Accepted for ’IEEE Trans.

on Software Engineering’, July 28, 2001

Two Controlled Experiments Assessing
the Usefulness of Design Pattern Documentation

in Program Maintenance

Lutz Prechelt, Barbara Unger, Michael Philippsen, Walter Tichy
Fakultat fiir Informatik, Universitat Karlsruhe
D-76128 Karlsruhe, Germany
Phone: +49/721/608-3934, Fax: +49/721/608-7343
Email: prechelt,unger,phlipp,tichy@ira.uka.de
WWW: http://wwwipd.ira.uka.de/EIR/

Abstract

Using design patterns is claimed to improve pro-
grammer productivity and software quality. Such
improvements may manifest both at construction
time (in faster and better program design) and at
maintenance time (in faster and more accurate pro-
gram comprehension). This paper focuses on the
maintenance context and reports on experimental
tests of the following question: Does it help the
maintainer if the design patterns in the program
code are documented explicitly (using source code
comments), compared to a well-commented pro-
gram without explicit reference to design patterns?

Subjects performed maintenance tasks on two pro-
grams ranging from 360 to 560 LOC including com-
ments. Both programs contained design patterns.
The controlled variable was whether the use of de-
sign patterns was documented explicitly or not.
The experiments thus tested whether pattern com-
ment lines (PCL) help during maintenance if pat-
terns are relevant and sufficient program comments
are already present. It turns out that this question
is a challenge for the experimental methodology: a
setup leading to relevant results is quite difficult to
find. We discuss these issues in detail and suggest
a general approach to such situations.

The experiment was performed with Java by 74
German graduate students and then repeated with
C++ by 22 American undergraduate students. A
conservative analysis of the results supports the hy-
pothesis that pattern-relevant maintenance tasks
were completed faster or with fewer errors if re-
dundant design pattern information was provided.
Redundant means that the information carried in
pattern comments is also available in different form
in other comments.

The contribution of this article is twofold: It pro-
vides the first controlled experiment results on de-
sign pattern usage and it presents a solution ap-
proach to an important class of experiment de-
sign problems for experiments regarding documen-
tation.

Keywords: controlled experiment, design pattern,
comments, documentation, maintenance

1 Introduction

A software design pattern describes a proven solu-
tion to a software design problem with the goal of
making the solution reusable. Design patterns pro-
vide proven solutions to known problems, encourag-
ing reuse and relieving programmers of reinvention.

The idea of design patterns has quickly caught
the attention of practitioners and researchers, and
the pattern literature is burgeoning. The first
systematic collection of design patterns was pub-
lished by Gamma, Helms, Johnson, and Vlissides
[9] (nicknamed the “Gang of Four Book”). Shortly
thereafter, additional patterns were reported by
Buschmann et al. [4]. The book by Shaw and
Garlan [19] also provides a wealth of patterns for
software architecture. Annual workshops are be-
ing held [6, 25, 14] to promote pattern mining and
a consistent style of reporting patterns. Pattern
papers are published in other software conferences
as well, reporting on new patterns, pattern tax-
onomies, and pattern tools. Formalizations of pat-
terns are sought and tools are being built for pat-
tern mining, identifying known patterns in existing
software, and programming with patterns.

The main advantages claimed for design patterns,
according to the pattern literature, are as follows:

1. Using patterns improves programmer produc-
tivity and program quality;

2. Novices can increase their design skills signif-
icantly by studying and applying design pat-
terns;

3. Patterns encourage best practices even for ex-
perienced designers;

4. Design patterns improve communication, both
among developers and from developers to
maintainers.

As yet, there exists no coherent theory that would
explain these advantages specifically in the context
of design patterns.

1.1 Our experiments

The experiments reported here represent the first
attempts at formally testing some aspects of the
above claim 4. Our experiments are set in a main-
tenance context. Assume a maintainer knows what
design patterns are and how they are used. Fur-
thermore, assume that a program was designed and
implemented using patterns. Now the question is:

Does it help the maintainer if the design
patterns in the program code are docu-
mented explicitly (using source code com-
ments), compared to a well-commented
program without explicit reference to de-
sign patterns?

We investigate this question in the following man-
ner: Several subjects receive the same program
source code and the same change requests for that
program; the subjects then provide appropriate
changes sketched on paper (first experiment) or
as operational program code (second experiment).
The change requests concern those aspects of the
program that are implemented using design pat-
terns. The program is commented in detail but
the subjects in the control group receive no ex-
plicit information about design patterns in the pro-
gram; they may derive pattern information from
other program comments or not at all. The experi-
ment group, by contrast, receives the same program
with the same comments plus a few additional lines
of comment (called pattern comment lines or PCL)
that describe pattern usage where applicable. Note
that the experiment group thus has slightly more
comments in their program. This might threaten
the validity of the experiments. We will discuss
and resolve this important methodological issue in
Section 3. Subjects are assigned randomly to the

groups. We investigate whether and how the perfor-
mance of the two groups differs by measuring com-
pletion time, grading answers, and counting correct
solutions.

The experiments were performed with a total of 96
student subjects, each working in a single session of
2 to 4 hours. The tasks were based on two different
programs about 6 to 10 printed pages in length.

1.2 Experiment rationale

Note that the experiments do not test the presence
or absence of patterns, but merely the documen-
tation of patterns. This question is much cleaner,
because it is unclear what alternative program de-
sign should be used for comparison when testing the
presence or absence of patterns.

Why do we think that adding PCL is a useful propo-
sition? Most theories of program comprehension
state that the comprehension process is driven by
hypotheses [3, 13] formed and validated during the
understanding process. (A nice overview of this
view of program comprehension can be found in
[26]. Further recent research papers can be found in
[28, 29, 30, 31].) Once a program is understood, its
meaning is represented as a hierarchy of hypothe-
ses. Without prior knowledge, systematic program
understanding must work bottom-up [15], inducing
the meaning and purpose of program parts step-
by-step, starting from individual declarations and
statements. However, a completely bottom-up ap-
proach is unrealistic for larger programs. Therefore,
if a programmer finds hints (so-called beacons) to
familiar kinds of structures within the code, he or
she will switch to a top-down approach of under-
standing that allows for generating and validating
hypotheses much quicker. Beacons can be struc-
tural (such as code idioms), but more often they
are simply names of program entities [10].

