
An Experiment to Assess the Bene�ts

of Inter-Module Type Checking

Lutz Prechelt (prechelt@ira.uka.de)
Walter F. Tichy (tichy@ira.uka.de)

Fakult�at f�ur Informatik
Universit�at Karlsruhe

D-76128 Karlsruhe, Germany

Abstract

This paper reports on an experiment to assess the
error detection capabilities of static, inter-module type
checking. Type checking is considered an important
mechanism for detecting programming errors, especial-
ly interface errors.

The experiment uses Kernighan&Ritchie C and AN-
SI C. The relevant di�erence is that the ANSI C com-
piler checks module interfaces (i.e., the parameter lists
of calls to external functions), whereas K&R C does
not. The experiment employs a counterbalanced de-
sign, in which each subject writes two non-trivial pro-
grams that interface with a complex library (Motif).
Each subject writes one program in K&R C and one in
ANSI C. The input to each compiler run is saved and
manually analyzed for errors.

Results indicate that delivered ANSI C programs
contain signi�cantly fewer interface errors than deliv-
ered K&R C programs. Furthermore, after subjects
have gained some familiarity with the interface they are
using, ANSI C programmers remove errors faster and
are more productive (measured in both time to comple-
tion and functionality implemented).

1. Introduction

Datatypes are an important concept in program-
ming languages. A datatype is an interpretation ap-
plied to a datum, which otherwise would just be a
string of bits. Datatypes are used to model the da-
ta space of a problem domain and are an important
aid to programming and program understanding. A
further bene�t is type checking: A compiler or inter-
preter can determine whether a data item of a certain
type is permissible in a given context, such as an ex-

pression or statement. If it is not, then the compiler
has detected an error in the program. It is the error
detection capability of type checking that is of interest
in this paper.

There is some debate over whether dynamic type
checking is preferable to static type checking, how strict
the type checking should be, and whether explicitly
declared types are more helpful than implicit ones.
However, it seems that the bene�ts of type checking
are virtually undisputed. Modern programming lan-
guages have evolved elaborate type systems and check-
ing rules. In some languages, such as C, the type check-
ing rules were even strengthened in later versions. Fur-
thermore, type theory is an active area of research.

However, it seems that the bene�ts of type checking
are largely taken on faith or are based on personal anec-
dotes. For instance, Wirth states in [9] that the type
checking facilities of Oberon had been most helpful in
evolving the Oberon system. Many programmers can
recall instances when type checking did or could have
helped them. However, we could not �nd any reports
in the literature on controlled, repeatable experiments
that test whether type checking has any positive (or
negative) e�ects. The cost and bene�ts of type check-
ing are far from clear, because type checking is not for
free: It requires e�ort on behalf of the programmer
in providing type information. Furthermore, there is
some evidence that inspections might be more e�ective
in �nding errors than compilers [5].

We conclude that the actual costs and bene�ts of
type checking are largely unknown. This situation
seems to be at odds with the importance assigned to
the concept: Languages with type checking are wide-
ly used and the vast majority of practicing program-
mers are a�ected by the technique in their day-to-day
work. The purpose of this paper is to provide initial,
\hard" evidence about the e�ects of type checking. We

1

describe a repeatable and controlled experiment that
con�rms some positive e�ects: First, when applied to
interfaces, type checking reduces the number of errors
remaining in delivered programs. Second, when pro-
grammer use a familiar interface, type checking helps
them remove errors more quickly and increases their
productivity.

De�nitive knowledge about positive e�ects of type
checking can be useful in two ways: First, we still lack
a useful scienti�c model of the programming process.
Such a model is a prerequisite for understanding the
overall software production process. Understanding
the types, frequencies, and circumstances of program-
mer errors is an important ingredient of such a model.
Second, there are still many environments, where type
checking is missing or incomplete, and such knowledge
will produce pressure to close these gaps. For instance
it may pay o� to invest in discriminating between the
many kinds of integer values that occur in interfaces,
such as cardinal numbers, indices, di�erences, etc.

To determine whether and to which extent such
discrimination might be useful is a typical example
of a software process improvement question that can
be answered by de�ning and applying the appropri-
ate metrics. Since full in-process measurement for this
question might be quite expensive, a go/no-go decision
should be made �rst and can be attempted by a small-
scale, controlled experiment. Our study is an example
of using the experimental method as the �rst step of a
process improvement.

2. Related work

Work on error classi�cation and detection obviously
has a bearing on our experiment. Publications [2, 8] de-
scribe and analyze the typical errors in programs writ-
ten by novices. The results are not necessarily relevant
for professional programmers. Furthermore, type er-
rors do not play an important role in these studies.

