
A Controlled Experiment in Maintenance

Comparing Design Patterns to Simpler Solutions

Lutz Prechelt (prechelt@ira.uka.de)
Barbara Unger (unger@ira.uka.de)
Walter F. Tichy (tichy@ira.uka.de)

Fakult�at f�ur Informatik, Universit�at Karlsruhe
76128 Karlsruhe, Germany

+49/721/608-3934, Fax: +49/721/608-7343

Peter Br�ossler
(Peter.Broessler@sdm.de)
sd&m GmbH & Co KG
Thomas-Dehler-Str. 27

81737 M�unchen, Germany

Lawrence G. Votta (votta@cig.mot.com)
Motorola Inc.

1501 W. Shure Dr., MS SW Atrium
Arlington Heights, IL 60004

December 2, 2000

Abstract

Software design patterns package proven solutions
to recurring design problems in a form that sim-
pli�es reuse. We are seeking empirical evidence
whether using design patterns is bene�cial. In par-
ticular, one may prefer using a design pattern even
if the actual design problem is simpler than that
solved by the pattern, i.e., if not all of the function-
ality o�ered by the pattern is actually required.

Our experiment investigates software maintenance
scenarios that employ various design patterns and
compares designs with patterns to simpler alterna-
tives. The subjects were professional software engi-
neers.

In most of our nine maintenance tasks we found pos-
itive e�ects from using a design pattern: either its
inherent additional 
exibility was achieved without
requiring more maintenance time or maintenance
time was reduced compared to the simpler alterna-
tive. In a few cases we found negative e�ects: the
alternative solution was less error-prone or required
less maintenance time.

Although most of these e�ects were expected, a few
were surprising: a negative e�ect occurs although a
certain application of the Observer pattern appears
to be well justi�ed and a positive e�ect occurs de-
spite super
uous 
exibility (and hence complexity)
introduced by a certain application of the Decora-
tor pattern. Overall, we conclude that unless there
is a clear reason to prefer the simpler solution, it

is probably wise to choose the 
exibility provided
by the design pattern, because unexpected new re-
quirements often appear. We identify several ques-
tions for future empirical research.

Keywords: controlled experiment, design pattern,
design alternatives, maintenance, change e�ort.

1 Introduction

Object-oriented design patterns as presented by
Gamma et al. [7] are becoming increasingly pop-
ular. Their purpose is capturing design knowledge
in such a form that it can be reused easily, even by
less experienced designers.

Most design patterns collected in the popular book
by Gamma et al. [7] aim at reducing coupling and
increasing 
exibility within systems. For instance,
many of the patterns delay decisions until run time
that would otherwise be made at compile time or
they factor functionality into separate classes. As a
consequence, they often allow adding new function-
ality without changing old code.

Besides o�ering proven solutions using patterns
purportedly provides additional advantages: Design
patterns de�ne terminology that improves commu-
nication among designers [1] or from designers to
maintainers [7]. They also make it easier to think
clearly about a design and encourage the use of
\best practices".

1



Our work aims at testing and evaluating these
claims.

1.1 Isn't this just obvious?

Many readers may question the need for an empiri-
cal study of a technique whose mechanism and ben-
e�ts are so obvious: \Clearly patterns do have the
advantages claimed for them!" However, as soft-
ware engineers have discovered before, sometimes
spectacularly (e.g. in the case of multi-version pro-
gramming [8]), our intuition may seriously mislead
us and words such as \clearly" and \obviously" do
not constitute con�rmation.

Hence, as scientists we should seek solid and scruti-
nable empirical evidence instead of relying on anec-
dotes from irreproducible situations. In mature
scienti�c disciplines, this is a standard procedure
before any theory will be considered valid. The
present work provides such empirical evidence, in-
dicating that the use of certain design patterns can
indeed, as expected, improve the maintainability of
programs.

However, our work also produced two results that
appear non-obvious (at least upon �rst look) and
hence produce useful insights. First, it provides a
speci�c example where reasonable use of a design
pattern made a program harder to maintain. This
case can serve as a starting point for empirically
grounded development of guidelines for the use of
patterns. Second, we observed that compared to a
straightforward solution to a problem, a design that
provides unnecessary 
exibility may still be easier
to maintain. We consider both results to be not
\just obvious".

1.2 The complexity tradeo�

The following thought leads to our experiment ap-
proach. Given the popularity of the Gamma et al.
design patterns, one can expect that they will of-
ten be used in situations where their 
exibility is
not needed: The pattern solves the problem but is
more powerful than required.

In such situations there are two competing forces:
On the one hand, applying the pattern might be
a good idea because of the advantages of common
terminology, proven solutions, and best practices.
On the other hand, it may be a bad idea because
the solution applied may be more complicated than
necessary and may thus make understanding and
change more diÆcult, in particular for program-
mers who have not learned about design patterns

before. The experiment described here investigates
this tradeo�.

1.3 Experiment overview

Our controlled experiment assesses designs using
patterns versus alternative designs in the context of
program maintenance. We consider four di�erent
programs with di�erent design patterns. Among
the 
exibility and functionality properties of the de-
sign pattern solution of each program, at least one
is not actually needed for the given maintenance
tasks. For each program, the experiment compares
the performance of two groups of subjects on these
maintenance tasks. Two di�erent baseline program
versions are used: Version Pat applies design pat-
terns whereas version Alt employs a simpler solu-
tion that exhibits only the functionality and 
exi-
bility actually required.

We use well-documented, modestly-sized, arti�cial
programs that contain implementations of the de-
sign patterns Abstract Factory, Composite,
Decorator, Facade, Observer, and Visitor as
described in the book [7]. The subjects are pro-
fessional software engineers. We compare di�erent
groups of subjects before and after a two-day design
pattern course.

1.4 Related work

A lot of work is currently being done in both
scienti�c and industrial context towards identify-
ing design patterns, writing them up, discussing
and teaching them, building support tools, etc.
[1, 2, 3, 6]. Reports on the e�ects of patterns are
available in anecdotal form from various practition-
ers [1], but there is little work done yet in a quanti-
tative fashion, let alone in a controlled environment.

In fact the only quantitative, controlled experiment
on patterns reported so far appears to be [10] (see
[9, 11] for details). It investigates communication
improvements through patterns in a maintenance
situation. Maintenance can be done quicker and
with fewer errors if design patterns are explicitly
documented. This result con�rms some of the pur-
ported positive e�ects on communication but does
not address e�ects of patterns on actual software
structure.