If this view is correct, PCL are probably a very
powerful aid to program understanding, because
each description of a design pattern usage directly
leads to a large-grain hypothesis that spans multi-
ple classes and that is relatively easy to verify top-
down. In this case it would be a highly efficient en-
gineering practice to always document the use of de-
sign patterns by PCL because writing PCL requires
only little effort. Slightly different views of program
comprehension discussed in the next section provide
further support for the idea that adding PCL may
be highly worthwhile.

1.3 Other related work

The program comprehension theory presented by
Brooks [2] suggests that PCL may be a highly ef-
fective sort of comment, because it specifically aims
at bridging different “knowledge domains”.

A different view is provided by the notion of delocal-
ized plans [21] introduced by Soloway et al. Their
experiments showed that delocalized plans account
for much of the effort during program understand-
ing. Wilde et al. [27] argue that object-oriented
programs are full of delocalized plans due to inheri-
tance and delegation. Design pattern instances are
delocalized plans as well, as a single design idea is
spread over multiple classes and methods. From
this perspective, PCL may be helpful because it
links the parts of important delocalized plans.

The empirical work of Shneiderman and Mayer
[20] confirms several basic assumptions about com-
ments: mnemonic names and comments both are
useful for program understanding; higher-level com-
ments are more useful than comments on a level of
abstraction close to individual program statements.
We do not know of any experiments comparing dif-
ferent forms of program comments in the context of
object-oriented programs.

All of the work mentioned so far is not concerned
with design patterns per se and are have in fact
been published long before the notion of software
design patterns became popular. Published evi-
dence about the effectiveness of design patterns is
still scarce. Case study reports and anecdotal evi-
dence of positive effects can be found for instance in
[1, 9]. Part of the program maintenance literature
is loosely relevant to pattern effectiveness, but we
have found no empirical work that specifically ad-
dresses design patterns as an aid to maintenance.
Likewise, as far as we know, the design pattern
community itself has not yet undertaken controlled
experiments to test design pattern claims.

We are not aware of any reports on the usage den-
sity of PCL in software containing design pattern
uses. However, it appears that in thoroughly de-
signed APIs of libraries and frameworks at least
a surrogate to PCL becomes increasingly common:
naming conventions that indicate the usage of some
of the more frequent design patterns; for instance
class name components such as listener, event, com-
posite, container, observer in Sun’s Java Develop-
ment Kit (JDK 1.3) etc.

1.4 Structure of the article

The next section describes the design and imple-
mentation of the experiments including a statement

3

of the hypotheses, a description of the subjects’
background, a description of the program (includ-
ing program comment examples) and tasks, and a
discussion of possible threats to the internal and
external validity of the experiments. Section 3
discusses the methodological problems caused by
adding comments and how to handle them in similar
situations. Section 4 presents the results, Section 5
summarizes and raises questions for future research.

We provide only a short description of the pro-
grams and tasks. Detailed information, including
all original experiment materials such as task de-
scriptions and source program listings, is available
in [8, 17, 18].

2 Description of the experi-
ments

The first experiment was performed in January 1997
at the University of Karlsruhe (UkA), the second
in May 1997 at Washington University St. Louis
(WustL). Although the experiments were similar,
there were some variations. Also the strengths and
weaknesses of their data are not in the same spots,
so that the experiments complement one another
quite nicely. We therefore describe the experiments
separately and refer to them as UKA and WUSTL,
respectively. Where appropriate, we provide infor-
mation for UKA first and append the corresponding
information for WUSTL in angle parentheses (like
this).

2.1 Hypotheses

First we need to define the concept of pattern-
relevance. A maintenance task on a program is
pattern-relevant if (1) the program contains one or
more software design patterns and (2) a grasp of
the patterns in the program is expected to simplify
the maintenance task.

The experiments aimed at testing the following hy-
potheses, which we straightforwardly derived from
claims found in the design pattern literature [1, 9]:

Hypothesis H1: By adding PCL, pattern-relevant
maintenance tasks are completed faster.

Hypothesis H2: By adding PCL, fewer errors are
committed in pattern-relevant maintenance tasks.

Speed of task completion is measured in minutes.
The number of errors are quantified by assigning
points (see Section 2.6) and by counting correct so-
lutions.

2.2 Subjects and environments

The 74 (22) subjects of the Uka (WUSTL) experi-
ment were 64 (0) graduate and 10 (22) undergrad-
uate computer science students.

They had taken a 6-week (12-week) intensive
(standard) lecture and lab course on Java (C++) and
design patterns before the experiment. The course
included practical implementations of programs in-
volving the following design patterns: Compos-
ite, Visitor, Observer, Template Method, Strategy
(Wrapper, Adapter, Template Method, Bridge, Sin-
gleton, Facade, Strategy, Factory Method, Visitor,
Interpreter, Builder). On average, the subjects’
previous programming experience was 7.5 years (5
years) using 4.6 (4.0) different languages with a
largest program of 3510 LOC (2557 LOC). Before
the course, 69% (76%) of the subjects had some
previous experience with object-oriented program-
ming, 58% (50%) with programming GUIs.

The subjects were knowledgeable about design pat-
terns, as indicated by a pattern knowledge test con-
ducted at the start of each experiment [17, 18].
For those patterns that were relevant in the exper-
iments, the UKA subjects’ pattern knowledge was
better than that of the WUSTL subjects, because
the UKA course had directly been targeted at the
experiment but the WUSTL course had not. For
some of the relevant patterns, the WUSTL subjects
had no practical experience with these patterns, in
contrast to the UKA subjects.

Each of the experiments was performed in a single
session of 2 to 4 hours. The UkA subjects had to
write their solutions on paper. The WUSTL subjects
implemented their solutions on Unix workstations.

2.3 Programs used

Each subject worked on two different programs.
Both programs were written in Java (C++) using
design patterns and were thoroughly commented.

Program And/Or-tree is a library for handling
And/Or-trees of strings and a simple application
of it. It has 362 (498) LOC in 7 (6) classes; 133
(178) of these LOC contain only comments, and an
additional 18 (22) lines of PCL were added in the
version with PCL. (Section 3 discusses why adding
PCL is an acceptable and meaningful manipula-
tion.) And/Or-tree uses the Composite and the
Visitor design pattern [9].