Error type analyses have also been performed in
larger scale software development settings. Type
checking has not been a concern in these studies, but
in some cases related information can be derived. For
instance, reference [1] reports that 39 percent of all er-
rors in a 90.000 line FORTRAN project were interface
errors. We conjecture that some proportion of these
could have been found by type checking.

The error detection capabilities of testing methods is
a question that has attracted considerable interest, see
for instance[3]. The errors found by testing are those
that already passed the type checks, so the results from
these studies are hardly applicable here.

Several studies have compared the productivity ef-
fects of di�erent programming languages. Most of
these studies used programmers with little experience
and very small programming tasks, e.g. [2]. Others
used somewhat larger tasks and experienced program-
mers, but lacked proper experimental control, as in [4].
All of these studies have the inherent problem that they
are confounded by too many factors to draw conclu-
sions regarding type checking.

We are aware of only one closely related experiment,
the Snickering Type Checking Experiment[6] with the
Mesa language. In that work, compiler-generated er-
ror messages involving types were diverted to a secret
�le. A programmer working with this compiler on two
di�erent programs was shown the error messages after
he had �nished the programs and was asked to esti-
mate how much time he would have saved had he seen
the messages right away. Interestingly, the program-
mer had independently removed all the errors detected
by the type checker. He claimed that on one program,
which was 100% his own work, type checking would not
have helped appreciably. On another program which
involved interfacing to a complicated library, he esti-
mated that type checking would have saved 50% of
total development time. It is obvious that this type of
study has many
aws. But to our knowledge it was
never repeated in a more controlled setting.

It appears that the cost and bene�ts of type checking
have not been studied systematically.

3. Design of the Experiment

The idea behind the experiment is the following: Let
experienced programmers solve programming problems
involving a complex library. To control for the type-
checking/no-type-checking variable, let every subject
solve one problem with K&R C, and another with AN-
SI C. Save the inputs to all compiler runs for later error
analysis.

A number of observations regarding the realism of
the setup are in order. A simple task means that the
di�culties observed will stem from using the library,
not from solving the task itself. Thus, most errors
will occur when interfacing to the library, where the
e�ects of type checking are thought to be most pro-
nounced. Furthermore, using a complex library is sim-
ilar to the development of a module within a larger
project, where many imported interfaces must be han-
dled. We used experienced programmers familiar with
the programming language, so the results would not be
confounded by problems with the language. However,
the programmers had no experience with the library |
another similarity with realistic software development,

2

where new modules are written within a relatively for-
eign context.

In order to balance for both learning e�ects and
inter-subject ability di�erences, we used a counterbal-
anced design: There were two independent problems to
be solved (A and B, as described below) and two treat-
ments (ANSI C and Kernighan/Ritchie C). Each sub-
ject had to solve both problems, each with a di�erent
language. Thus, there are two experimental groups:
Group 1 solves A(ANSI)+B(KR) (in this order) and
group 2 solves B(ANSI)+A(KR).

Controlling for the sequence of problems and lan-
guages creates another two groups, see Table 1. The
dependent variables are described in section 3.4

Subjects were assigned to groups in round-robin
fashion.

3.1. Tasks

Problem A (2 � 2 Matrixinversion): Open a
window with four text �elds arranged in a 2 by 2 pat-
tern plus an \Invert" and a \Quit" button. See �gure
1. \Quit" exits the program and closes the window.
The text �elds represent a matrix of real values. The
values can be entered and edited. When the \Invert"
button is pressed, replace the values by the coe�cients
of the corresponding inverted matrix, or print an error
message if the matrix is not invertible. The formula for
2� 2 matrix inversion was given.

Figure 1. Problem A (2� 2 matrix inversion)

Problem B (File Browser): Open a window with
a menubar containing a single menu. The menu entry
\Select �le" opens a �le selector box. The entry \Open
selected �le" pops up a separate, scrollable window and
displays the contents of the �le previously selected in
the �le selector box. \Quit" exits the program and
closes all its windows. See �gure 2.

For solving the tasks, the subjects did not use na-
tive Motif, but a special wrapper library. This library
has operations similar to those of Motif, but with im-
proved type checking (e.g. there were no variable ar-

Figure 2. Problem B (File browser)

gument lists, and resources were typed). There was al-
so some simpli�cation through additional convenience
functions. For instance, there was a function for creat-
ing a RowColumnManager and setting its orientation
and packing mode in one call.