1.5 Article overview

In Section 2 we describe the experimental design,
the underlying performance model, the subjects'

2



background, and how the experiment was done. We
also discuss the internal and external validity of the
experiment. Section 3 describes the programs used
in the experiment, the work tasks, and the expected
and actual results. We will assume that the reader
understands the relevant design patterns and their
properties; we will thus not describe them. The
conclusion sketches the common denominator of the
results, possible consequences for proper program
design, and further research questions to be inves-
tigated.

2 Description of the experi-

ment

We now give a short description of the experiment
design and conduct. More detail, including the orig-
inal experiment documents such as the programs,
the work tasks, and the raw result data are avail-
able from http://wwwipd.ira.uka.de/EIR/.

2.1 Experiment objectives

It is tempting to use design pattern solutions even
if the actual design problem is simpler than the one
solved by the pattern. In this experiment, we con-
sider the case that not all of the 
exibility of a
particular design pattern is needed in a program.
Therefore the solution based on patterns could be
replaced by a simpler one. We want to test whether
still using the design pattern in such cases is helpful
or harmful. We compare design pattern solutions
versus alternative solutions for programs involving
di�erent design patterns and for subjects having dif-
ferent levels of pattern knowledge.

2.2 Hypotheses

Our hypotheses that will be spelled out informally
as expectations , take the form that a design pattern
P does not improve performance of subjects doing a
maintenance exercise X on program A (containing
P) when compared to subjects doing the same exer-
cise X on an alternative program A' (not containing
P). The 'helpful', 'harmful', or 'neutral' interpreta-
tions are derived from the rejection or non-rejection
of these hypotheses.

2.3 Design

Our experimental design uses three independent
and two dependent variables. The independent

variables are the programs and change tasks, the
program version, and the amount of pattern knowl-
edge; the dependent variables are time and correct-
ness.

� \Program and change task": We use four
di�erent programs, each with a di�erent pur-
pose, di�erent design patterns, and two or
three di�erent maintenance tasks.

� \Program version": There are two di�erent,
functionally equivalent versions of each pro-
gram. One version (named \pattern version",
Pat) employs one or more design patterns, the
other (named \alternative version", Alt) rep-
resents a somehow simpler design using fewer
design patterns or simpli�ed versions of them.
This is the central variable of our experiment.
However, the subjects did not know that this
variable was in the experiment at all; they only
knew \the experiment tests the usefulness of
patterns".

� \Amount of pattern knowledge": This
is the di�erence between pretest and posttest.
The experiment had two parts on two di�erent
days. The �rst part (the pretest, Pre) was per-
formed in the morning of the �rst day. Then
a pattern course was taught during the after-
noon and the next morning. In the afternoon
of day 2 the second part of the experiment (the
posttest, Post) was performed.
Before the experiment, the participants had
only little pattern experience; about half of
the participants had no pattern knowledge at
all. Therefore, the posttest represents sub-
jects with signi�cantly higher pattern knowl-
edge than the pretest.

� Dependent variable \time": The time (in
minutes) taken for each maintenance task.

� Dependent variable \correctness": We
decided whether the participant's solutions ful-
�lled the requirements of the task or not. For
many tasks all groups achieved near-perfect
correctness, so we will often ignore this vari-
able.

We divided the subjects into four groups. In both
pretest and posttest each group maintained onePat
program and one Alt program, with two or three
work tasks for each. Overall, each subject worked
on all four programs and each program was used as
often in the pretest as in the posttest and as often in
the Pat version as in the Alt version. The design
is summarized in Table 1.

3



temporal sequence group A group B group C group D
Pre 1st problem ST Pat GR Pat CO Alt BO Alt

Pre 2nd problem GR Alt ST Alt BO Pat CO Pat

pattern course
Post 3rd problem CO Alt BO Alt ST Pat GR Pat

Post 4th problem BO Pat CO Pat GR Alt ST Alt

Table 1: Order of programs per group. ST, BO, CO, and GR are the programs and Alt or Pat indicates
which program version was used. See descriptions in the text. For instance in the context of program BO
we will call group D the Pre-Alt group, group B the Post-Alt group, B+D together the Alt group,
C+D together the Pre group and so on.

2.4 Performance model

For this experiment, we consider the time required
for a task to be the sum of the following compo-
nents:

1. Understanding the task,

2. �nding out which parts and aspects of the pro-
gram are relevant to the task,

3. understanding these relevant aspects of the
program,

4. understanding how to perform the requested
change (change design),

5. performing the requested change (change im-
plementation).

The �rst of these components is identical for the
Pat and Alt version, the others may depend on
the actual program structure. For the second and
later tasks to be performed on one program, parts of
the time components 2 and 3 may be reused. The
�ve components may contribute rather di�erently
to the overall task completion time, depending on
the particular program and task.

2.5 Subjects and groups

The 29 subjects are all professional software engi-
neers. On average, they had worked as software
professionals for 4.1 years and their average C++ ex-
perience was 2.4 years. Their work typically had a
good mix of design, coding, test, and maintenance
activities. 15 subjects already had some pattern
knowledge before the course.

Data about programming and working experience
was gathered by a questionnaire weeks before the
course. Based on the questionnaire's results the
prospective 32 subjects were carefully assigned into
four groups so as to balance as well as possible
the professional experience, C++ experience, and
in particular the level of knowledge of the relevant
patterns. Four registered subjects did not appear

at the experiment. One additional participant ap-
peared on short notice and was assigned ad-hoc.

The resulting actual group sizes were 6 to 8 subjects
in each group, with 2 to 3 having theoretical or
practical pattern knowledge of the relevant patterns
before the course. For more detailed information
about the groups, see Figure 1 and Table 2.

2.6 Experiment conduct

The experiment was performed in November 1997
with sd&m personnel in Munich. The pretest
started at 9:30am in the morning, the posttest at
12:40pm the next day. The subjects worked asyn-
chronously and there was no time limit for complet-
ing the tasks; all subjects �nished their tasks within
three hours.

The subjects received all documents printed on pa-
per: general instructions, a program description, a
program listing, work task descriptions, and a post-
mortem questionnaire. The solutions were delivered
in handwriting. The overall amount of text written
was small so handwriting speed was not a limiting
factor.

