
A Parallel Programming Model

for Irregular Dynamic Neural Networks

Lutz Prechelt (prechelt@ira.uka.de)

Fakult�at f�ur Informatik

Universit�at Karlsruhe

D-76128 Karlsruhe, Germany

+49/721/608-4068, Fax: +49/721/694092

Abstract

The compilation of high-level programming lan-
guages for parallel machines faces two challenges:
maximizing data/process locality and balancing load.
No solutions for the general case are known that solve
both problems at once.

The present paper describes a programming mod-
el that allows to solve both problems for the special
case of neural network learning algorithms, even for
irregular networks with dynamically changing topology
(constructive neural algorithms). The model is based
on the observation that such algorithms predominantly
execute local operations (on nodes and connections of
the network), reductions, and broadcasts.

The model is concretized in an object-centered pro-
cedural language called CuPit. The speci�c properties
of the model are introduced via
1. special categories (analog to categories \record"

or \array" in other languages) of object types:
\connection", \node", and \network",

2. 3-fold nested parallelism, described via group pro-
cedure calls (levels: network replicates, node
groups, connections at a node), and

3. special operations for manipulation of the neural
network topology.

The language is completely abstract: No aspects of the
parallel implementation such as number of processors,
data distribution, process distribution, execution mod-
el etc. are visible in user programs. The compiler can
derive most information relevant for the generation of
e�cient code from unannotated source code. There-
fore, CuPit programs are e�ciently portable.

A compiler for CuPit has been built for the MasPar
MP-1/MP-2 using compilation techniques that can al-
so be applied to most other parallel machines. The pa-
per shortly presents the main ideas of the techniques
used and results obtained by the various optimizations.

Key words: Data and process locality, load balancing,

compiler, portability.

1 Ease vs. E�ciency

The two most important issues of parallel program-
ming languages are (1) e�ciency of implementation
and (2) ease of programming. Unfortunately, howev-
er, these are usually contradictory. Any attempt to
improve the ease of programming usually tends to de-
crease the e�ciency that can be achieved by compilers
for the language.

This is mostly a problem of available knowledge:
E�cient implementation requires that the compiler
has thorough knowledge of the semantics of the pro-
gram, whereas one important aspect of achieving ease
of programming is to free the programmer from having
to supply detailed explicit knowledge about program
meaning and execution.

Therefore, one path towards useful parallel pro-
gramming languages is to identify application domains
in which much knowledge can easily be extracted from
a domain-oriented program description and to de�ne
domain-dependent languages for these domains. The
two kinds of information that are of particular interest
are (1) the dynamic distribution of work over parallel
threads (needed for load balancing) and (2) the dy-
namic distribution of data versus threads (needed to
obtain co-locality of data and process).

Neural network learning algorithms, even those
that dynamically change the topology of the neural
network, are such a domain; we will simply call these
class of programs neural algorithms. This paper de-
scribes how to exploit their special properties in order
to obtain a purely problem-dependent (thus easy-to-
use) programming model that can nevertheless be im-
plemented e�ciently.

The subsequent sections list these special proper-
ties, derive a programming model, describe the con-
cretization of this model in a programming language,
and give some results obtained with an implementa-
tion of this language.



2 Properties of Neural Algorithms
A neural algorithm is a program that performs par-

allel computations on a graph of nodes and connec-
tions (the neural network). For such programs, the
following assumptions hold:

A1: The outer loops are structured along the lines of:
Read a training example and perform some com-
putations A on it (using all or most of the net-
work elements); after a number of examples are so
processed, perform some computationB and per-
haps some change C in graph structure (network
topology).

A2: There are basically �ve types of operations: local
operations on nodes or connections, reductions,
broadcasts (multicasts), and generation and de-
struction of nodes or connections.

A3: No expressions involving arbitrary pairs of
operands occur. Instead, computation is always
attached to the objects of the neural network
graph in one of the above styles.