The tasks, although quite small, were not at all triv-
ial. The subjects had to understand several important
concepts of Motif programming (such as widget, re-
source, and callback function). They had to learn to
use them from abstract documentation only, without
example programs (as is typically the case in practice).

3.2. Subjects

40 unpaid volunteers participated in the study. Six
of them were removed from the sample: One deleted his
protocol �les, one was obviously inexperienced (took
almost ten times as long as the others), and four worked
only on one of the two problems. After this mortality,
the A/B groups had 8+8 subjects, the B/A groups had
11+7 subjects. We consider this to be still su�ciently
balanced.

The remaining 34 subjects had the following educa-
tion. Two were postdocs in computer science; 19 were
PhD students in computer science and had completed a
M.S. degree in CS; another subject was also a CS PhD
student but held a M.S. in physics; twelve subjects were
CS graduate students with a B.S. in computer science.

The 34 subjects had between four and 19 years of
programming experience (� = 10:0) and all but eleven
of them had written at least 3000 lines in C (all but
one at least 300 lines). Only eight of the subjects had
any programming experience with X-Windows or Mo-
tif; only three of them had written more than 300 lines
in X-Windows or Motif.

3

�rst problem A �rst problem B
second problem B second problem A

�rst ANSI C
then K&R C

Group 1 Group 2

�rst K&R C
then ANSI C

Group 3 Group 4

Table 1. Tasks and compilers assigned to the four groups of subjects

3.3. Setup

Each subject received two written documents and
one instruction sheet and was then left alone at a Sun-
4 workstation to solve the two problems. The subjects
were told to use roughly one hour per problem, but no
time limit was enforced. Subjects could stop working
even if the programs were not operational.

The instruction sheet was a one-page description of
the global steps involved in the experiment: \Read sec-
tions 1 to 3 of the instruction document; �ll in the
questionnaire in section 2; initialize your working envi-
ronment by typing make TC1; solve problem A by: : :"
and so on. The subjects obtained the following mate-
rials, most of them both on paper and in �les:
1. a half-page introduction to the purpose of the ex-

periment;

2. a questionnaire about the background of the sub-
ject;

3. speci�cations of the two tasks plus the program
skeleton for them;

4. an introduction to Motif programming (1 page)
and some useful commands (for example how to
to search manuals on line);

5. a manual listing �rst the names of all types, con-
stants, and functions that might be required, fol-
lowed by descriptions of each of them including the
signature, semantic description, and several kinds
of cross references. The document also included
introductions to the basic concepts of Motif and
X-Windows. This manual was hand-tailored to
contain all information required to solve the tasks
and hardly anything else;

6. a questionnaire about the experiment (to be �lled
in at the end).

Subjects could also execute a \gold" program for
each task. A gold program solved its task completely
and correctly and could be used as a backup for the ver-
bal speci�cations. Subjects were told to write programs
that duplicated the behavior of the gold programs.

The subjects did not have to write the programs
from scratch. Instead, they were given a program skele-

ton that contained all necessary #include commands,
variable and function declarations, and some initializa-
tion statements. In addition, the skeleton contained
pseudocode describing step by step what statements
had to be inserted to complete the program. The sub-
jects' task was to �nd out which functions they had to
use and which arguments to supply. Almost all state-
ments were function calls.

The following is an example of a pseudostatment in
the skeleton.

/* Register callback-function 'button pushed'

for the 'invert' button with the number 1 as

'client data' */

It can be implemented thus:
XtAddCallbackF(invert, XmCactivateCallback,

button pushed, (XtPointer)1);

There were only few variations possible in the im-
plementation of the pseudocode.

The programming environment captured all pro-
gram versions submitted for compilation along with a
time stamp and the messages produced by the compil-
er and linker. A timestamp for the start and the end
of the work phase for each problem was also written to
the protocol �le.

The environment was set up to call the standard C
compiler of SunOS 4.1.3 using the command cc -c -g

for the Kernighan/Ritchie tasks and version 2.7.0 of the
GNU C compiler using gcc -c -g -ansi -pedantic

-W -Wimplicit -Wreturn-type for the ANSI C tasks.

3.4. Observed variables

After the experiment was �nished, each program
version in the protocol �les was annotated by hand.
Each di�erent programming error that occurred in the
programs was identi�ed and given a unique number.
For instance, for the call to XtAddCallbackF shown
above, there were 15 di�erent error numbers, includ-
ing 4 for wrong argument types, 4 for wrong argument
objects with correct type, and another 7 for more spe-
cialized errors.