2.7 Threats to internal validity

Internal validity is the degree to which the observed
e�ects depend only on the intended experimental
variables. Due to the small group sizes, we must
be concerned whether groups di�ered signi�cantly.
Relevant aspects of similarity are overall software
capabilities, C++ capabilities, and previous pattern
experience. We have reduced di�erences by balanc-
ing the groups explicitly using random blocked as-
signment (often somewhat misleadingly called ran-
domized blocking although not the blocking is ran-
dom, rather the assignment of each block's mem-
bers to the groups is [4]). The blocking was per-
formed in a subjective manual process based on the
substitute measures of capability available from the

4



0
2

4
6

8
12

ye
ar

s 
of

 p
ro

fe
ss

io
na

l e
xp

er
ie

nc
e

A B C D

groups

0
2

4
6

8
10

ye
ar

s 
of

 C
++

 p
ro

gr
am

m
in

g 
ex

pe
rie

nc
e

A B C D

groups

Figure 1: Left: Years of professional experience of the subjects in each group. Right: Years of C++
programming experience of the subjects in each group.

Abstract Factory Observer Decorator Composite Visitor
Group A TA7 TA5 { { TA5
Group B 5B1 3B3 5B1 TB3 5B1 3B1 TB1 TB3
Group C 3C2 TC5 2C2 TC5 TC5 1C2 TC5 TC7 TC5
Group D { TD3 TD4 TD4 TD3 3D5 1D5

Table 2: Pattern knowledge of the groups before the pattern course. Each subject with pattern knowledge
of the relevant patterns before the course is listed with the subject label given as the subscript to the
number of times s/he has previously used the pattern. T means that the subject has only theoretical
knowledge of the pattern.

pre-experiment questionnaire, as described in Sec-
tion 2.5. Despite later subject loss (right at the
start of the experiment), the resulting groups ap-
pear reasonably similar and our results give no rea-
son to believe the opposite. Furthermore, an anal-
ysis of variance (see Section 3) indicates that only
a small fraction (� 7.5%) of variation is explained
by interpersonal di�erences of subjects, anyway.

A second consideration is the precision and accu-
racy of the time stamps recorded by the subjects.
By cross-checking, we found these data to be highly
accurate and reliable.

2.8 Threats to external validity

External validity is the degree to which the results
are generalizable, i.e., transfer to other situations.
Several di�erences to real software maintenance sit-
uations limit the generalizability of this experiment:
First, the original designers and implementors may
be the ones who maintain the program. This was
not the case in our experiment and our results do
not apply to such cases. The maintainers may also
have more pattern experience than our participants.
The consequences of this di�erence are unclear; but
we do not believe them to be dramatic. Second,
real programs will often be less well documented
than the experiment programs, real programs are
typically larger, and change tasks rarely revolve

closely around a design pattern. The e�ects of
such di�erences probably di�er from one case to the
next. Third, real maintainers implement and test
their solutions (instead of only writing them on pa-
per), that will typically trade some of the incorrect-
ness observed in the experiment against additional
time. Furthermore, without an explicit theory of
SW maintenance it is diÆcult to predict what ef-
fect other design patterns (and alternatives) than
the �ve speci�c ones used in the experiment may
have.

3 Results

First we perform an analysis of variance (ANOVA)
for identifying the variables that are most relevant
for explaining work time. Table 3 shows the most
relevant factors found. Clearly, the di�erences be-
tween the various work tasks are most important.
The next most important variables are the di�er-
ence between Pat and Alt for each task (with a
mean contribution about 1/8th as large), and the
di�erence between Pre and Post for each task
(1/16th as large). Therefore, our discussion will be
structured along these variables. As we will see be-
low, the correctness di�erences are relevant for few
worktasks only. The systematic interpersonal dif-
ferences (as described by the in
uence of the vari-
able subject ID) are not dramatically large. The

5



order di�erence between the �rst and second pro-
gram within the pretest or within the posttest is
not a signi�cant factor at all.

Hence for the further analysis the results are dis-
cussed worktask by worktask. For each of the pro-
grams we describe the program and its use of design
patterns, the work tasks and solutions, and the ex-
pected and actual results.

The expectations form the basis of our discussion
and interpretation of the quantitative results. Note
that this style of discussion is dense but no simpler
form would adequately characterize the e�ects we
observed.

For the actual statistical analysis, we did not want
to rely on the assumption of normal distributions
as made in the standard analysis of variance tech-
niques. The usualy non-parametric techniques,
such as Kruskal-Wallis or Wilcoxon test, on the
other hand, perform an analysis with respect to the
medians of samples, rather than the means. How-
ever, we would be more interested in the means,
because the mean is more relevant for �nal soft-
ware development cost. Therefore, for further anal-
ysis we use distribution-free Bootstrap methods [5].
Given two samples A and B of work time values to
be compared, we compute a bootstrap distribution1

of di�erences of mean work times and directly read
p-values from this distribution (percentile method).

3.1 Observer: Stock Ticker (ST)

Program description: Stock Ticker is a program
for directing a continuous stream of stock trades (ti-
tle, volume, unit price) from a stock market to one
or more displays that are also part of the program.
The displays advertise the information or part of
the information.

Both versions of Stock Ticker consist of seven
classes. The Pat version contains an Observer

in which four of the seven classes participate. This
version of the program has 343 lines (including com-
ments and blank lines). The Alt version of the pro-
gram includes one class that contains an instance
variable for each display and updates the displays
when the data changes. No dynamic registration
of observers is implemented. This version has 279
lines.

1The bootstrap distribution is computed empirically by
doing the following 10000 times: Given A, compute a boot-
strap resample A0 by taking a random sample of size jAj with
replacement. Likewise, compute B0 from B. The di�erence
of the resample means (A0 �B0) becomes one element of the
bootstrap distribution.

3.1.1 Work task 1

\In the given program listing only one of the two
concrete display types is used. Enhance the pro-
gram such that a second display [of the yet unused
display type] is shown." The Pat groups only had
to invoke the pattern method subscribewith a new
instance of the display. The Alt groups had to in-
troduce a new display instance variable and invoke
the displaying of new data on each data update.
The main work in this task is to comprehend the
structure of the program, in particular how the dis-
plays receive data.

