
To appear in Proc. Softwaretechnik `98 (Softwaretechnik-Trends)

A Series of Controlled Experiments on Design Patterns:

Methodology and Results

Lutz Prechelt, Barbara Unger (prechelt,unger@ira.uka.de)
Fakult�at f�ur Informatik, Universit�at Karlsruhe

D-76128 Karlsruhe, Germany
+49/721/608-4068, Fax: +49/721/608-7343

Abstract

Software design patterns are an idea that is intuitively
appealing and has found many advocates. However, as
scientists we must be concerned about gathering hard
evidence for the claims of bene�cial consequences of
design patterns. This article describes the major claims
and derives the corresponding research questions. It
discusses the methodology of a research programme for
investigating these questions and sketches the practical
constraints that make this research di�cult.
It then shortly summarizes three controlled experi-

ments that were successfully carried out within these
constraints and lists the main results and their con-
sequences, such as: One should document design pat-
terns when they are used and one must not apply de-
sign patterns without judgement of alternatives. Fi-
nally, design considerations of a fourth experiment are
discussed.

The contribution of this paper is a description of im-
portant methodological aspects of practical experimen-
tal work and how these relate to the results obtained.
Understanding these relations will be important in fu-
ture empirical software engineering research.

1 The design pattern

phenomenon

Software design patterns are basically a methodologi-
cal engineering idea: Describe a proven solution to a
recurring design problem in a standard form chosen
such as to clarify the solution's context and properties
and to facilitate its reuse in practical situations.
The idea of software design patterns is intuitively ap-

pealing and has quickly caught the attention of both
practitioners and researchers. The pattern literature is
burgeoning. The �rst systematic collection of design
patterns was published by Gamma, Helms, Johnson,
and Vlissides [5] (nicknamed the \Gang of Four Book")
and was a huge success. Other books followed, e.g.
[2, 12], annual workshops are being held [11] to pro-
mote pattern mining and a consistent style of report-
ing patterns. Pattern practitioners published anecdo-

tal reports of successful use of design patterns in real
projects and claim various advantages compared to for-
mer practice [1].

1.1 The 'object-orientation e�ect'
again?

The enthusiasm with which design patterns are cur-
rently being adopted reminds one of the days when
object-orientation (o-o) became popular: Huge suc-
cesses were reported and many believed o-o to be the
silver bullet. Only slowly it became clear that there
were also problems with properly applying the new
capabilities. For a long time there were at least as
many projects doing worse (with o-o than without)
than there were projects doing better and only slowly
the DOs and DON'Ts of o-o were widely understood
| a process which is still not complete.

In Computer Science, o-o was quickly adopted as
a basis for languages, methods, and tools but hardly
any scientist actively investigated the questions \Is o-
o actually better than ordinary structured design and
programming? Under which circumstances?". Pre-
sumably, heavy empirical research on the e�ects of o-o
would have provided a much faster path to understand-
ing and applying o-o properly, but hardly any such
work was done. We should not make a similar mistake
again.

1.2 Consequences

As we see, software engineering research should ac-
tively validate design patterns empirically. Thereby
we can not only quantify the advantages, better under-
stand applicability conditions, and thus improve prac-
tical pattern application. We will eventually also bet-
ter understand the mechanisms by which design pat-
terns improve software practice | which should lead to
improvements or generalizations of the design pattern
idea itself.

In the following section we will discuss a research
programme for design pattern validation by �rst de-
scribing claims made and corresponding research ques-

1



tion and then discussing applicable research methodol-
ogy.
Section 3 will then describe an ongoing series of con-

trolled experiments that we conduct in this realm and
will present its results so far.

2 Deriving a research

programme

We will now sketch a research programme for inves-
tigating the properties of the `design pattern' method
idea. First, we list the claims made about possible
advantages of design patterns. Each claim X directly
leads to two research questions: Number one is \Is X
true?". Investigating this question will induce further
hypotheses which can then be tested in order to an-
swer number two: \Under which circumstances does
X hold?".
Second, we will discuss the methods by which these

questions might be answered and discuss the con-
straints that make the investigation di�cult. Most of
this discussion will apply to the empirical investiga-
tion of other software engineering topics besides design
patterns as well.

2.1 Claims about design patterns

The main advantages claimed for design patterns, ac-
cording to the pattern literature, are as follows:

Claim LD: Developers learn better design skills fast
by studying design patterns.