Program Phonebook is a GUI program for reading
tuples (name, first name, phone number) entered
by the user and showing them in different views

4

(@ TupleLdk chronological]
. | A T epp—
Quit| mere!| Lutz Prechelt, 4068 =

Barbara Unger, 431°

walter Tichy, 3934

[# Read in Tuple £ -

< -

Firstname | Michael

| philid

by lastname £l
Lutz Prechelt, Tel: 4c |3
walter Tichy, Tel: 39
Barbara Unger, Tel: 4
]

Hame

ox|

Telephone

] :

-

Figure 1: Screenshot of UKA Phonebook program

on the screen, see the screenshot in Figure 1. Be-
cause the WUSTL subjects had not learned a GUI
library in the course, the C++ version of Phonebook
is stream-I/O-based: it reads all of its inputs from
the keyboard and completely redisplays all views to
standard output after each change. Phonebook has
565 (448) LOC in 11 (6) classes; 197 (145) of these
LOC contain only comments, and an additional 14
(10) lines of PCL were added in the version with
PCL. Phonebook uses the Observer and the Tem-
plate Method design pattern [9]. See Figure 2 for
examples of PCL sections and other program com-
ments.

[8, 17, 18] contain the full commented source code
of the programs.

2.4 Experiment controls and group
sizes

The independent variable in both experiments was
the presence or absence of design pattern comment
lines (PCL) in the comments of the source pro-
grams.

We used a counterbalanced experiment design [5]
with random subject assignment, see Table 1: The
first variable is the order in which a subject receives
the two programs. One of those programs was sup-
plied with PCL, the other without. This design
results in a second variable, i.e., the order of PCL
and non-PCL: first with, then without PCL, and
vice versa. The combination of the variables re-
sults in four groups. The subjects did not know in
advance whether a program would contain PCL or
not; they did not even know that the existence of
PCL would be a treatment variable.

2.5 Tasks

For And/Or-tree, each subject received a task con-
sisting of the following 4 subtasks: (1) Find the

365 abstract class TupleDispA extends TupleDisplay {

403);; implements adding a new Tuple.

404 First select() is used to test, whether the Tuple should be added
405 at all, then mergeIn() moves it to the right place in the

406 presentation using compare() and format() converts it into a String
407 of the desired display format.

408 *%x DESIGN PATTERN: s

409 newTuple() together with its auxiliary method mer§eIn() forms a
410 *xTemplate Method**. The empty spots that are filled in subclasses
411 are the methods select(), format(), and compare().

412 */

413 synchronized void newTuple(Tuple t) {

a9}

ar3 3

477 [k

478 NTTupleDisp2 displays NTTuple, where

479 1. Tuples with an empty telephone number are left out and

480 2. Tuples are sorted by (last)name

481 Using Tuple objects of other Tuple types results in

482 ClassCastException.

483 *%% DESIGN PATTERN: s

484 NTTupleDisp2 completes the **Template Method** newTuple()

485 of TupleDispA

486 */

487 final class NTTupleDisp2 extends TupleDispA {

513 3

517 /%

518 Main program. Generates a main window with two buttons, one

519 Tupleset and two TupleDisplays. One of the buttons creates an

520 NTTuple and adds it to the Tupleset.

521 There is no static type safety between the actual Tuple type

522 stored in the Tupleset and the Tuple type that is expected by

523 the TupleDisplays.

524 *%x DESIGN PATTERN: ¥

525 The two TupleDisplays are registered as observers at the Tupleset.
526 x/

527 public final class TupleMain extends Frame {

573

Figure 2: PCL example: Three (out of four) comments containing PCL sections from the UKA Phonebook
program, with original line numbers. Added PCL sections are lines 36-42 (in a 33-line global program
comment not shown here), 409-411, 484-485, and 525. Note that since the PCL header line does not
contain semantic information, it was not considered part of the PCL although its existence may well be
quite useful during program understanding. The program contains a total of 197 lines (or 35% of all lines)
of normal comments. Note that the original program was in German with one more pattern comment

line due to different line breaks.

right spot for a particular output format change,
(2) give an expression to compute the number of
variants represented by a tree, (3) create an addi-
tional Visitor class that computes the number of
variants faster (similar to an already existing class
computing depth information), and (4) instantiate
such a Visitor and print its result. Subtasks (3)
and (4) are pattern-relevant. Subtask (4) was not
explicitly required in WUSTL.

For Phonebook, each UKA subject received a task
consisting of the following 5 subtasks: (1,2) Find
two spots for small program changes (output for-
mat change, window size change), (3) create an ad-
ditional Observer class using a Template Method,
(4) instantiate and register such an Observer,
(5) create an additional Observer class similar to an
already existing one not using a Template Method.
Subtasks (3) to (5) are pattern-relevant.

Of course, none of the task descriptions mentioned
any of the design patterns at all.

There are two important differences between UKA
and WUSTL regarding Phonebook. First, in UKA
subtask (3) a similar class was already present in
the program. Subtask (3) could thus be solved by
imitation; this was not true for WuSTL. Second,
subtask (2) was not required in WUSTL and subtask
(4) was stated as a part of (3) rather than as a
separate subtask.

For the class creation subtasks, only the interface
of the class needed to be written; the actual imple-
mentation was not required, although the WUSTL
participants were asked to provide a complete solu-
tion if they could.

2.6 Measurements

For each task (but not for each subtask) of each
subject we measured the time between handing out
and collecting the experiment materials. It is un-

Table 1: The four experiment groups and their sizes. The number of data points is one per subject,
except for those subjects that did not complete the respective task, but dropped out of the experiment
instead. For UKA there was no such mortality. See also Section 2.7. (AP~ stands for “first perform
And/Or-tree with PCL, then perform Phonebook without PCL” and so on.)

first with PCL first w/o PCL
then w/o PCL then with PCL
groups: first And/Or-tree, then Phonebook AtP- APt
—UKA initial no. of subjects 19 18
—UKA no. of data points, both tasks 19 18
—WUSTL initial no. of subjects 6 5
—WUSTL no. of data points, Phonebook 4 3
—WUSTL no. of data points, And/Or-tree 4 4
groups: first Phonebook, then And/Or-tree PtA- P-A*
—UKA initial no. of subjects 18 19
—UKA no. of data points, both tasks 18 19
—WUSTL initial no. of subjects 6 5
—WUSTL no. of data points, Phonebook 3 3
—WUSTL no. of data points, And/Or-tree 4 4

clear how the time spent for general program un-
derstanding could be distributed among the sub-
tasks, so no subtask time information was collected.
For each subtask, the same rater graded all an-
swers according to the degree of requirements ful-
fillment they provided. The grades were expressed
in points. There was a total of 2+2+8+3=15
points (24+2+8=12) for the UkA (WUSTL) sub-
tasks of And/Or-tree and 2+3+8+4+6=23 points
(24+8+8=18 points) for those of Phonebook; see
[17, 18] for the rating scales.