Expectations: The structure of the Pat version
is more complicated than the structure of the Alt
program version. When subjects lack knowledge of
the Observer pattern (in the pretest) they have to
�nd out how theObserver mechanism works, thus
Pre-Pat subjects should require more time than
Pre-Alt subjects (we call this expectation `E1').
Given suÆcient pattern knowledge, on the other
hand, the Pat group may understand the program
structure more quickly than the Alt group (E2).

Results: Figure 2 supports E1: Pre-Pat sub-
jects require more than twice as much time than
Pre-Alt subjects (151% more time, 46.6 minutes
vs. 18.5 minutes, signi�cance p < 0:001). In
the posttest, however, the Pat subjects still re-
quired more time than the Alt subjects (23% more
time, 20 minutes vs. 16.2 minutes, signi�cance
p = 0:023), refuting E2. We conclude that for this
application and this type of maintenance tasks the
use of the Observer pattern may be harmful.

3.1.2 Work task 2

\Change the program so that new displays can be
added dynamically at runtime." The Pat groups
only had to realize that nothing needed to be done.
The Alt groups had to add the functionality of an
Observer (at least two lines had to be changed,
one line had to be deleted, and one method had to
be added.)

Expectations: In contrast to all other tasks in the
experiment, this task is clearly unfair; we expect the
Alt version to be clearly at a disadvantage (E3). In
the Pat version of the program the subjects need to
know that the Observer already implements the
functionality required. Post subjects should imme-
diately recognize this; Pre subjects might lack the
relevant knowledge, slowing them down. The Pre-
Alt subjects may have to re-invent the Observer
solution and all Alt subjects have to implement it,
hence they should be far slower.

6



DF Sum Sq Mean Sq F Value Pr(F)
worktask 8 32570 4071.2 59.153 <0.001
worktask�PatAlt 7 3700 528.5 7.679 <0.001
worktask�PrePost 8 2079 259.8 3.775 <0.001
worktask�correctness 13 2861 220.1 3.197 <0.001
subject ID 28 4444 158.7 2.306 <0.001
order 1 40 40.2 0.584 0.446
residuals 195 13421 68.8

Table 3: Analysis of variance (aov) of work time. The variables for the model are the work task (per
program), Pat or Alt, Pre or Post, correctness of the solutions (on a 4-point ordinal scale), subject
ID, and order (�rst or second test of session). Order is not signi�cant and the contribution of subject
identity is relatively small; the other factors deserve separate discussion.

0 20 40 60 80
time in minutes

PRE•B1•B2•B3•B4 •B5•B6 •B7 •B8 •A1 •A2•A3•A4•A5 •A6 •A7

POST•D1•D2 •D3•D4 •D5•D6 •C1•C2•C3 •C4•C5 •C6•C7•C8

ALT•B1•B2•B3•B4 •B5•B6 •B7 •B8•D1•D2 •D3•D4 •D5•D6

PAT•A1 •A2•A3•A4•A5 •A6 •A7•C1•C2•C3 •C4•C5 •C6•C7•C8

PRE ALT•B1•B2•B3•B4 •B5•B6 •B7 •B8

PRE PAT•A1 •A2•A3•A4•A5 •A6 •A7

POST ALT•D1•D2 •D3•D4 •D5•D6

POST PAT•C1•C2•C3 •C4•C5 •C6•C7•C8

Figure 2: Time in minutes required for program Stock Ticker work task 1. Each dot marks one subject,
the square is the arithmetic mean, the line indicates plus/minus one standard error of the mean. The top
part (4 lines) shows the four individual groups. The middle part (2 lines) shows the same but with the
Pre-Pat and Post-Pat groups combined and the Pre-Alt and Post-Alt groups combined. Likewise,
the bottom part (2 lines) shows Pat plus Alt groups combined.

Results: Figure 3 con�rms E3. The unfair task is
completed on average 29% faster on the Pat version
(15.3 minutes vs. 21.4 minutes, signi�cance of dif-
ference p = 0:045). For both versions, the di�erence
between Pre and Post is not signi�cant.

3.2 Composite and Visitor:
Boolean Formulas (BO)

Program description: Boolean Formulas con-
tains a library for representing boolean formulas
(AND, OR, XOR, NOT, and variables) and for
printing the formulas in two di�erent styles. Fur-
thermore, it contains a small main program that
generates a formula and invokes both printing rou-
tines.

The Pat version of Boolean Formulas consists of
11 classes spanning 470 lines. The boolean formu-
las are represented by a Composite. The printing
routines are implemented as Visitors. For each
concrete class of the Composite a printing method
is implemented in each of the two Visitors. Each

class of the Composite provides a dispatch method
for the Visitors.

TheAlt version of the program is shorter: 8 classes
spanning 374 lines. It has almost the same struc-
ture as the Pat version except for the Visitor

pattern, that is completely missing. The di�erent
printing routines are located directly in each Com-
posite class instead. The Visitor solution allows
for adding new visitors without changing the Com-
posite classes.

3.2.1 Work task 1

\Enhance the program to evaluate the boolean for-
mulas, i.e., to determine the result for a given for-
mula represented by a Composite and values of the
variables." The printing routines serve as struc-
tural examples. The Pat groups had to create a
new Visitor and the Alt groups had to add new
methods to each concrete class of the Composite.

Expectations: In principle it should be easier
to create a single new class similar to another

7



0 10 20 30 40 50
time in minutes

PRE•B1 •B2•B3 •B4 •B5•B6•B7 •B8•A1•A2 •A3 •A4•A5 •A6•A7

POST•D1 •D2•D3 •D4 •D5•D6 •C1•C2 •C3 •C4•C5 •C6 •C7•C8

ALT•B1 •B2•B3 •B4 •B5•B6•B7 •B8•D1 •D2•D3 •D4 •D5•D6

PAT•A1•A2 •A3 •A4•A5 •A6•A7 •C1•C2 •C3 •C4•C5 •C6 •C7•C8

PRE ALT•B1 •B2•B3 •B4 •B5•B6•B7 •B8

PRE PAT•A1•A2 •A3 •A4•A5 •A6•A7

POST ALT•D1 •D2•D3 •D4 •D5•D6

POST PAT•C1•C2 •C3 •C4•C5 •C6 •C7•C8

Figure 3: Time required for program stock ticker work task 2.