A4: Therefore, there is also no arbitrary use of paral-
lelism. There is only parallelism over the connec-
tions of a node, over the nodes of one or several
node groups, and (for those algorithms that allow
for example parallelism) over multiple replicates
of a network. These three levels of parallelism are
nested.

A5: The computations are homogeneous in the sense
that any single parallel operation (procedure call)
takes the same time on all of the objects a�ected,
in particular on the innermost (i.e., connection)
level.

A6: Co-locality of the data for several nodes that
are connected with each other can hardly be im-
proved over that resulting from a random distri-
bution of data over the processors, because the
graphs of neural networks do not exhibit much
locality. (This does not always apply to struc-
tured NNs, which we do not consider here.)

3 The Programming Model Idea

The basic idea of the programmingmodel proposed
here is to explicitly model the network objects in the
programming language and to restrict the types of op-
erations that can be performed on these objects to
the operations needed by neural algorithms as giv-
en above. To support constructive neural algorithms,
special operations are included for the creation and
deletion of network, node, and connection objects.

This approach makes a lot of information readily
available to the compiler that would be very di�cult
or impossible to extract from an equivalent program
text in a normal parallel programming language such

as HPF [4]. The information can then be used to
generate e�cient code that exhibits almost optimal
data/process-locality and balanced load, even for ir-
regular networks. In many respects, the ease with
which information about data access patterns can be
extracted from the program in this approach is compa-
rable to that found in functional or single assignment
languages such as SISAL [1], because in both cases
no arbitrary interactions between global data objects
are possible. Yet the optimization capabilities aris-
ing from this information are still better in our case,
since the types of operations are restricted and thus
known in advance | allowing to design optimizations
for their implementation into the compiler.

4 CuPit

The programming language CuPit [5] is a realization
of the programmingmodel described above. The most
important features of its design will be described be-
low, mostly using example program fragments instead
of formal de�nitions.

CuPit is a procedural, object-centered language,
i.e., there are object types and associated operations
but no inheritance. The identi�cation of network ele-
ments is based on three special categories of object
types: There are connection types, node and node
group types, and network types.

TYPE Weight IS CONNECTION
Real i := 0.0,

o := 0.0,

weight := 0.0,
delta := 0.0;

PROCEDURE prune (Real CONST pruneThreshold) IS

IF ME.i <= pruneThreshold
THEN REPLICATE ME INTO 0; END;

END PROCEDURE;

PROCEDURE transport (Real CONST val) IS

ME.i := val;
ME.o := val*ME.weight;

END PROCEDURE;

END TYPE;

The above declaration de�nes a connection type
Weight. Objects of this type are a structure of four
data elements i, o, weight, and delta, all of the
built-in type Real. Associated with this type are
two procedures. prune implements a conditional self-
deletion of the connection (the same could be done
for nodes and then includes all their connections)
and transport implements the forward pass operation
through the connection, i.e. store in i the input and
make the output o be the weighted input. ME always
designates the object, for which an object procedure is
being called. Both procedures can only be called from



nodes that have connections of type Weight attached;
we will see a call in the following example.

TYPE SigmoidNode IS NODE
IN Weight in;
OUT Weight out;

Real inData;
Real outData;
PROCEDURE forward (Bool CONST doIn, doOut) IS

IF doIn THEN
REDUCTION ME.in[].o:rsum INTO ME.inData;

END;
IF doOut THEN
ME.outData := activation (ME.inData);

ME.out[].transport(ME.outData);
END;

END PROCEDURE;
END TYPE;

This node type, SigmoidNode, has two data ele-
ments, inData and outData, and two connection in-
terfaces, in (for incoming connections) and out (for
outgoing connections), both for connections of the
above type Weight. The direction of a connection does
not constrain how it can be used. How to create con-
nections is shown below. The node procedure forward
can operate on all connections attached to one of these
interfaces at once. For instance the REDUCTION state-
ment reduces the o elements of all connections at-
tached to the in interface using the reduction oper-
ator rsum shown below. The result is written into the
variable ME.inData, which will be unchanged if there
are no connections. The [] notation stands for `all '
and designates parallel calls.