2.7 Threats to internal validity

All relevant external variables (subjects’ program-
ming experience, aptitude, motivation, environ-
mental conditions, etc.) were equalized between the
groups by randomized group assignment. Should
bad luck nevertheless have produced groups with
unbalanced subject ability, the counter-balanced
experiment design has put the more capable sub-
jects once into the experiment group and once into
the control group.

The dominant control problem is mortality: Some
WUSTL students gave up on a task when they
thought it would be too difficult for them or take
too long. The tendency to give up was relatively
strong, because the experiment was the very last
event of the semester for these students and they
told us that had to catch their busses and planes
etc. Four students gave up on both tasks. It would
have been nice had mortality been lower, but the
results are still meaningful, because mortality oc-

curred almost exactly as often in the groups with
PCL as in those without PCL. When ignoring in-
complete tasks entirely, the mortality does therefore
not bias the results. See Table 1 for the resulting
group sizes; there was no mortality in UKA.

The total working time of the subjects exhibits an
almost perfectly symmetric distribution. Hence,
there is no evidence that slower subjects hurried
because of others having finished before them al-
though all subjects worked in the same room at the
same time.

Our experiment setup lacked an acceptance test. As
a consequence, the working time and solution qual-
ity can only be judged together, since short working
times may reflect unrepaired defects in a solution.
This is not a threat to validity, but complicates the
discussion of the results in Section 4.

Finally, although at least for UKA the number of
subjects is comparatively large, the resulting data
is still often too scarce for undebatable conclusions.

2.8 Threats to external validity

There are several sources of differences between the
experimental and real software maintenance situ-
ations that limit the generalizability (external va-
lidity) of the experiments: in real situations there
are subjects with more experience, often working
in teams, and there are programs and maintenance
tasks of different size or structure.

Experience: The most frequent concern with ex-
periments using student subjects is that the results

cannot be generalized to professionals, because the
latter are more experienced. In the present case,
professional programmers may either have less need
for PCL or they may be able to exploit PCL more
profitably than our student subjects.

Team work: Realistic programs are usually team
work. Individual tasks during maintenance may
also often be performed by more than one program-
mer. Such cooperation requires additional commu-
nication about the program. In this case, PCL may
have further advantages, not visible in the exper-
iments, because one of the major (purported) ad-
vantages of design patterns is a common design ter-
minology [23].

Program size and complexity: Compared to
typical industrial size programs, the experiment
programs are rather small and simple, neatly de-
signed, and well commented. This does not nec-
essarily invalidate the results of the experiments,
though. If a positive effect is found, increasing pro-
gram complexity may magnify the effect, because
having PCL provides program slicing information.
For pattern-relevant tasks, PCL information points
out which parts of a program are relevant and en-
ables one to ignore the rest; such information may
become more useful as program size increases, be-
cause more code can be ignored.

Program and task representativeness: It is
unknown whether the programs and tasks used in
our experiments are (or are not) representative of
realistic maintenance situations. We have but one
indication that our programs are at least not to-
tally different from other programs constructed us-
ing design patterns: The ratio of the total number
of classes in the program to the number of design
pattern instances found in our programs ranges be-
tween 3.0 and 5.5. These values are comparable to
those found for Java AWT (3.8) and NextStep (3.1)
[11]. Our article does not claim anything about
maintenance tasks that are not pattern-relevant.
See the conclusion section for more discussion of
pattern-relevant tasks in realistic programs.

Maintenance situations: Realistic maintenance
situations will often be rather different from those
found by our subjects. In particular, much larger
and more complex programs and tasks may require
making changes based on a much lower degree of
overall program understanding than could be ob-
tained for the small programs in the experiments. It
is hard to say whether or when this will make PCL
more useful or less useful than in the experiments.
Furthermore, if programmers have to master a large
design pattern repertoire, their understanding of in-
dividual patterns may be reduced and PCL may
become less helpful.

Only repetition of similar experiments with profes-
sionals on real programs and real maintenance tasks
can evaluate these threats. See the conclusion sec-
tion for why we hope that our experiments estimate
conservatively.

3 On the methodology of our
experiment design

The main independent variable in these experi-
ments is the presence or absence of pattern com-
ment lines (PCL) in addition to the normal pro-
gram comments. Some readers may argue that this
makes the experiments uninteresting and irrelevant
(although still valid), because design and hypothe-
ses are impure: the observations cannot discrimi-
nate between effects from having a specific type of
comments (PCL) and effects from simply having
more comments.

3.1 The form/content conflict

Note that this situation will occur generically in
many experiments that attempt evaluation of a spe-
cific form of an information source.

Each specific information source used during pro-
gram development (such as PCL, UML diagrams, or
any other) has both a certain form (syntax, appear-
ance) and a certain content (semantics, meaning).
In any experiment for evaluating some form F' of an
information source we ideally need an experiment
condition for the control group that is identical to
the experiment group condition in all respects (in
particular the content) except for the form of the in-
formation source. However, an alternative form A
will rarely lend itself to expressing the exact same
content as F' in a natural form. For example, one
cannot express in a realistic manner ezactly each
detail communicated by a UML diagram and noth-
ing else in a different notation. Therefore, we must
either force the content into A (and thus end up
with an unrealistic instance of A) or accept some
difference in content in addition to the difference in
form in our experiment conditions (and thus mix
two effects).

We call this problem the form/content conflict in
experiment design.

If it arises, it is usually impossible to eliminate the
conflict, but it can be reduced so that the relevance
of the experiment is no longer seriously threatened.
The following three subsections argue why in our
specific experiment design the conflict does not have
a serious impact on the validity or utility of the

results. Subsection 3.5 then reformulates the train
of thought of this argumentation as a general rule
for the design of such experiments.

We now argue for our design, first, why purer hy-
potheses appear impossible to evaluate; second,
why the experiments are useful as they are; and
third, why not much of the observed effect is due to
an increase in comment information content.