0 20 40 60 80 100
time in minutes

PRE•D1 •D2•D3•D4•D5 •D6•C1 •C2•C3•C4•C5 •C6•C7 •C8

POST•B1•B2 •B3•B4 •B5•B6 •B7 •B8•A1 •A2•A3 •A4•A5 •A6•A7

ALT•D1 •D2•D3•D4•D5 •D6•B1•B2 •B3•B4 •B5•B6 •B7 •B8

PAT•C1 •C2•C3•C4•C5 •C6•C7 •C8•A1 •A2•A3 •A4•A5 •A6•A7

PRE ALT•D1 •D2•D3•D4•D5 •D6

PRE PAT•C1 •C2•C3•C4•C5 •C6•C7 •C8

POST ALT•B1•B2 •B3•B4 •B5•B6 •B7 •B8

POST PAT•A1 •A2•A3 •A4•A5 •A6•A7

Figure 4: Time required for program Boolean Formulas work task 1.

rather than adding a method to several classes, This
should favor the Pat groups. However, the Visi-
tor pattern is technically quite diÆcult to under-
stand. We expect that it will take more time for the
Pat groups to understand the current application
of the Visitor pattern than for the Alt groups
to �nd where to add the methods (E1). Gaining
pattern knowledge should help all groups (E2) be-
cause even in the Alt program a Composite is
present, so the Post subjects presumably under-
stand the structure of the formula representation
faster. The Pat group might pro�t more from the
pattern course than theAlt group (E3) because the
working mechanism of the Visitor is confusing.

Results: As one can see from Figure 4, Post-Alt
group is 30% faster than the Post-Pat group as
expected (29.5 minutes vs. 42.4 minutes, signi�-
cance p = 0:034), con�rming a part of E1. However
in the pretest there is a trend in the opposite di-
rection (11% slower, 52.2 minutes vs. 47.1 minutes,
albeit no signi�cant di�erence, p = 0:299), rejecting
the other part. Probably in Pre-Pat the Visitor
is largely just taken for granted and imitated by
the subjects (instead of analyzed and understood)
and thus does not increase complexity. This also
explains why the Pat group does not pro�t more
from the pattern course than the Alt group (thus

E3 is wrong), although both show some improve-
ment as expected in E2. Overall it may be that
an unrequired Visitor, although it appears com-
plicated, is not necessarily harmful | but the data
is not quite conclusive in this respect.

3.2.2 Work task 2

For the second task of this program our instruc-
tions were insuÆciently clear. As a result, most
subjects completely misunderstood the job and de-
livered something very di�erent from what we had
intended. We therefore ignore the task here.

3.3 Decorator:
Communication Channels (CO)

Program description: Communication Channels
is a wrapper library. A communication channel es-
tablishes a connection for transparently transferring
arbitrary-length packets of data and one can turn
on additional logging, data compression, and en-
cryption functionality. The library does not imple-
ment the functionality itself, but only provides a
Facade to a system library. However, this appli-

8



cation of the Facade pattern is irrelevant to the
experiment.

The Pat version is designed with a Decorator

for adding the functionality to a bare channel, hav-
ing the classes for logging, data compression, and
encryption as decorator classes. The program con-
sists of 365 lines in six classes.

The Alt version comprises but a single class, that
uses 
ags and if-sequences for turning functionality
on or o�; the 
ags can be set when creating a chan-
nel. It consists of 318 lines. Communication chan-
nels is the only programwhere theAlt program has
a structured (as opposed to object-oriented) design.

3.3.1 Work task 1

\Enhance the functionality of the program such that
error-correcting encoding (bit redundancy) can be
added to communication channels." The underly-
ing functionality is again provided by a given class,
so the subjects only had to integrate the new func-
tionality into the program.

The Pat subjects had to add a new Decorator

class while the Alt subjects had to make additions
and changes at various points in the existing pro-
gram.

Expectations: We expect two in
uences of the
Decorator on the subjects' behavior. First the
Alt version is easier to understand because its be-
havior is not delocalized as in the multiple decorator
classes. This would lead to the conclusion that the
Alt groups are faster than the Pat groups, espe-
cially in the pretest. Second, a counter-in
uence
results from the structure of the Decorator: the
functionality is encapsulated in classes and one need
hardly care about mutual in
uences. In particular,
in the Alt version the subjects have to ensure they
add the new functionality at the correct places in
the program for proper sequencing of the various
switchable functionalities; this will consume time
and may lead to omissions and mistakes. We ex-
pect the second in
uence to be stronger than the
�rst and hence the Pat version to be preferable
(E1), especially at higher levels of pattern knowl-
edge (E2).

Results: As one can see from Figure 5 the Pat
groups are indeed signi�cantly faster than Alt

groups (38% faster, 28.8 minutes vs. 46.2 min-
utes, signi�cance p < 0:001), con�rming E1. The
pattern-solution is clearly preferable.

There is no signi�cant di�erence between Pre-Alt
and Post-Alt as expected (46.5 minutes vs. 45.9

minutes, signi�cance p = 0:46), but also none be-
tween Pre-Pat and Post-Pat (27.5 minutes vs.
29.8 minutes, signi�cance p = 0:29), thus rejecting
E2. This means the positive e�ect of pattern use is
even independent of pattern knowledge in this case!

The pattern-solution is also superior in terms of cor-
rectness: Errors were made by 7 out of 8 Pre-Alt
subjects and by 6 out of 7 Post-Alt while in the
Pat group no errors occurred at all.

3.3.2 Work task 2

A communication channel has di�erent states
(namely opened, closed, or failed) and its operations
have di�erent result codes (OK, failure, or impossi-
ble). Work task 2 called to \determine under which
conditions a reset() call will return the `impossible'
result". To do this the subjects had to �nd the spots
where the states were changed. In the Pat version
these spots are spread over the di�erent decorator
classes.

Expectations: Program understanding is gained
in the �rst working task. So only the new details rel-
evant for this task need to be understood now. This
will be easier for the more localized Alt program
with respect to both work time (E3) and correctness
(E4).