Each program version was annotated with the errors
introduced, removed, or changed (without correcting

4

them).
Additional annotations counted the number of type

errors, other semantic errors, and syntactic errors that
actually provoked one or more error messages from the
compiler or linker. The timestamps were corrected for
pauses that lasted more than 10 minutes. Summary
statistics were computed, for which each error was clas-
si�ed into one of the following categories:

comp: Errors that had to be removed before the
program would pass the compiler and linker, even for
K&R C. This class will be ignored.

slight: Errors resulting in slightly wrong functional-
ity of the program, but so minor that the programmers
probably felt no need to correct them. This class will
be ignored.

invis: Errors that are invisible, i.e., they do not
compromise functionality, but only because of unspeci-
�ed properties of the library implementation. Changes
in the library implementation may result in a misbe-
having program. Example: Supplying the integer con-
stant PACK COLUMN instead of the expected boolean val-
ue True works correctly, because (and as long as) the
constant happens to have a non-zero value. This class
of errors will be ignored.

invisD: same as invis, except that the errors will be
detected by ANSI C parameter type checking (but not
by K&R C).

severe: Errors resulting in signi�cant deviations
from the prescribed functionality.

severeD: same as severe, except that the errors will
be detected by ANSI C parameter type checking (but
not by K&R C).

These categories are mutually exclusive. Unless oth-
erwise noted, the error statistics discussed below are
computed based on the sum of severe , severeD , and
invisD .

Other metrics observed were the number of compi-
lation cycles (versions) and time to completion, i.e.,
the time taken by the subjects before delivering the
program (whether complete and correct or not).

From these metrics and annotations, additional
statistics were computed. For instance the frequency
of error insertion and removal, the number of attempts
made before an error was �nally removed, the time an
error remained in the program (\lifetime"), and the
number and type of errors remaining in the �nal pro-
gram version.

For measuring productivity and unimplemented
functionality, we de�ne a functionality unit (FU) to
be a single statement in the gold programs. Using the
gold programs as a reference normalizes the cases where
subjects used more than one statement instead. FUs
are thus a better measure of program volume than lines

of code. Gold program A has 16 FUs, B has 11.
We also annotated the programs with the number of

gaps, i.e., the number of missing FUs. A FU is counted
as missing if a subject made no attempt to implement
it. From this, it is easy to derive the number of FUs
implemented in a program.

3.5. Internal and external validity

The following problems might threaten the internal
validity of the experiment, i.e., the correctness of the
observations:
1. Error messages produced by the two compilers

might di�er for the same error, and this might
in
uence productivity. Our subjective judgement
here is that the error messages of both compilers
are comparable in quality, at least for the purposes
of this experiment.

2. There may be annotation errors. To insure con-
sistency, all annotations were made by the same
person. The annotations were cross-checked �rst
with a simple consistency checker and then some of
them manually. The number of annotation errors
found in the manual check was negligible (4%).

The following problems might limit external valid-
ity of the experiment, i.e., the generalizability of our
results:
1. The subjects were not professional software engi-

neers. However, they were quite experienced pro-
grammers and held degrees (many of them ad-
vanced) in computer science.

2. The results may be domain-dependent. This ob-
jection cannot be ruled out. This experiment
should therefore be repeated in domains other
than graphical user interfaces.

3. The results may not apply to situations were the
subjects are very familiar with the interfaces used.

Despite these problems, we expect that the sce-
nario chosen in the experiment is nevertheless similar
to many real situations with respect to type checking
errors.

4. Results and Discussion

Most of the statistics of interest in this study have
clearly non-normal distributions and sometimes severe
outliers. Therefore, we present medians (to be precise:
an interpolated 50% quantile) rather than arithmetic
means. Where most of the median values are zero,
higher quantiles are given.

The results are shown in Table 2. There are 13 dif-
ferent statistics in three main columns. The �rst col-
umn shows the statistics for both tasks, independent

5

both tasks 1st task 2nd task
Statistic ANSI K&R ANSI K&R ANSI K&R

1 hours to completion 1.3 1.35 1.6 1.6 0.9 1.3
p = 0.49 0.83 0.018

2 #versions 15 16 19 21 12.5 13
p = 0.84 0.63 0.16

3 #type error messages/hour 6.3 1.1 4.3 1.2 7.7 1.0
p = 0.0000 0.0007 0.0006

4 #error insertions/hour 5.6 6.5 4.0 4.2 6.3 6.8
p = 0.35 0.28 0.75

5 #error removals/hour 4.15 3.95 4.0 4.2 4.9 3.7
p = 0.69 0.97 0.60

6 sum of accumulated error lifetime 1.6 2.55 2.2 3.6 0.8 2.2
p = 0.035 0.26 0.025