Claim P: Using patterns improves designer (and
maybe programmer) productivity.

Claim QN: Novices can greatly improve the uality
of their designs by applying design patterns.

Claim QE: Even for experienced developers, pat-
terns encourage best practices and ensure high design
quality.

Claim CD: Design patterns improve commun-
ication among developers (both designers and pro-
grammers).

Claim CM: Design patterns improve commun-
ication from developers to maintainers.
The above phrasings could certainly be disputed as

the claims are rarely made as explicitly as above. How-
ever, we believe the above list is justi�ed from distilling
the pattern literature mentioned in the introduction.

2.2 Methodological considerations and
practical constraints

We will now discuss scienti�c and practical aspects
of several key ingredients of empirical studies on de-
sign patterns: the principal research approach (con-
trolled experiment versus �eld study), the kinds of par-
ticipants (students versus professionals), the type of

software work investigated (development/maintenance,
alone/team etc.), and the technical conduct of the
study.

The discussion leads to certain design decisions for
the research approach to assessing design patterns.

2.2.1 Laboratory versus �eld research

The most fundamental distinction in empirical software
engineering work is between studies in a 'clean', con-
trolled laboratory setting (controlled experiments, [3])
versus studies 'in vivo', in real software engineering
environments (�eld studies). The latter come either
in the form of live observation or as postmortem data
analysis (\software archeology"). Note that the lab-
oratory versus �eld distinction is fuzzy because �eld
studies may exhibit a semi-controlled environment, e.g.
in case studies.

The principal advantage of �eld research is its real-
ism: by construction, the results obtained are applica-
ble to at least one real software engineering situation.
Note that this advantage can be misleading: The lack
of control and the impossibility of precisely character-
izing the �eld environment may make it very di�cult
to judge the generalizability of the study.

The principal advantage of laboratory research is re-
producibility: The environmental conditions can be
neatly controlled and documented. In particular the
extremely in
uential variable 'individual programmer
performance' can be controlled by su�cient internal
replication, i.e., by statistically comparing random
samples of programmers instead of individual ones. As
only reproducible results are scienti�cally 'hard', con-
trolled experiments are in principle preferable to �eld
research.

The problem with laboratory experiments is ensur-
ing that their results are useful: We do still lack models
for judging how laboratory results generalize to profes-
sional work settings.1

The most fruitful overall research approach is usually
to use both, laboratory and �eld research: The results
of controlled experiments produce new approaches or
hypotheses to be tried and investigated in the �eld.
Conversely, observations in the �eld produce new hy-
potheses to be tested by controlled experiments { which
is exactly what is currently happening with design pat-
terns: They were developed by practitioners and imply
a set of hypotheses to be tested by experiment. Results
from both laboratory and �eld work will be needed to
build and validate quantitative models of consequences
of design pattern use.

One �nal note: Rarely, but sometimes, it is possible

1Note, however, that this problem also applies to �eld studies.
Their results are valid in one realistic context, namely the one
where they were performed, but we do lack models for transfer-
ing them to other contexts as well. In fact, if we had such models
�eld study generalization was even more di�cult than for labo-
ratory studies, because the �eld environment is much harder to
characterize due to its higher complexity.

2



to conduct controlled experiments in a live software
engineering environment and so get the best of both
worlds. See [6] as an example.

2.2.2 Subjects

At the center of any empirical laboratory study are the
designers or programmers. These subjects may either
be junior or senior software professionals or students.
For maximum generalizability one would like to have
subjects from a broad cross-section of professional soft-
ware engineers, representing all types of processes, soft-
ware domains, experience levels etc. Obviously, this is
impossible.

The alternatives all have their disadvantages: Stu-
dents are possibly inexperienced, which limits the ex-
ternal validity (generalizability) of an experiment. In
contrast, senior software professionals will often be
highly adapted and specialized to their usual working
environment, software domain, and software process.
This will also limit external validity, because it is en-
tirely unclear how to transfer results from one homo-
geneous group of such professionals to another. Junior
professionals are in between, mixing the advantages
and disadvantages of both groups to some degree; they
will not be very di�erent from students close to grad-
uation.