3.2 Why purer hypotheses appear
impossible to evaluate

A hypothetical perfect experiment would only test
whether the specific form (or type) of comments
represented by PCL has an advantage over what-
ever one would have written instead before the in-
vention of design pattern terminology. It would not
change any other aspect of the program. In order to
do this, the following aspects (among others) would
have to be kept constant:

— the absolute information content of the com-
ments (because this is what makes comments
useful),

— the length of the comments in lines or words
(because reading comments consumes time and
concentration),

— the amount of repetition of information in the
comments (because repetition may aid under-
standing or finding information or may make the
reader unattentive),

— the understandability of the comments,

— the comments’ potential for creating confusion
(because comments can sometimes make a pro-
gram harder to understand),

— the placement of the comments with respect to
the program entities they refer to (because that
determines how easy information can be found
or related to the program).

Balancing all of these aspects in a program change
is impossible. We have the following choices for the
experimental design:

1. Compensate adding PCL by removing other
comments in the PCL program version.
But which other comments should we remove?
We could easily balance the comment length,
but there is no reproducible way to determine
which comments are superfluous, useful, or cru-
cial. We could not guarantee that we held the
information content of the comments constant.
Furthermore, we can not keep both comment
length and the amount of repetition constant,
as will be quantified in Section 3.4.

2. Compensate adding PCL by adding normal
comments in the non-PCL program version.
But what should these other comments say?
Again, we could keep the comment length con-
stant, but there is no reproducible way to give
the exact same information content as in the
PCL, other than the PCL itself; we cannot be
sure not to confuse or annoy the user, etc.

3. Add PCL without any compensation. This will
increase the comment length (small increase,
see Section 2.3 and Figure 2), information con-
tent (small increase, see Section 3.4), and rep-
etition of information (large increase, see Sec-
tion 3.4).

We pick the third solution, because it is more realis-
tic and well-defined and leads to more reproducible
results.

3.3 Why the experiments are useful

A possible effect of simply having more comment
is consciously included in our hypotheses. If we
find a positive effect from adding PCL, the exper-
iments suggest the engineering advice “Add PCL
to your programs in addition to the comment-
ing you usually do.” This advice is useful even
if it should be possible to obtain similarly pos-
itive results with other types of additional com-
ments, because who could characterize, in program-
independent terms, what these other comments
should look like? For PCL, the characterization is
straightforward: “Mention which classes, methods,
and objects play which roles in a pattern”; see the
example in Figure 2.

3.4 Why most of the effect is due to
comment type, not information
content

Are we merely (or mostly) measuring the effect of
providing more information in the comments? As
we show now, almost all of the information con-
tained in the PCL is already present in the rest
of the comments and is just repeated in a differ-
ent form by PCL. Note that repetition as such can
either improve program understanding (by useful
redundancy) or slow it down (because less new in-
formation is found per line) [3]. See the conclusion
section for our opinion on the present case.

We compiled a list of the design information units
conveyed by the PCL and counted where and how
often they were mentioned in the PCL and in the
other comments.

Table 2: List of the design information units provided by the PCL of the UKA And/Or-tree program
(left hand side) and the UKA Phonebook program (right hand side). The histograms indicate the number
of occurrences of each design information unit (with the important ones emphasized). Top histogram:
occurrences in the PCL. Bottom histogram: occurrences in the rest of the comments.

id design information unit (UkA And/Or-tree) id design information unit (UkA Phonebook)
A There is an element/container structure A There is a model/view structure®
B Element is the superclass of the ele- B Tupleset is the model class™

ment/container structure C TupleDisplay is the superclass of the views'
C Element is abstract D TupleDisplay is abstract
D AndElement is a part of the element/container E There is a skeleton algorithm

structure F The skeleton algorithm varies selection, order-
E OrElement is a part of the element/container ing, and formatting of tuples

structure G TupleDispA contains a method with a skeleton
F StringElement is a part of the ele- algorithm™

ment/container structure H TupleDispA is a view class
G There are multiple container classes | TupleDispA is abstract
H AndElement is a container class J newTuple() is the skeleton algorithm
| OrElement is a container class K mergeIn() is an auxiliary method of
J There is only one element class newTuple ()
K StringElement is an element class” L select(), compare(), and format() are the
L There is an sterator structure” primitive operations missing in the skeleton al-
M The iterator structure iterates over the ele- goritm

ment/container structure” M NTTupleDisp2 completes the skeleton algo-
N ElementAction is the superclass of the iterator rithm'

structure” N There are two view class instances
O ElementAction is abstract O There is one model class instance
P Depth is a part of the iterator structure’ P The view class instances are registered with
Q perform() is a part of the iterator structure the model class instance
R perform() is a dispatch method™

A, B, L, N are the most important information units for
design understanding.

In design pattern terminology [9] element/container
structure is Composite pattern, container class is Com-
posite class, element class is Leaf class, iterator struc-
ture is Visitor pattern, and dispatch method is Accept
method.

However, none of these design pattern terms is used in
the non-PCL comments.

10

152 data points, PCL
8

Lk

ABCDEFGHI JKLMNOPQR
123 data points, rest of comments

N

10

| W

ABCDEFGHIJKLMNOPQR

A, B, E, F, G, M are the most important information
units for design understanding.

In the design pattern terminology of [9] model/view
structure is Observer pattern, model class is Subject
class, view class is Observer class, skeleton algorithm
is Template method.

However, none of these design pattern terms is used in
the non-PCL comments.

10

121 data points, PCL
8

6

4
2

AL el m

ABCDEFGHI JKLMNOP
112 data points, rest of comments

10

8

6
4

N
o Nl ' HEE |

ABCDEFGHIJKLMNOP

*This information is rather vague or ambiguous in the non-PCL comments.
TThis information is distributed over several non-PCL comments.

Table 3: Results for the And/Or-tree task. Columns

are (from left to right): line number; name of vari-

able; arithmetic average DT of subjects provided with design pattern information (PCL); ditto without
PCL (D~); 90% confidence interval I for difference D™ — D~ (measured in percent of D~); significance p
of the difference (one-sided). I and p were computed using Bootstrap resampling (a simulation-based sta-
tistical estimation technique [7]) with 10000 trials because many distributions were distinctly non-normal.
“Relevant points” are the points for the pattern-relevant subtasks only.

mean means difference | signifi-
with PCL w/o PCL (90% confid.) cance
Variable D+ D~ I P

UKA, program And/Or-tree:
1 relevant points 8.5 7.8 —=77%...+23% | 0.20
2 Ftcorr. solutions 15 of 38 7 of 36 0.077
3 time (minutes) 58.0 522 | —3.0%...+24% | 0.094
4 — corr. only 52.3 45.4 —-11%...+41% 0.17
WUSTL, program And/Or-tree:
5 relevant points 6.7 6.5 -12%...+19% | 0.28
6 #corr. solutions 4 0f 8 3of 8 1
7 time (minutes) 52.1 67.5 —43%...—0.5% | 0.046

For UkA And/Or-tree, this information is shown in
the left half of Table 2. As we see in the histograms,
almost all of the information present in the PCL
is already present in the rest of the program com-
ments, in particular those units (labeled A and L)
that point to the existence of design patterns in the
program.