The reduction operator rsum used above is de�ned
by the user as

Real REDUCTION rsum IS
RETURN (ME + YOU);

END REDUCTION;

Arbitrary reduction operators on arbitrary data
types can be de�ned this way.

The activation procedure called above is a so-
called free procedure, i.e., one that is not attached to
any object type and can be called from anywhere; it
returns a Real in this case. The call to transport
(a procedure from the connection type) broadcasts
the value ME.outData to all connections attached to
the interface out of the node executing the forward.
The transport procedure is then executed in paral-
lel asynchronously for each of these connections. This
call realizes nested parallelism, as forward itself is al-
ready being executed for several nodes in parallel as
we will see below.

TYPE Layer IS GROUP OF SigmoidNode END;

TYPE Mlp IS NETWORK
Layer inL, hidL, outL;

PROCEDURE createNet (Int CONST inputs,
hidden, outputs) IS

EXTEND ME.inL BY inputs;

EXTEND ME.hidL BY hidden;
EXTEND ME.outL BY outputs;

CONNECT ME.inL[0].out TO ME.outL[].in;
CONNECT ME.inL[].out TO ME.hidL[].in;
CONNECT ME.hidL[].out TO ME.outL[].in;

(* ...initialize weights etc. *)
END;

PROCEDURE example () IS
ME.inL[].forward (false, true)

ME.hidL[].forward (true, true);
ME.outL[].forward (true, false);
ME.outL[].backward (false, true);

ME.hidL[].backward (true, true);
END PROCEDURE;

END TYPE;

The network type Mlp is a simple three layer percep-
tron, consisting solely of the three node groups inL,
hidL, outL. A node group is a dynamic, ordered set
of nodes. Groups of groups may be useful as well for
some programs, but are not currently supported in
CuPit. The createNet procedure dynamically creates
the nodes in the groups and the connections between
them. ME.inL[0] is a bias node and thus has connec-
tions to all nodes of outL, while the other nodes of
inL have not. The example procedure executes the
forward and backward pass through the network for
one input/output example pair. The individual data
values for the example are written into the network by
the main program before the procedure is called.

A small fraction of a main program is shown in the
following fragment:

Real IO x1, x2; (* extern-managed I/O-areas *)
Mlp VAR net; (* Her majesty, the NETWORK *)

PROCEDURE program () IS

(* ... *)
net[].createNet (inputs, hidden, outputs);
REPLICATE net INTO 1...300;

REPEAT
getExamples (x1, x2, REPLICATES(net));
net.inL[].inData <-- x1;

net.outL[].outData <-- x2;
net[].example ();

(* ... merging, weight update, etc. *)
UNTIL stopTraining () END REPEAT;

END PROCEDURE;

I/O-areas such as x1 and x2 above are special sorts
of variables with a de�ned memory layout. This is in



contrast to the actual network data, the memory lay-
out of which is not known to the programmer in order
to allow for arbitrary optimizations. I/O areas are ac-
cessed by a procedure (here: getExamples) written in
some native language of the speci�c parallel machine
to move data in and out of the CuPit program using
native memory or input/output operations. The op-
erators --> and <-- transfer data between I/O areas
and nodes. Subsets of node groups can be accessed
using a slice notation, e.g. net.outL[2...5].inData
--> x2 would output the inData value from nodes 2
to 5 of outL into x2. The same notation can be used
in CONNECT statements.

The statement REPLICATE net INTO 1...300 re-
quests network replicates to be generated in order to
exploit parallelism over examples. The compiler or
run time system can chose how many replicates will
�t into memory and will execute fastest; any number
in the range 1: : :300 is allowed in this program. The
getExamples procedure has to supply an appropriate
number REPLICATES(net) of examples in each call.
During training, the replicates will diverge in their
data values, but not in their network topology, since
topology modi�cations are forbidden while a network
is replicated. To synchronize data in replicates, the
program calls MERGE net (not shown above), which
executes type-speci�c user-de�ned data merge opera-
tions in all objects. In the above program, merging is
required for the delta values in the connections on-
ly (always just before the weight update step). This
merging is thus realized by including the de�nition

MERGE IS

ME.delta += YOU.delta;
END MERGE;

in the type Weight. All other administration of
network replicates is completely implicit. To reunite
replicates into just one network (for instance in or-
der to perform topology changes on the network) one
would call REPLICATE net INTO 1, which also per-
forms a merge �rst.