From a practical point of view, professionals will
rarely be available at all, because a controlled exper-
iment usually involves signi�cant amounts of nonpro-
ductive work due to the required replication. Most ex-
periments will therefore end up being conducted with
student subjects. If they are su�ciently experienced,
that is not necessarily a disadvantage: Depending on
the given tasks, it may be easier to extrapolate student
results to higher experience levels than to transfer re-
sults coming from one speci�c professional background
to another.

Independent of the kind of subjects, their number
plays a crucial role in experimentation: The more sub-
jects are available, the easier it is to discriminate the
individual (inter-personal) variations in performance
from those variations that stem from the variable un-
der study. If too few subjects are available, the results
will often not be statistically signi�cant. The problem
becomes smaller if the individual performance is very
homogeneous or if a way is known to predict individual
performance from personal data.

Furthermore, most experiments require the subjects
to have speci�c knowledge. For example subjects need
design pattern knowledge for most types of design pat-
tern experiment. If the experiment concerns a state-
of-the-art technique such as design patterns, subjects
will often have to be taught a course on the topic of
the experiment �rst.

2.2.3 Task type

There are several dimensions in which the task per-
formed by the experimental subjects may di�er: it may
be a design or implementation task, from scratch or in
maintenance, may be done alone or by a team, may
target programs of di�erent size and from di�erent do-
mains, and may employ di�erent types of design pat-
terns.

From the purely pattern-research point of view, large
team tasks would usually be most preferable. However,
practically, it is unrealistic to obtain su�cient replica-
tion for such tasks; the overall amount of work involved
would become too large. For increasing replication to
a useful amount we may use smaller tasks and let indi-
viduals work alone. However, for small tasks there is a
danger that the total design pattern content of the task
may become too low. Preferring maintenance (such
as program extension) over construction from scratch
leads a way out of this dilemma, because it allows to
use much larger programs without increasing the task
size.

2.2.4 Environment

The most realistic working environment would be es-
tablished if the experimental subjects use their normal
workplace: their own o�ce and desk, their own com-
puter hardware and software con�guration, their nor-
mal environment noises, bookshelf contents, and col-
leagues to ask.

But depending on the concrete experimental ques-
tion, this may be counter-productive and/or impossi-
ble to control: Perhaps colleagues must not be asked or
certain computer help not be used; external interrup-
tions by the telephone or colleagues disrupt the work
and in
uence the results in an uncontrollable and irre-
producible manner, etc.

Hence we will usually want to use a clean, well-
equipped, quiet laboratory workplace which mimics all
essential features of the original environment, but lacks
its disadvantages. This is di�cult because it is a hard
technical challenge to supply dozens of di�erent sub-
jects each with his or her preferred computer setup.
The volume of hardware and space required is one
problem, the diversity and complexity of the software
con�gurations is another.
Practical constraints will therefore often force the

experimenter to either use a standardized computer
setup or to conduct the experiment without computer
infrastructure, e.g. using handwriting and handdraw-
ing. How harmful these restrictions are depends a lot
on the actual task to be solved, thus imposing fur-
ther constraints on the selection of the tasks. For in-
stance a design task can often be solved on paper alone,
while an implementation task usually requires a famil-
iar computing environment. As a rule of thumb, the
larger the size of the solution text, the more important
a computer environment will be for getting results that

3



generalize to professional working environments. For-
tunately, often tasks can be found that result in rather
short solution texts.

2.2.5 Summary

As we see from the above discussion, controlled experi-
ments are the method of choice for the initial scienti�c
investigation of design patterns. Such experiments will
suggest speci�c questions for subsequent �eld research.
For the initial experiments, student and professional
subjects are both acceptable. Practical considerations
suggest that maintenance tasks be investigated �rst,
because the possible program and task size is much
larger then, compared to designing and writing a pro-
gram from scratch. Tasks have to be selected so as to
minimize the in
uence of other technical constraints,
in particular the available computing infrastructure.

3 Actual experiments

We have performed three experiments according to the
considerations and constraints mentioned above and
are currently planning another. All of them will now
be described in order.

3.1 Experiments 1a and 1b: Pattern
documentation [maintenance]

Experiment 1a and its variation 1b compared the speed
and correctness of maintenance on two pairs of pro-
grams: one of each pair using design patterns and doc-
umenting their use, the other with identical code but
the documentation of pattern uses removed. Even the
latter programs were so thoroughly documented that
quantitatively the removal of the design pattern docu-
mentation should not make any di�erence unless some
speci�c quality of design pattern documentation is in-
deed important. The full documentation of the exper-
iment is [7, 9, 8].