Results: The results as shown in Figure 6 are in-
conclusive for this task: The error rate in the Alt
groups is almost as high as in the Pat groups (in
contrast to E4) and the Alt group is much faster
in the pretest than in the posttest. The latter is
unexpected and can only be explained by a sub-
ject fatigue e�ect in the (afternoon) posttest or by
pure chance (which is plausible since the task is
only 5 minutes long). Overall, E3 is still supported
though. Note that this task is rather minor and
that all �gures use di�erent scales.

3.3.3 Work task 3

\Create a channel object that performs compression
and encryption". The Alt subjects had to create
only a single object, giving parameters for the func-
tionality 
ags, while Pat subjects had to determine
the proper nesting of the decorators to get the re-
quired functionality in the requested order. (A sim-
ilar sequence problem plagued the Alt subjects in
task 1.)

Expectations: The Pat groups will take longer
(E5) and commit more errors (E6).

Results: Both expectations are supported (see
Figure 7): Overall, the Alt group is signi�cantly

9



0 20 40 60 80
time in minutes

PRE•C1 •C2•C3•C4 •C5 •C6•C7•C8•D1 •D2•D3•D4 •D5 •D6

POST•A1 •A2 •A3•A4 •A5 •A6•A7•B1 •B2•B3 •B4•B5 •B6•B7•B8

ALT•C1 •C2•C3•C4 •C5 •C6•C7•C8•A1 •A2 •A3•A4 •A5 •A6•A7

PAT•D1 •D2•D3•D4 •D5 •D6•B1 •B2•B3 •B4•B5 •B6•B7•B8

PRE ALT•C1 •C2•C3•C4 •C5 •C6•C7•C8

PRE PAT•D1 •D2•D3•D4 •D5 •D6

POST ALT•A1 •A2 •A3•A4 •A5 •A6•A7

POST PAT•B1 •B2•B3 •B4•B5 •B6•B7•B8

Figure 5: Time required for program Communication Channels work task 1.

0 2 4 6 8 10 12
time in minutes

PRE•C1•C2•C3 •C4•C5•C6 •C7•C8 •D1 •D2•D3 •D4 •D5•D6

POST•A1 •A2 •A3•A4•A5•A6•A7 •B1•B2 •B3 •B4•B5 •B6•B7 •B8

ALT•C1•C2•C3 •C4•C5•C6 •C7•C8 •A1 •A2 •A3•A4•A5•A6•A7

PAT•D1 •D2•D3 •D4 •D5•D6•B1•B2 •B3 •B4•B5 •B6•B7 •B8

PRE ALT•C1•C2•C3 •C4•C5•C6 •C7•C8

PRE PAT•D1 •D2•D3 •D4 •D5•D6

POST ALT•A1 •A2 •A3•A4•A5•A6•A7

POST PAT•B1•B2 •B3 •B4•B5 •B6•B7 •B8

Figure 6: Time required for program Communication Channels work task 2.

faster (53% faster, 3 minutes vs. 6.4 minutes, signif-
icance p < 0:001) than the Pat group. More impor-
tantly, we counted 6 wrong solutions (out of 14) for
Pat, while no errors were observed for Alt. How-
ever, this object creation problem could be over-
come by a suitable convenience method without
changing the overall design.

3.4 Composite and Abstract Fac-
tory:
Graphics Library (GR)

Program description: Graphics Library contains
a library for creating, manipulating, and drawing
simple types of graphical objects (lines and circles)
on di�erent types of graphical output devices (al-
phanumeric display, pixel display). In a central
class (generator) the output device is selected. De-
pending on the output device the corresponding
types of graphical objects are created. Some ba-
sic graphical objects (lines and points) are imple-
mented identically for all graphical output devices
but the implementation of complex objects like cir-
cles or the graphical context depends on the graph-
ical output device. Furthermore, graphical objects
can be collected in groups, that can be manipulated

like individual objects.

Patterns used in the Pat version of this program
are Abstract Factory for the generator classes
and Composite for hierarchical object grouping.

The Alt version of the program realizes the instan-
tiation of the appropriate classes for each graphical
output device by switch-statements in but a single
generator class. The combination and manipulation
of graphical object groups are realized with a quasi-
Composite. The only di�erence is that groups are
not treated as graphical objects as in the Compos-
ite. As a result, a group B is included in another
group A by adding each element of B individually
to A, i.e., there is no hierarchical group nesting.

This program pair has the smallest structural dif-
ference between the Pat and Alt version of all four
program pairs in the experiment. The Pat version
is 13 classes in 682 lines; the Alt version 11 classes
in 663 lines.

3.4.1 Work task 1

\Add a third type of output device (plotter)." Sub-
jects maintaining the Pat program had to intro-
duce a new concrete factory class, extend the fac-

10



0 5 10 15 20 25 30
time in minutes

PRE•C1•C2 •C3 •C4 •C5•C6 •C7•C8 •D1•D2•D3•D4 •D5 •D6

POST•A1 •A2•A3•A4•A5 •A6•A7 •B1•B2•B3 •B4 •B5 •B6•B7 •B8

ALT•C1•C2 •C3 •C4 •C5•C6 •C7•C8•A1 •A2•A3•A4•A5 •A6•A7

PAT•D1•D2•D3•D4 •D5 •D6•B1•B2•B3 •B4 •B5 •B6•B7 •B8

PRE ALT•C1•C2 •C3 •C4 •C5•C6 •C7•C8

PRE PAT•D1•D2•D3•D4 •D5 •D6

POST ALT•A1 •A2•A3•A4•A5 •A6•A7

POST PAT•B1•B2•B3 •B4 •B5 •B6•B7 •B8

Figure 7: Time required for program Communication Channels work task 3.

0 20 40 60 80
time in minutes

PRE•A1•A2 •A3•A4 •A5 •A6•A7 •B1•B2 •B3•B4 •B5 •B6•B7•B8

POST•C1•C2•C3•C4 •C5•C6•C7 •C8 •D1•D2•D3•D4 •D5•D6

ALT•A1•A2 •A3•A4 •A5 •A6•A7•C1•C2•C3•C4 •C5•C6•C7 •C8

PAT•B1•B2 •B3•B4 •B5 •B6•B7•B8 •D1•D2•D3•D4 •D5•D6

PRE ALT•A1•A2 •A3•A4 •A5 •A6•A7

PRE PAT•B1•B2 •B3•B4 •B5 •B6•B7•B8

POST ALT•C1•C2•C3•C4 •C5•C6•C7 •C8

POST PAT•D1•D2•D3•D4 •D5•D6

Figure 8: Time required for program Graphics Library work task 1.

tory selector method, and add two concrete product
classes. Subjects in the Alt groups had to enhance
the switch statements in all methods of the gen-
erator class. The appropriate classes of graphical
objects for the new output device had to be added
as for Pat.