Similar results, although somewhat weaker, hold for
the UKA Phonebook program; see the right hand
side of Table 2.

So the PCL information is almost entirely redun-
dant and plausibly it is the specific type of the doc-
umentation that creates the effects we see: The
same information might become clearer when ex-
pressed in PCL form. Hence, we expect our results
to mainly show effects from specifically adding PCL
and not effects from adding any documentation.

3.5 General methodological rule

We can now formulate the above three-step pro-
cess for handling form /content conflicts as a general
methodological recipe.

1. Analyze all conceivable designs and choose the
one that results in the least differences in con-
tent without requiring unrealistic conditions
for either group. This ensures there is no better
design for this research question.

Demonstrate that the experiment result ex-
pected by your hypotheses would be interest-
ing. Ideally, it leads to a practical software
engineering rule. In this case, formulate this
rule explicitly. This ensures the experiment is
useful despite the content difference.

. Argue why in your specific experiment setup at
most a small part of the observed effect, if any,
will be due to different content, rather than
different form. This ensures the form/content
conflict is unimportant for the chosen experi-
ment design.

4 Results and discussion

This section discusses the results of both exper-
iments as summarized in Tables 3 and 4. For
WUSTL, the results of subjects that did not deliver
a particular task were ignored for that task. For
UKa, all subjects delivered both tasks.

4.1 Results for And/Or-tree

The results are summarized in Table 3 and Fig-
ure 3. The first line of Table 3 indicates that the
group with PCL averaged slightly more points in
the pattern-relevant subtasks (“relevant points”).
However, the p-value in the rightmost column indi-
cates that the difference has a 20 percent chance of
being accidental.

The time required with PCL appears to be larger
than the time without PCL (line 3). However, this
observation is misleading, because the number of
correct solutions is much lower for the non-PCL
group (Fisher exact p = 0.077) as shown in line 2.
In real software maintenance, incorrect solutions
would be detected and corrected, taking additional
time not observed in the experiment. In contrast,
the experiment’s non-computerized working envi-
ronment made it difficult for a subject to check

10

whether a solution was correct. Obviously, the time
spent on incorrect work can not be sensibly com-
pared to the time spent on correct work. Therefore,
instead of comparing the time required by all sub-
jects, we should compare only the time required by
subjects with correct solutions. As a result, the con-
fidence interval for the work time difference ranges
from far positive to far negative. Hence, we should
consider the work times to be essentially the same;
see also Figure 3. The group with PCL is still a lit-
tle slower, because it is a much larger fraction of the
whole and hence presumably contained less capable
subjects on average.

o
S UKA UKA WUSTL UKA WUSTL
time t./corr. time time time
o line 3 line 4 line 7 line 10 -
[e]
3 1 R * 1 * l
m + l [+t |
o
< I
o
N
And/Or Phonebook
o

Figure 3: Graphical display of the time entries (in min-
utes) from the indicated lines of Tables 3 and 4: The
left plot of each pair represents the group with PCL, the
right one the group without PCL. The dot marks the
mean of the task completion time, the strip indicates a
90% confidence interval for the mean.

0 20 40 60 80

| | | |
with PCL without PCL

0

relevant points

0 20 40 60 80 100

time for UKA ‘And/Or-Tree’ [minutes]

Figure 4: Work time versus solution quality for the
pattern-relevant part of UKA And/Or-tree task. The
trend line is a Loess local linear regression [24] with

spanwidth 1 and its 90% confidence interval.

In terms of correctness alone, the much larger frac-
tion of correct solutions in the PCL group suggests
that PCL allowed for good solutions by less capable
programmers than was possible without PCL.

Furthermore, Figure 4 tells us that without PCL the
slower (less capable?) subjects produce solutions of

11

much lower quality, whereas with PCL the quality
is largely independent of the time required. This
suggests that if a programmer is not able to solve
a task, PCL may help recognizing that fact; the
solution will be bad, but the time is not longer.

The WUSTL results for And/Or-tree indicate that
the PCL group is faster, as shown in the lower part
of Table 3. We find no clear difference in the num-
ber of points (line 5) nor in the number of com-
pletely correct solutions (line 6) — presumably be-
cause this group not only designed but also could
implement and test their solution — but we find a
large advantage in the time required for the group
with PCL (line 7). With a confidence of 90 percent,
having PCL saves between zero and 43 percent of
the maintenance time for this task. Due to the small
number of subjects we cannot evaluate statistically
the results of just the completely correct solutions
alone, but the trend remains the same.

As for learning effect, the UKA subjects were on av-
erage significantly faster (but did not obtain more
points) in their second task. The size of the effect
is independent of the presence or absence of PCL.
This data is not shown in the table. Differences
due to learning are compensated by the counterbal-
anced experiment design and are thus not relevant
for the interpretation of the results. The learning
effect could not be assessed for WUSTL, because the
group sizes were too small. The shorter time for the
second task could also be explained by a pressure
to finish that builds as soon as the first few subjects
have finished and left the room. However, such an
effect would also result in reduced quality of the so-
lutions, which we have not found, and is therefore
unlikely.

Summing up, the And/Or-tree results suggest that
for non-trivial pattern-relevant maintenance tasks
the presence of PCL may save time and/or help
avoid mistakes.

4.2 Results for Phonebook

The results are summarized in Table 4 and Fig-
ure 3. The Phonebook results of UKA show essen-
tially no difference in the total number of points
for the pattern-relevant subtasks (line 8), or the
number of solutions that were completely correct
(line 9). Although almost half of the participants
made at least one mistake, the rather high relevant
point values (over 16 out of a possible 18) indicate
that the task was simple for these subjects.