Question: Is claim CM true? Actually, our exper-
iment avoids a severe problem for testing this claim: If
one compared programs with patterns to di�erent pro-
grams without, it would be unclear whether the results
originate from communication improvements or from
structural program di�erences. In contrast, our exper-
iment uses the same program in both groups, only the
documentation with respect to the patterns is di�erent.

Subjects: For 1a, we taught an optional six-week
intensive graduate lab course on Java; the best 58 of
initially about 100 participants quali�ed as experimen-
tal subjects. In the course and assignments, we taught
a small number of design patterns as an illustration of
good Java design style. For 1b, we repeated the exper-
iment using similar programs with 22 participants of
an undergraduate course on C++ and design patterns
at Washington University, St. Louis.

Procedure: Experiment 1a was carried out on pa-
per, whereas subjects of experiment 1b directly imple-
mented on a workstation. Each participant worked on
two di�erent programs and wrote solutions for certain
maintenance tasks. The groups were arranged to form
a 4-group counter-balanced design.

Programs and tasks: Program Phonebook imple-
mented a simple address book. The Observer pattern
was used and two observer classes with di�erent func-
tionality were already implemented. The main task
was adding a third observer, i.e., understand the spe-
ci�c Observer pattern instance given and implement a
new observer class. The functionality di�erences be-
tween the three observer classes were nontrivial.
Program And/Or tree implemented trees of String
nodes (leafs), String concatenation nodes (And) and
String alternation nodes (Or). A Composite plus Vis-
itor pattern was realized in the program to be used
for arbitrary tree traversal routines and a single visitor
class existed for computing the tree depth. The task
was adding a second visitor class for computing the to-
tal number of alternations (from cross-product of Or
nodes) of the tree. The task could be solved either by
a single new visitor class or by adding one method to
each node type class.

Results: For one of the programs (involving an Ob-
server pattern), the group with pattern documentation
was much faster than the other in 1a; see also Table 1.
Refer to [9] for a discussion of the more complex 1b
results. For the other program (involving a Composite
and a Visitor pattern), the group with pattern docu-
mentation either had far fewer errors (1a) or required
less time (1b). These di�erences are statistically sig-
ni�cant.
We �nd claim CM supported and conclude that the
communication improvement may become visible as ei-
ther a productivity or a quality improvement, depend-
ing on the situation (program, maintainers, schedule
pressure, etc). See [8] for further discussion of these
results.

3.2 Experiment 2: Patterns versus
alternative designs [maintenance]

Experiment 2 investigated whether using patterns is
bene�cial at all (aside from documenting them) and
whether the di�erence depends on the level of pattern
knowledge. The detailed description of the experiment
is [10].

Question: Is the use of patterns bene�cial (dur-
ing maintenance) compared to simpler solutions of
the same problem? This question includes aspects of
claims QE and CM and it leads to the methodologi-
cal problem of what is a fair alternative to a pattern
for the comparison. We separately assess the question
both with the same subjects before and after a pattern
course, hence also investigate some aspects of claim
LD.

4



mean means di�erence signi�-
with PD w/o PD (90% con�d.) cance

Variable PD+ PD� I p

total points 20.8 21.1 �6:0% : : :+ 3:3% 0.35

relevant points 16.1 16.3 �8:0% : : :+ 4:0% 0.35

number of correct solutions 17 of 36 15 of 38
time (minutes) 51.5 57.9 �22% : : :+ 0:3% 0.055

Table 1: Results for the Observer task of Experiment 1a. Columns are (from left to right): name of variable, arithmetic
average PD+ of sample of subjects provided with design pattern information (PD), ditto without, 90% con�dence interval
I for the di�erence PD+

�PD� (measured in percent of PD�), signi�cance p of the di�erence (one-sided). p describes
the probability that the observed di�erences occurred merely by chance alone. The \points" judge the correctness of
a solution. \Relevant points" are the points for the pattern-relevant subtasks only. Many distributions were distinctly
non-normal, therefore I and p were computed using the percentile method after 10000 trials of Bootstrap resampling [4].