Topology modi�cation statements not shown in the
above program are DISCONNECT (inverse to CONNECT),
node cloning (e.g. REPLICATE ME INTO 3, which trip-
licates the node and all its connections), and node
removal using negative arguments to EXTEND.

This language allows for the convenient modu-
lar speci�cation of constructive neural learning algo-
rithms, no matter whether these add resources dur-
ing learning or remove resources or both. Algorithms
such as the additive CasCor method [3] or the Optimal
Brain Damage pruning method [2] can be expressed
easily. CuPit programs are explicitly parallel for the
compiler, yet natural for the programmer, because the

domain metaphor of the neural network is used to ex-
press the parallelism. Most information needed for
program optimization can readily be extracted from
the program text by a compiler.

5 Alternative Realization: o-o lan-

guages

Instead of realizing the programming model in a
special purpose language such as CuPit, the same ideas
could also be embedded in parallel object-oriented lan-
guages. To do this, several base classes have to be
de�ned: connection, interface, node, node group, and
network . Each user-de�ned, say, connection type in-
herits from the connection base type, etc.

To fully exploit the information available in the
programming model, such an implementation should
build some knowledge about the behavior of the pro-
gram (with respect to the special object types) into
the compiler. Parts of this knowledge have to be en-
forced by restrictions on the use of the types, which
should also be checked by the compiler. For instance it
must be forbidden to create a connection object with-
out attaching it to exactly one input and one output
node interface.

The obvious advantages of this approach are that
the programmer does not have to learn a complete new
language and that the integration with other parts of
an application becomes simpler. The disadvantages,
on the other hand, are that the approach is techni-
cally more di�cult to realize and that arti�cial con-
straints have to be imposed on the programming style,
which may result in actually more di�cult program-
ming than with a (albeit newly learned) special pur-
pose language.

6 Implementation

A prototype CuPit compiler has been built for the
MasPar MP-1/MP-2 massively parallel SIMD ma-
chine. The compiler source code is available as a lit-
erate programming document [8].

Put very shortly, the following techniques and op-
timizations are employed in the compiler:

O1: Data locality is maintained by locating node ob-
jects and the associated connection objects on the
same processor. Since each connection is attached
to two nodes, this is possible only in a little more
than half of all cases. The node at the opposite
end has only a pointer to the connection object
(remote connection).

O2: Data locality is maximized by chosing the 'right'
end of the connections (input or output end) as
the pointer end, namely the one which is used less
often or with less data during the program run.



Problem Nin Nout Nex O1 O2 O3 O4 O5

building 14 3 2104 244 145 123 110 99
are 24 3 533 289 141 120 112 165
hearta 35 1 460 325 151 114 111 110
cancer 9 2 350 305 144 150 97 98
card 51 2 345 333 164 139 108 120
diabetes 8 2 384 294 159 129 110 161
gene 120 3 1588 221 149 115 119 77
glass 9 6 107 309 165 130 101 102
heart 35 2 460 320 153 130 111 110
soybean 82 19 342 288 167 132 115 130
thyroid 21 3 3600 247 144 120 121 114
(average) 35.8 3.8 871 289 154 127 110 115

Nin, Nout, Nex: Number of input nodes, output nodes, and training examples, respectively. Ox: relative run times (in

percent) of pruning program with optimization Ox switched o� versus switched on.

Table 1: Problem sizes and relative run time of non-optimized program versions

O3: Load balancing is ensured by allocating for each
node and its connections an amount of processor
resources that is proportional to the work that
needs to be done on average per connection. The
weighting factors for the input versus output con-
nections are determined by direct measurement
during program runs. The administrative over-
head of measurement and the actual data distri-
bution procedure is much smaller than the gains.