Despite the simplicity, however, the group with
PCL managed to solve the task faster than the
group without PCL, as shown in line 10. The ad-
vantage can also be quantified: it has an expected

Table 4: Results for the Phonebook task. The WUSTL results had to be discarded, because the subjects
were not sufficiently qualified for this task; only one subject per group came up with a correct solution.

mean means difference | signifi-
with PCL w/o PCL (90% confid.) cance
Variable D+ D~ I P
UKA, program Phonebook:
8 relevant points 16.1 16.3 —8.0%...+4.0% | 0.35
9 #corr. solutions 17 of 36 15 of 38 0.64
10 time (minutes) 51.5 57.9 —22%...4+0.3% | 0.055

size somewhere between zero and 22 percent (with
90% confidence); see also Figure 5. To ensure that
the time difference is not some weird artifact related
to different behavior of the subjects making serious
mistakes, we may also compare only the times of
those subjects that made no or almost no mistake
in their solution. We find that the time difference
still points in the same direction (not shown in the
table). The learning effect was similar to that de-
scribed for And/Or-tree above.

without PCL P e PN N o I
with PCL N VL Ce

T T T T T T
0 20 40 60 80 100
time for UKA "Phonebook’ [minutes]
Figure 5: Work time distribution for UKA Phonebook
task. The fat dot is the median; the box indicates the
25% and 75% quantiles; the whiskers indicate the 10%
and 90% quantiles; the M and dashed line indicate the
mean plus/minus one standard error of the mean.

Unfortunately, the WUSTL results for this task are
meaningless, since there is only a single correct so-
lution in each group. Thus, it makes little sense
to compare the results. Our postmortem analysis
found that for the given subjects the task was too
difficult for two reasons. First, the non-GUI pre-
sentation style of the WUSTL Phonebook program
made the use of the Observer pattern rather unintu-
itive and obscure. Second, these subjects had never
actually implemented an Observer and there was no
example class in the program that they could imi-
tate (in contrast to the UKA Phonebook program).
Our results suggest that under such circumstances,
PCL might be worthless.

Summing up, the Phonebook results suggest that
for simple pattern-relevant maintenance tasks the
presence of PCL may save time.

5 Interpretation and conclu-
sions

In summary we find that our results support both
of the hypotheses introduced in Section 2.1. Each of
our results either supports hypothesis H1 (pattern-
relevant maintenance tasks will be completed faster
if PCL is added) or hypothesis H2 (fewer errors
will be committed in pattern-relevant maintenance
tasks if PCL is added). For UkA Phonebook and
for WUSTL And/Or-tree, the PCL group was faster
than the non-PCL group. We found the size of the
effect (0 to 40 percent speedup) to be considerable,
although this may not generalize to other cases. For
UkA And/Or-tree, the PCL group produced solu-
tions with fewer mistakes than the non-PCL group.
In particular, twice as many subjects arrived at a
completely correct solution. None of the three re-
sults supports both hypotheses at once, but there
is no evidence for the opposite of the hypotheses,
either.

Note that the design of these experiments was
rather conservative; our design decisions biased
them towards not showing any effects from adding
PCL, in particular:

1. The programs were rather small, so even with-
out PCL the subjects could achieve good pro-
gram understanding within a reasonable time.
In real software projects, PCL might be more
helpful if the fraction of program understand-
ing effort that PCL can save grows with the
size of the program.

2. The programs were thoroughly commented,
not only at the statement level, but also at the
method, class, and program levels. Thus, the
subjects had sufficient documentation available
for program understanding even without PCL;
see Section 3.4. In contrast, many programs in
the real world lack design documentation. PCL
is probably an efficient form of design docu-
mentation, as it is rather compact.

Given these circumstances, performance advantages

12

through PCL may often be even more pronounced
in real situations than in our experiments. In any
case, even a few percent reduction in maintenance
effort outweigh the additional development cost for
inserting PCL into source programs, at least if PCL
is inserted right during development.

We conclude that depending on the particular pro-
gram, maintenance task, pattern knowledge, and
personnel, PCL in a program may considerably re-
duce the time required for a program change or may
help improve the quality of the change. We there-
fore recommend that design patterns always be doc-
umented explicitly in program source code.

5.1 Why is PCL beneficial?

The analysis of design information units (see Sec-
tion 3.4) suggests two answers to this question.

First, we often found the information provided by
PCL much clearer than that in the other comments,
which was sometimes vague, ambiguous, or spread
out (delocalized). This was to be expected, because
a clear and compact terminology is considered one
of the primary advantages of patterns.

Second, PCL repeats some design information units
more often than normal comments do, in particular
with respect to mentioning the presence of a pat-
tern; see Table 2. This type of repetition has two
advantages: it reduces the concentration required
to capture the relation between the pattern parts
and it makes readers aware of the pattern even if
they do not pick an appropriate exploration path
through the program text.

This property makes PCL similar to the rather volu-
minous documentation that Soloway et al. [21] sug-
gest for structured programs in order to overcome
problems from delocalized plans — design decisions
whose consequences are spread out over multiple
parts of a program. Wilde et al. [27] argue that de-
localized plans are frequent in object-oriented pro-
grams due to inheritance, large numbers of small
methods, and dynamic binding. It seems that de-
sign patterns are a good means for understanding
many such delocalized plans during maintenance,
provided that PCL provides very powerful beacons
that point out where patterns were used — each ex-
plaining a significant fraction of the overall program
structure.

Likewise, the effectiveness of PCL can be explained
using the theory of Brooks [2]: PCL can be con-
sidered to provide a bridge between the knowledge
domains “design idea” and “understanding a sin-
gle method or class”, because design ideas are ex-
plained by mentioning a design pattern (which PCL

13

does) and PCL is attached to individual class or
method heads.

5.2 Further work

We should perform related experiments in different
settings. The following questions appear most im-
portant. First, how do the effects change for larger
programs? Second, how do they change for more
difficult tasks or when correct results are enforced
by an acceptance test? Third, how do the effects
change when much larger numbers of different pat-
terns come into play — often with overlap between
their instances? Fourth, how do they change when
multiple programmers have to cooperate (and hence
communicate) in order to make a change? Fifth,
what are the effects if programs are largely uncom-
mented and how, in general, does PCL interact with
other documentation? Sixth, what fraction of the
effect is explained simply by the fact that PCL is
a form of structured (rather than arbitrary style)
comments? To what degree is it relevant how PCL
is phrased or formatted? Finally, is PCL also help-
ful during code inspections?