0 20 40 60 80

Pretest•B1•B2•B3•B4 •B5•B6 •B7 •B8 •A1 •A2•A3•A4•A5 •A6 •A7

Posttest•D1•D2 •D3•D4 •D5•D6 •C1•C2•C3 •C4•C5 •C6•C7•C8

ALT•B1•B2•B3•B4 •B5•B6 •B7 •B8•D1•D2 •D3•D4 •D5•D6

PAT•A1 •A2•A3•A4•A5 •A6 •A7•C1•C2•C3 •C4•C5 •C6•C7•C8

Pretest ALT•B1•B2•B3•B4 •B5•B6 •B7 •B8

Pretest PAT•A1 •A2•A3•A4•A5 •A6 •A7

Posttest ALT•D1•D2 •D3•D4 •D5•D6

Posttest PAT•C1•C2•C3 •C4•C5 •C6•C7•C8

Figure 1: Time in minutes required for program Stock Ticker work task 1 of experiment 2, separately for the
design pattern (PAT) version and the simpler alternative (ALT) version. Each dot marks one subject, the
square is the arithmetic mean, the non-dotted line next to the square indicates plus/minus one standard error
of the mean. If two such lines overlap, the di�erence of the respective means is statistically not signi�cant. The
top area (4 lines) shows the four individual groups. The mid area (2 lines) shows the same but with the pretest
and posttest groups of PAT combined and the pretest and posttest groups of ALT combined. Likewise, the
bottom area (2 lines) shows PAT and ALT groups combined.

Subjects: We taught a pattern course (two half
days) to 29 professional software engineers of sd&m in
Munich. The experiment was conducted in two parts
before and after the course. All subjects were C++ pro-
grammers with an average of 4.1 years of professional
experience. Most had little previous experience with
patterns, half of them none at all.

Procedure: Overall there were four di�erent pro-
gram pairs, each pair with two or three maintenance
tasks to be solved. Each subject worked on two pro-
grams before the pattern course (pretest) and on the
other two after the course (posttest). Each program
pair consisted of two versions (each of which was used
by half of the subjects): One version used design pat-
terns. The other used a di�erent alternative solution.
The alternative was a reasonable design because some
part of the functionality or 
exibility of the design pat-

tern solution was not required for the program at hand.
The answers were written on paper.

Programs: Program Stock ticker contained an Ob-
server pattern. Its purpose was multiple alternative
dynamic views on a stream of stock trade events. The
alternative version was similar but had no registration
mechanism and the noti�cation was hardcoded.

Program Communication channels contained a Dec-
orator pattern. Its purpose was the transparent addi-
tion of encryption, compression etc. In the alternative
version, all of this functionality was realized in a single
class and could be selected by switches.

Program Graphics library contained a Composite
and an Abstract Factory pattern. Their purpose was
transparent grouping of graphical objects and trans-
parent handling of multiple device types. The alterna-
tive solution had only modest structural di�erences.

5



0 20 40 60 80

Pretest•C1 •C2•C3•C4 •C5 •C6•C7•C8•D1 •D2•D3•D4 •D5 •D6

Posttest•A1 •A2 •A3•A4 •A5 •A6•A7•B1 •B2•B3 •B4•B5 •B6•B7•B8

ALT•C1 •C2•C3•C4 •C5 •C6•C7•C8•A1 •A2 •A3•A4 •A5 •A6•A7

PAT•D1 •D2•D3•D4 •D5 •D6•B1 •B2•B3 •B4•B5 •B6•B7•B8

Pretest ALT•C1 •C2•C3•C4 •C5 •C6•C7•C8

Pretest PAT•D1 •D2•D3•D4 •D5 •D6

Posttest ALT•A1 •A2 •A3•A4 •A5 •A6•A7

Posttest PAT•B1 •B2•B3 •B4•B5 •B6•B7•B8

Figure 2: Time required for program Communication Channels work task 1 of experiment 2.

Program Boolean contained a Composite and Visi-
tor pattern. Their purpose was representing and pret-
typrinting Boolean Formulas consisting of And, Or,
Xor and Not terms and variables. The alternative ver-
sion replaced the Visitor by methods distributed over
all term classes.

There were multiple maintenance tasks for each pro-
gram that are described in detail in [10].

