if everybody has his or her own
de�nition of what belongs into a design and
what does not, it becomes more di�cult for
others to �nd design incompletenesses during
a design inspection. It also becomes more dif-
�cult to predict implementation time from de-
sign time or design document size.

Therefore, the expected bene�ts from increased
personalization of process elements have to be
weighed against the bene�ts resulting from a
single common de�nition of these process ele-
ments in a team. This is a tradeo� with no
general solution.

5 Conclusions

Our experiences with teaching and using PSP
can be summarized as follows:

� PSP is a good idea. Using a personal
software process, software engineers can
greatly improve the quality of their work
and the reliability of their plans.

� However, for most people it is not easy to
actually get PSP to work for them, mostly
because of problems with self-discipline.

� There is currently insu�cient tool support
for using a complex personal software pro-
cess. Missing tool support makes many
useful process elements too di�cult or too
costly to apply.

� When teaching PSP, it is very important
to keep the students' focus on the gen-
eral ideas and to educate them to judge
for themselves what is useful for them and
what is not.

Appendix: PSP details

The PSP base techniques can be summarized
as follows:

� Working in well-de�ned phases, e.g. plan,
design, design review, code, code review,
compile, test, postmortem.

� Measuring time spent per phase; protocol-
ing time, cost, origin, and type of each de-
fect made; measuring program size.

� Systematically collecting these data for fu-
ture use.

� Systematically estimating product size
from historical size data; estimating devel-
opment time from product size; planning
and tracking development schedules with
clear milestones.

� Introducing design and code reviews4 into
the development process; systematically
deriving checklists for reviews from histor-
ical defect data.

4These reviews, as opposed to inspections, are per-
formed by the author of the artefact alone.

7



� Analyzing defect data to �nd opportu-
nities to prevent defects even before re-
views (quality management). Estimating
number of defects to detect below-average
quality.

� Introducing systematic design notations
to improve clarity, consistency, and com-
pleteness of designs, regardless of the de-
sign method used.

� Systematically developing test cases and
protocolling the test runs.

� De�ning and documenting all process ele-
ments to improve consistency and to pro-
vide a precise meaning for all measure-
ments.

� Introducing measurements to characterize
process and product quality, in both pre-
dictive and explanatory manner.

� Introducing periodic, systematic process
improvement e�orts.

Acknowledgements

Thanks to Walter Tichy for commenting on the
draft and to Stefan H"an"sgen for the initial
psplog implementation.

References

[1] Watts Humphrey. A Discipline for Software

Engineering. SEI Series in Software En-
gineering. Addison Wesley, Reading, MA,
1995.

[2] Watts S. Humphrey. Using a de�ned and
measured personal software process. IEEE
Software, 13(3):77{88, May 1996.

8