Moreover, empirical studies of existing software
should determine what fraction of the change tasks
(or change effort) is pattern-relevant. The ques-
tion of design stability also needs to be addressed:
We have found initial evidence that PCL may slow
down architectural erosion and drift (as described
by [16]), i.e., delay the decay of the original soft-
ware design structure. Finally, and perhaps most
interestingly, how does maintenance compare for
software with patterns versus equivalent software
without?

Acknowledgements

We thank Douglas Schmidt for the opportunity to
carry out the experiment at Washington Univer-
sity. We also thank all our experimental subjects
for making this project possible. Thanks also to
several critical reviewers of previous versions of this
paper, in particular for pointing out that a method-
ological contribution was waiting to be made.

References

[1]

[2]

[4]

[5]

[9]

[10]

[11]

K. Beck, J.O. Coplien, R. Crocker, L. Do-
minick, G. Meszaros, F. Paulisch, and J. Vlis-
sides. Industrial experience with design pat-
terns. In Proc. 18th Intl. Conf. on Software En-
gineering, pages 103-114, Berlin, March 1996.
IEEE CS Press.

Ruven Brooks. Using a behavioral theory of
program comprehension in software engineer-
ing. In Proc. 8rd Intl. Conf. on Software Engi-
neering, pages 196-201. IEEE CS Press, 1978.

Ruven Brooks. Towards a theory of the com-
prehension of computer programs. Intl. J.
of Man-Machine Studies, 18(6):543-554, June
1983.

Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture — A
System of Patterns. John Wiley and Sons,
Chichester, UK, 1996.

Larry B. Christensen. Ezxperimental Methodol-
ogy. Allyn and Bacon, Needham Heights, MA,
6th edition, 1994.

James O. Coplien and Douglas C. Schmidt, ed-
itors. Pattern Languages of Program Design,
Monticello, IL, 1995. Addison-Wesley.

Bradley Efron and Robert Tibshirani. An in-
troduction to the Bootstrap. Monographs on
statistics and applied probability 57. Chapman

and Hall, New York, London, 1993.
EIR. Web pages of the Karlsruhe
Empirical Informatics Research group.

http://wwwipd.ira.uka.de/EIR /.

Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns: FEle-
ments of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

Edward M. Gellenbeck and Curtis R. Cook. An
investigation of procedure and variable names
as beacons during program comprehension. In
[12], pages 65-81, 1991.

Oliver Gramberg. Counting the use of software
design patterns in Java AWT and NeXTstep.
Technical Report 19/1997, Fakultét fir Infor-
matik, Universitit Karlsruhe, Germany, De-
cember 1997. ftp.ira.uka.de.

14

[12]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Jiirgen Koenemann-Belliveau, Thomas G.
Mohrer, and Scott P. Robertson, editors. Em-
pirical Studies of Programmers: Fourth Work-
shop, New Brunswick, NJ, December 1991.
Ablex Publishing Corp.

Stan Letovsky. Cognitive processes in program
comprehension. In [22], pages 58-79, 1986.

Robert Martin, Dirk Riehle, and Frank
Buschmann, editors. Pattern Languages of
Program Design 3, Monticello, IL, 1997.
Addison-Wesley.

Nancy Pennington. Stimulus structures and
mental representations in expert comprehen-
sion of computer programs. Cognitive Psychol-
ogy, 19:295-341, 1987.

Dewayne E. Perry and Alexander L. Wolf.
Foundations for the study of software archi-
tecture. ACM SIGSOFT Software Engineering
Notes, 17(4):40-52, October 1992.

Lutz Prechelt. An experiment on the usefulness
of design patterns: Detailed description and
evaluation. Technical Report 9/1997, Fakultét
fiir Informatik, Universitit Karlsruhe, Ger-
many, June 1997. ftp.ira.uka.de.

Lutz Prechelt, Barbara Unger, and Douglas
Schmidt. Replication of the first controlled ex-
periment on the usefulness of design patterns:
Detailed description and evaluation. Technical
Report wucs-97-34, Washington Univer-
sity, Dept. of CS, St. Louis, December 1997.

http://www.cs.wustl.edu/cs/cs/publications.html.

Mary Shaw and David Garlan. Software Archi-
tecture — Perspectives on an Emerging Disci-
pline. Prentice Hall, Upper Saddle River, NJ,
1996.

Ben Shneiderman and Richard Mayer. Syntac-
tic/semantic interactions in programmer be-
havior: A model and experimental results. In-
ternational Journal of Computer and Informa-
tion Sciences, 8(3):219-238, 1979.

Eliot Soloway, Jeannine Pinto, Stan Letovsky,
David Littman, and Robin Lampert. Design-
ing documentation to compensate for delo-
calized plans. Communications of the ACM,
31(11):1259-1267, November 1988.

Elliot Soloway and Sitharama Iyengar, edi-
tors. Empirical Studies of Programmers: First
Workshop on Empirical Studies of Program-
mers (Washington, D.C.). Ablex Publishing
Corp., Norwood, NJ, June 1986.

[23] Barbara Unger and Walter F. Tichy. Do
design patterns improve communication?
An experiment with pair design. In George
Stark, editor, WESS: International Workshop
on Empirical Studies of Software Maintenance,
http://members.aol.com/GEShome/wess2000/unger-
tichy.pdf, October 2000.

[24] William N. Venables and Brian D. Rip-
ley. Modern Applied Statistics with S-PLUS.
Springer-Verlag, 2nd edition, 1997.

[25] John M. Vlissides, James O. Coplien, and Nor-
man L. Kerth, editors. Pattern Languages
of Program Design 2, Monticello, IL, 1996.
Addison-Wesley.

[26] Anneliese von Mayrhauser and Stephen Lang.
A coding scheme to support systematic anal-
ysis of software comprehension. IEEE Trans.
on Software Engineering, 25(4):526-540, July
1999.

[27] Norman Wilde, Paul Matthews, and Ross
Huitt. Maintaining object-oriented software.
IEEE Software, 10(1):75-80, January 1993.

[28] Proc. 5th Intl. Workshop on Program Compre-
hension, Dearborn, MI, March 28-30, 1997.
IEEE Computer Society.

[29] Proc. 6th Intl. Workshop on Program Compre-
hension, Ischia, Italy, June 24-26, 1998. IEEE
Computer Society.

[30] Proc. 7th Intl. Workshop on Program Compre-
hension, Pittsburgh, PA, May 5-7, 1999. IEEE
Computer Society.

[31] Proc. 8th Intl. Workshop on Program Compre-
hension, Limerick, Ireland, June 10-11, 2000.
IEEE Computer Society.

15