Results: In the speci�c setting of the experiment,
all three possible outcomes occurred: For the program
'Stock Ticker', involving an Observer, the pattern pro-
gram version took longer to maintain, in particular
when the subjects had low levels of pattern knowledge
(pretest); see Figure 1. For the programs 'Graphics
Library', involving a Composite and an Abstract Fac-
tory, and 'Boolean Formulas', involving a Composite
and a Visitor, the pattern version and the alternative
solution were just as good. For the program 'Commu-
nication Channels', involving a Decorator, the pattern
solution was clearly superior, even in the pretest; see
Figure 2. The di�erences mentioned are statistically
signi�cant.
This may seem like an unsatisfying result. However,
its interesting feature is the fact that most of the re-
sults could be correctly predicted, e.g. by analyzing
the locality of interactions within the program or the
locality of anticipated changes. Only for the Visitor
we had expected a negative e�ect which did not oc-
cur, but still we could explain it after the fact. This
means that (1) generally, software engineering common
sense, when carefully applied, is a suitable predictor of
the relative usefulness of design patterns versus alter-
native solutions; (2) design patterns are useful, but are
no cure-all; and (3) there are cases where our current
understanding of designs and their comprehension mis-
leads us into expecting di�culties at the wrong places.
This point (3), together with the 
exibility of the
Gang-of-four design patterns, suggests to always use

design patterns, except when speci�c reasons can be
identi�ed why a particular alternative solution will be
better.
We are currently working on a statistical model of our
results that quanti�es the relative contributions of var-
ious variables (e.g. personal experience) to the results.

3.3 Experiment 3: Communication
between developers and
maintainers [design phase]

We are currently planning a third experiment which
will investigate the usefulness of patterns to improve
communication during the design phase (Claim CD).
Anecdotal evidence suggests that patterns are partic-
ularly bene�cial in this situation.
We consider the design of a program extension,

where one team member knows the previous design
and the others do not, hence involving an additional
aspect of claim CM as well. The team has to develop
a suitable design together.
The experimental setup might be: Each team con-

sists of 2-3 subjects. To one person of each team we
hand out a given design D, including a description of
the design rationale, so that s/he can familiarize him-
self with the design so as to approximate the knowledge
of the original developer. Then a meeting of the team
is scheduled where an extension task T is to be solved.
In a �rst step the developer explains the design to the
other team members. Then the whole team discusses
(and decides between) alternative design solutions to
the given task. The explanation of the developer and
the discussion will be videotaped, transcribed, and an-
alyzed for typical communication events, communica-
tion breakdowns, etc. We expect that the contributions
of claims CD and CM can be distinguished in our ob-
servations making the experiment even more useful.
The independent variables in this experiment are:

6



group �rst step second step third step
K = false K = true

Group 1 solve work package P take pattern course solve work package N
Group 2 solve work package N take pattern course solve work package P

Table 2: Suggested experiment design for experiment 3 (\communication between designers")

� patterns in persons: the members of the team may
have general design pattern knowledge (K = true)
or not (K = false) Alternatively, one could have
di�erent levels of pattern knowledge within the
team.

� patterns in program: the original design D may
involve design patterns or not.

� patterns in task: If D contains patterns, the ex-
tension task T may directly involve these patterns
or not.

One may be interested in various combinations of these
variables. We choose to vary the �rst variable by a
pretest/posttest design, teaching a course on design
patterns in between. We vary the second and third
variable together by using two di�erent combinations
of program+task: For work package P , the program
and the extension task involve patterns, whereas for
work package N , both do not involve patterns.

This results in the experiment design shown in Ta-
ble 2. New teams will be composed for each task to
reduce familiarization to other team members in the
experiment.

Dependent variables are for instance

� the frequency and cause of communication break-
downs or misunderstandings,

� the means of recovering from these,

� the frequency and context of use of di�erent com-
munication styles, media, technical terms, target
program concepts etc., and

� the local purpose of these uses: either establish-
ing a communication episode or continuing (or re-
establishing) a previous one.

In contrast to experiments 1 and 2, many dependent
variables are of a qualitative nature or require context
consisting of qualitative variables.

The following issues still have to be resolved:

1. Learning e�ects may arise from getting familiar to
the discussions. These learning e�ects may domi-
nate the intended experiment e�ect. How can we
avoid this?

2. How can we objectively compare the design re-
sults?

3. How can we �nd a suitable work package pair? P

and N must be similar with respect to the design
communication, except for the occurrence of de-
sign patterns in P .

4. How can we relate between N and P those aspects
of the communication behavior that are qualita-
tively di�erent?

4 Conclusion

In order to avoid the mistake made with object-
orientation, the software engineering research commu-
nity should thoroughly test the claims made for soft-
ware design patterns. Practically speaking, however,
this is rather di�cult.