Expectations: Regarding the maintenance task,
the time for �nding the changes and additions is
expected to be almost equal for the Pat and the
Alt groups. So the main di�erence in time required
for this task will be caused by program understand-
ing. Here we expect the simpler Alt program to be
easier to understand, at least in the pretest (E1).

Pattern knowledge will help both groups (E2) be-
cause of the Composite structure in both pro-
grams. The pattern group may pro�t a little more
from the pattern course, because it eases under-
standing the structure of the Abstract Factory.

Results: The results shown in Figure 8 support
both expectations. Both groups maintaining the
Alt program were faster than the corresponding
Pat groups with the same pattern knowledge level,
supporting E1 (15% faster, 32 minutes vs. 37.5 min-
utes, total signi�cance p = 0:10). The improvement
from Pre to Post (E2) is 17.3% (40.5 minutes vs.
33.5 minutes, signi�cance p = 0:17) for the Pat

group and 22.8% (36.4 minutes vs. 28.1 minutes,
signi�cance p = 0:031) for the Alt group. That is
21.2% overall (38.6 minutes vs. 30.4 minutes, sig-
ni�cance p = 0:021).

3.4.2 Work task 2

Determine whether or not a certain sequence of op-
erations would result in an x-shaped �gure. This
work task is a small comprehension test concerning
the Composite structure. The key to the answer
for both groups is �nding out that only references to
graphical objects (not copies of objects) are stored
in an object group.

Expectations: The structure of both programs is
quite similar in the region of interest. So we do not
expect to observe signi�cant di�erences between the
Alt and the Pat groups (E3). But we expect a dif-
ference between Pre and Post: subjects without
pattern knowledge are slower than subjects with
pattern knowledge (E4) because the latter are fa-
miliar with the Composite.

Results: As we see in the lower part of Figure 9,
the di�erence between Pat and Alt (Pat is 21%
faster than Alt 13.6 minutes vs 17.2 minutes, sig-
ni�cance p = 0:085) is very similar to the di�erence

11



0 10 20 30 40 50
time in minutes

PRE•A1 •A2•A3•A4 •A5 •A6•A7•B1 •B2•B3•B4 •B5•B6•B7 •B8

POST•C1•C2 •C3•C4•C5 •C6 •C7 •C8•D1 •D2•D3•D4 •D5 •D6

ALT•A1 •A2•A3•A4 •A5 •A6•A7•C1•C2 •C3•C4•C5 •C6 •C7 •C8

PAT•B1 •B2•B3•B4 •B5•B6•B7 •B8•D1 •D2•D3•D4 •D5 •D6

PRE ALT•A1 •A2•A3•A4 •A5 •A6•A7

PRE PAT•B1 •B2•B3•B4 •B5•B6•B7 •B8

POST ALT•C1•C2 •C3•C4•C5 •C6 •C7 •C8

POST PAT•D1 •D2•D3•D4 •D5 •D6

Figure 9: Time required for program Graphics Library work task 2.

between Post and Pre (Post is 21% faster than
Pre 13.6 minutes vs. 17.2 minutes, signi�cance
p = 0:091). Both are only weakly signi�cant. How-
ever, we tend to consider the large value of subject
A6 an outlier. Deleting it makes both di�erences
disappear, so that E3 is con�rmed but E4 is re-
jected: the performance does not depend on pattern
knowledge.

4 Conclusion

We investigated the question whether (with respect
to maintenance) it is useful to design programs with
design patterns even if the actual design problem is
simpler than that solved by the design patterns, i.e.,
whether using patterns that over-kill the problem at
hand is useful or harmful.

We found evidence of both cases, depending on
the situation. Software engineering common sense
turned out to be a pretty accurate (but not per-
fect) predictor of these e�ects for three out of the
four programs used in this experiment. Summariz-
ing the individual expectations versus actual results
for these programs and tasks yields the following
picture:

� Program \Stock Ticker (ST)" (Observer):
Expectation: The pattern solution is more
complicated and thus harmful, unless its 
exi-
bility is really required.
Actual result: A negative e�ect from unneces-
sary application of theObserver pattern, par-
ticularly for subjects with low pattern knowl-
edge.

� Program \Boolean Formulas (BO)" (Compos-
ite, Visitor):
Expectation: The Visitor is diÆcult to un-
derstand and thus harmful.

Actual result: A neutral e�ect | the Visi-

tor does not signi�cantly increase the required
time.

� Program \Communication Channels (CO)"
(Decorator):
Expectation: Due to the isolation of di�erent
parts of the functionality (and thus delocaliza-
tion of the overall functionality) the pattern so-
lution is easier to change, but more error-prone
to call.
Actual result: As expected.

� Program \Graphics Library (GR)" (Compos-
ite, Abstract Factory):
Expectation: The two versions are structurally
similar, so we anticipate at most small perfor-
mance di�erences.
Actual result: As expected, only small di�er-
ences were found.

Note that these expectations were only qualitative,
so the quantitative experiment results provide ad-
ditional information beyond con�rming or rejecting
the hypotheses.

We suggest the following lessons learned. First, it
is usually but not always useful to use a design pat-
tern if there are simpler alternatives. Second, use
software engineering common sense to �nd the ex-
ceptions where a simpler solution should be pref-
ered, even if a design pattern solution could easily
be applied. Third, even where this common sense
suggests that using a pattern might not be a good
idea, it is sometimes right to use it (as with the
Visitor in our program BO). Hence, if in doubt,
using the pattern rather than the simpler solution
appears to be a good default approach. Fourth, a
thorough understanding of speci�c design patterns
often helps when maintaining programs using them,
even if these programs are neither very large nor
very complicated. If this observation holds in gen-
eral it suggests limitations to the usefulness of pat-

12



terns once the catalog of available patterns becomes
large and programmers do not know them all.