O4: Accesses to data elements from remote connec-
tions are bundled over a connection operation.
Due to the language structure, a simple static
textual analysis is su�cient to determine almost
optimal sets of elements for each operation.

O5: The number of network replicates used is adapted
dynamically during run time by a direct search
method using halving/doubling steps.

7 Results

The compiler and optimizations was evaluated on a
variety of neural network learning problems, which are
described in [6] Table 1 presents the relative changes in
run time for each of these problems on a 16384 proces-
sor MasPar MP-1, when each one of the optimizations
in turn was switched o�.

All experiments used the lprune pruning algorithm
[7], because the size and topology of the neural net-
work has a much larger impact on the results than the
choice of the actual learning program.

For the load balancing (O3) results it must be noted
that the values were measured after only two thirds of
the connections had been removed. Thus, the network
in these measurements had only very moderate irreg-
ularity. More irregular networks will result in larger
gains from load balancing.

The basis of comparison for the dynamic selection
of replicate numbers (O5) was a static number of repli-
cates, which was plausible (in fact, it was my personal
educated guess) but not in all cases optimal. The bad
result on the gene problem is due to the simple-minded
implementation of the search method.

As we see, the various optimizations result in mod-
erate to dramatic performance gains, depending signif-
icantly on the actual problem to be solved. These op-
timizations could hardly be realized without the abili-
ty to easily extract the required information from the
CuPit program source text.

8 Conclusion

A domain-dependent programming model and pro-
gramming language (CuPit) for constructive neural al-
gorithms was presented. Compilers can easily extract
knowledge about program behavior from such pro-
grams. This knowledge can be used for the gener-
ation of e�cient code, in particular to maximize da-
ta/process locality and load balancing, which is other-
wise very di�cult for problems with an irregular and
dynamically changing structure as they arise for in-
stance from constructive neural algorithms.

References

[1] David Cann. Retire Fortran? A debate rekindled.
Communications of the ACM, 35(8):81{89, August
1992.

[2] Yann Le Cun, John S. Denker, and Sara A. Sol-
la. Optimal brain damage. In [9], pages 598{605,
1990.



[3] Scott E. Fahlman and Christian Lebiere. The
Cascade-Correlation learning architecture. In [9],
pages 524{532, 1990.

[4] High Performance Fortran (HPF): Language spec-
i�cation. Technical report, Center for Research on
Parallel Computation, Rice University, 1992.

[5] Lutz Prechelt. CuPit | a parallel language for
neural algorithms: Language reference and tu-
torial. Technical Report 4/94, Fakult�at f�ur In-
formatik, Universit�at Karlsruhe, Germany, Jan-
uary 1994. Anonymous FTP: /pub/papers/tech-
reports/1994/1994-4.ps.Z on ftp.ira.uka.de.

[6] Lutz Prechelt. PROBEN1 | A set of bench-
marks and benchmarking rules for neural net-
work training algorithms. Technical Report
21/94, Fakult�at f�ur Informatik, Universit�at Karl-
sruhe, Germany, September 1994. Anony-
mous FTP: /pub/papers/techreports/1994/1994-
21.ps.Z on ftp.ira.uka.de.

[7] Lutz Prechelt. Adaptive parameter pruning in neu-
ral networks. Technical Report 95-009, Interna-
tional Computer Science Institute, Berkeley, CA,
March 1995.

[8] Lutz Prechelt. The CuPit compiler for the Mas-
Par | a literate programming document. Techni-
cal Report 1/95, Fakult�at f�ur Informatik, Univer-
sit�at Karlsruhe, Germany, January 1995. Anony-
mous FTP: /pub/papers/techreports/1995/1995-
1.ps.Z on ftp.ira.uka.de.

[9] David S. Touretzky, editor. Advances in Neural In-
formation Processing Systems 2, San Mateo, CA,
1990. Morgan Kaufman Publishers Inc.