The art of empirical software engineering is to pro-
duce useful scienti�c insight despite the tight practi-
cal constraints in which it has to work. In particular
for controlled experiments the qualitative properties
(task characteristics) of a software engineering situa-
tion must be preserved although its quantitative as-
pects (task size) have to be scaled down extremely far.

This article describes how the �rst reproducible sci-
enti�c results on the properties of software design pat-
tern usage have thus been obtained. This research has
a good price/performance ratio, because useful practi-
cal advice can be derived from its results: Experiments
1a and 1b showed that carefully documenting pattern
usage is highly recommendable because it pays o� well
during maintenance. Experiment 2 proved, �rst, that
design patterns can be bene�cial even when an alter-
native solution appears to be simpler but, second, that
unsuitable application can also be harmful in other sit-
uations. The resulting practical advice calls to apply
common sense when using design patterns instead of
using them in a cookbook fashion (but, if in doubt, to
prefer them because of their high 
exibility).

Many more experiments (and studies of other types)
will be necessary for completing our understanding of
the design pattern idea.

Further information

Detailed information about all our experiments is avail-
able from http://wwwipd.ira.uka.de/~exp. This site in
particular contains the experimental materials and raw
result data in source form.

7



Acknowledgements

Michael Philippsen and Walter Tichy worked with us
in experiments 1 and 2, respectively. Ernst Denert
initiated and Peter Br�ossler organized experiment 2 at
sd&m. Most of all we thank all of our experimental
subjects, without whom. . .

References

[1] K. Beck, J.O. Coplien, R. Crocker, L. Dominick,
G. Meszaros, F. Paulisch, and J. Vlissides. In-
dustrial experience with design patterns. In 18th
Intl. Conf. on Software Engineering, pages 103{
114, Berlin, March 1996. IEEE CS press.

[2] Frank Buschmann, Regine Meunier, Hans Rohn-
ert, Peter Sommerlad, and Michael Stal. Pattern-
Oriented Software Architecture | A System of
Patterns. John Wiley and Sons, Chichester, UK,
1996.

[3] Larry B. Christensen. Experimental Methodology.
Allyn and Bacon, Needham Heights, MA, 6th edi-
tion, 1994.

[4] Bradley Efron and Robert Tibshirani. An intro-
duction to the Bootstrap. Monographs on statistics
and applied probability 57. Chapman and Hall,
New York, London, 1993.

[5] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA, 1995.

[6] Adam A. Porter, Harvey Siy, Carol A. Toman,
and Lawrence G. Votta. An experiment to assess
the cost-bene�ts of code inspections in large scale
software development. In Proc. Third ACM Sig-
soft Symposium on the Foundations of Software
Engineering, 1995.

[7] Lutz Prechelt. An experiment on the usefulness
of design patterns: Detailed description and eval-
uation. Technical Report 9/1997, Fakult�at f�ur In-
formatik, Universit�at Karlsruhe, Germany, June
1997. ftp.ira.uka.de.

[8] Lutz Prechelt, Barbara Unger, Michael
Philippsen, and Walter F. Tichy. Two con-
trolled experiments assessing the usefulness
of design pattern information during program
maintenance. Empirical Software Engineering,
.(.):., . 1998. Submitted. http://wwwipd.ira.u-
ka.de/~prechelt/Biblio/.

[9] Lutz Prechelt, Barbara Unger, and Douglas
Schmidt. Replication of the �rst controlled exper-
iment on the usefulness of design patterns: De-
tailed description and evaluation. Technical Re-

port wucs-97-34, Washington University, Dept. of
CS, St. Louis, December 1997.

[10] Lutz Prechelt, Barbara Unger, Walter F. Tichy,
Peter Br�ossler, and Lawrence G. Votta. A con-
trolled experiment in maintenance comparing de-
sign patterns to simpler solutions. IEEE Trans.
on Software Engineering, 1998. To be submitted.
http://wwwipd.ira.uka.de/~prechelt/Biblio/.

[11] Douglas Schmidt. Collected papers from the PLoP
'96 and EuroPLoP '96 conferences. Technical Re-
port wucs-97-07, Washington University, Dept. of
CS, St. Louis, February 1997. (Conference \Pat-
tern languages of programs").

[12] Mary Shaw and David Garlan. Software Architec-
ture | Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

8