We emphasize that unless there is a clear reason
to prefer the simpler solution, it is probably wise to
choose the 
exibility provided by the design pattern
solution, because unexpected new requirements of-
ten occur. This aspect was deliberately ignored in
our experiment. In those cases where the pattern
solution was not bene�cial, its added complexity
can be viewed as the price for its 
exibility.

As a consequence of lessons one and three, we need
to make sure that the software engineers are famil-
iar with alternatives. This means that in our uni-
versity courses, we must not just teach the current
fad blindly (whether it is OO or patterns) but we
should teach alternative approaches as well.

Further research should address the following ques-
tions: Are there alternative simpler solutions for
specialized applications of other (kinds of) design
patterns as well? Are the tradeo�s involved similar
to the ones discussed here? What are the e�ects
of pattern versus non-pattern designs for long term
maintenance involving many interacting changes?
How does the use or non-use of patterns in
uence
activities other than pure maintenance, e.g. inspec-
tions or code reuse? Can we characterize the situa-
tions in which (current) design common sense mis-
leads us?

Acknowledgements

We thank Ernst Denert and sd&m for making the
experiment possible and all our subjects for being
so interested in it. Thanks to reviewer 2 of our
rejected FSE submission for the important remark
regarding university education.

References

[1] K. Beck, J.O. Coplien, R. Crocker, L. Do-
minick, G. Meszaros, F. Paulisch, and J. Vlis-
sides. Industrial experience with design pat-
terns. In Proc. 18th Intl. Conf. on Software En-
gineering, pages 103{114, Berlin, March 1996.
IEEE CS Press.

[2] F. J. Budinsky, M. A. Finnie, J. M. Vlissides,
and P. S. Yu. Automatic code generation
from design patterns. IBM Systems Journal,
35(2):151{171, 1996.

[3] Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture | A

System of Patterns. John Wiley and Sons,
Chichester, UK, 1996.

[4] Larry B. Christensen. Experimental Methodol-
ogy. Allyn and Bacon, Needham Heights, MA,
6th edition, 1994.

[5] Bradley Efron and Robert Tibshirani. An in-
troduction to the Bootstrap. Monographs on
statistics and applied probability 57. Chapman
and Hall, New York, London, 1993.

[6] Gert Florijn, Marco Meijers, and Pieter van
Winsen. Tool support for object-oriented pat-
terns. In Mehmet Aksit, editor, 11th Eu-
ropean Conference on Object-Oriented Pro-
gramming (ECOOP), LNCS 1241, pages 472{
495, Jyv�askyl�a, Finland, June 1997. Springer-
Verlag.

[7] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[8] John C. Knight and Nancy G. Leveson. An
experimental evaluation of the assumption of
independence in multiversion programming.
IEEE Transactions on Software Engineering,
12(1):96{109, January 1986.

[9] Lutz Prechelt. An experiment on the usefulness
of design patterns: Detailed description and
evaluation. Technical Report 9/1997, Fakult�at
f�ur Informatik, Universit�at Karlsruhe, Ger-
many, June 1997. ftp.ira.uka.de.

[10] Lutz Prechelt, Barbara Unger, Michael
Philippsen, and Walter F. Tichy. Two con-
trolled experiments assessing the usefulness
of design pattern information during program
maintenance. IEEE Trans. on Software Engi-
neering. Resubmitted April 2000. http://www-
ipd.ira.uka.de/~prechelt/Biblio/.

[11] Lutz Prechelt, Barbara Unger, and Douglas
Schmidt. Replication of the �rst controlled ex-
periment on the usefulness of design patterns:
Detailed description and evaluation. Technical
Report wucs-97-34, Washington Univer-
sity, Dept. of CS, St. Louis, December 1997.
http://www.cs.wustl.edu/cs/cs/publications.html.

13



Authors' biographies

Lutz Prechelt worked as senior researcher at
the School of Informatics, University of Karlsruhe.
There he also received his diploma (1990) and his
Ph.D. (1995) in Informatics. His research interests
include software engineering (in particular using an
empirical research approach, about which he also
authored a book), compiler construction for par-
allel machines, measurement and benchmarking is-
sues, and research methodology. Since April 2000
he is head of quality assurance at abaXX Technol-
ogy, Stuttgart. Prechelt is a member of IEEE CS,
ACM, and GI.

Barbara Unger graduated with a diploma degree
in 1995 and received her PhD in 2000 from the Uni-
versity of Karlsruhe. Her favorite research interests
are in empirical software engineering with a main
focus on design patterns. She is a member of the
IEEE and the IEEE Computer Society.

Walter F. Tichy is professor of Computer Sci-
ence at the University Karlsruhe, Germany. He
is also director of the software engineering de-
partment, including a SUN authorized Java Cen-
ter, at Forschungszentrum Informatik, a research
and transfer institute associated with the Univer-
sity. Previously, he was senior scientist at Carnegie
Group, Inc., in Pittsburgh, Pennsylvania and on
the faculty of Computer Science at Purdue Univer-
sity in West Lafayette, Indiana. His primary re-
search interests are software engineering and par-
allelism. His current research projects include ex-
perimental methods in computer science and soft-
ware engineering, software architecture and pattern
research, software con�guration management, clus-
ter computing, compilers and programming envi-
ronments for parallel machines, and opto-electronic
interconnects. He has consulted widely for industry.
Tichy received a B.S. from the Technical University
in Munich in 1974 and M.S. and Ph.D. degrees in
Computer Science from Carnegie-Mellon University
in 1976 and 1980. He is a member of ACM, GI, and
IEEE.

Peter Br�ossler (no bio available)

Dr. Lawrence G. Votta received his B.S. de-
gree in Physics from the University of Maryland,
College Park, Maryland in 1973, and his Ph.D. de-
gree in Physics from the Massachusetts Institute
of Technology, Cambridge, Massachusetts in 1979.
He currently leads the performance and availability
modeling and analysis group of the Common Plat-
form Development Department in Motorola's Net-
work Systems Sector. His research interests are high
availability computing (new) and empirical software
engineering (his old favorite). Larry has authored or

coauthored more than 40 articles and book chapters
in Software Engineering including empirical studies
of software development from highly controlled ex-
periments investigating the best methods for design
reviews and code inspection to anecdotal studies of
a developer's time usage in a large software devel-
opment. Larry is a member of the IEEE and ACM
and is currently serving as an associate editor of the
IEEE Transactions on Software Engineering.

14