7 #right, then wrong again (75% quant.) 1.0 1.0 1.0 1.0 0.0 1.0
p = 0.12 0.82 0.009

8 #remaining errs in delivered program 1.0 2.0 1.0 2.0 1.0 2.0
p = 0.016 0.32 0.031

9 | for invisD only (90% quantile) 0.0 1.0 0.0 1.4 0.0 0.0
p = 0.04 0.048 0.41

10 | for severe only 1.0 1.0 1.0 0.0 1.0 1.0
p = 0.66 0.74 0.65

11 | for severeD only 0.0 1.0 0.0 1.0 0.0 1.0
p = 0.0001 0.015 0.0022

12 #gaps (75% quantile) 0.25 0.0 1.5 0.0 0.0 0.0
p = 0.35 0.26 0.70

13 FU/h 8.6 9.7 7.21 8.5 12.8 10.7
p = 0.93 0.31 0.061

Table 2. Medians (or other quantiles as indicated) of statistics for ANSI C vs. K&R C versions of programs and
p-values for statistical signi�cance of Wilcoxon Rank Sum Tests of the two. Values under 0.05 indicate signi�cant
di�erences of the medians. Column pairs are for 1st+2nd, 1st, and 2nd problem tackled chronologically by each
subject, respectively. All entries include data points for both problem A and problem B.

of order. The second and third columns re
ect the ob-
servations for those tasks that were tackled �rst and
second, respectively. These columns can be used to
assess the learning e�ect. Each main column reports
the medians (or higher quantiles where indicated) for
the tasks programmed with ANSI C and K&R C plus
the p-value. The p-value is the result of the Wilcoxon
Rank Sum Test1 and can be interpreted as the proba-
bility that the observed di�erences occurred by chance.
A di�erence in the median is considered signi�cant if
p � 0:05. Signi�cant results are marked in boldface in
the table. When the p-value is not signi�cant, nothing
can be said, i.e., there may or may not be a di�erence.

The �rst statistic, time to completion, shows that
there is no signi�cant di�erence between ANSI C and
K&R C for the �rst task and both tasks together. The
combined time spent for the second task is shorter than
for the �rst (p = 0:0012, not shown in the table), indi-
cating a learning e�ect. In the second task, ANSI C is
signi�cantly more productive. A plausible explanation
is as follows. When they started, programmers did not

1This test, also known as Mann-Whitney U Test, was chosen

because the distributionsof the variables are more or less logistic,

rather than, say, normal or double exponential.

have a good understanding of the library and where
struggling more with the concepts than the interface
itself. A lack of understanding is also born out by the
protocols. Type checking is unlikely to help gain a
better understanding. Type checks became useful on-
ly after programmers had overcome the initial learning
hurdle.

Statistic 2, the number of program versions com-
piled, does not show a signi�cant di�erence. Entry 3
shows that the ANSI C compiler does indeed
ag type
errors signi�cantly more often than the K&R compil-
er does. Each type error was counted only once per
compilation for this statistic, no matter whether it pro-
duced one or several messages. Messages produced for
other semantic or for syntactic errors were ignored.

Entries 4 to 7 are statistics that describe the inter-
nal error processes, all based on the sum of the error
categories invisD, severe, and severeD. The frequency
of error insertion and removal (entries 4 and 5) show
no signi�cant di�erences. The other two show some
advantage for ANSI C and it is again most pronounced
in task 2, con�rming the learning e�ect.

The total lifetime of all errors during programming
(entry 6) is shorter for ANSI C overall and in the 2nd

6

ac
cu

m
ul

at
ed

 e
rr

or
 li

fe
tim

e

-2

0

2

4

6

8

10

12

Ansi K&R

Figure 3. Boxplots of accumulated error lifetime (in
hours) over both tasks for ANSI C (left boxplot)
and K&R C (right boxplot). The upper and lower
whiskers mark the 95% and 5% quantiles, the up-
per and lower edges of the box mark the 75% and
25% quantiles, and the dot marks the 50% quantile
(median). All other boxplots following below have
the same structure.

task. The distributions of accumulated lifetime over
both tasks are also shown as boxplots in Figure 3. As
we see, the K&R total error lifetimes are usually higher
and spread over a much wider range.

The number of errors introduced in previously cor-
rect or repaired parts of a program (entry 7) is signi�-
cantly higher for K&R C in the 2nd task.

F
U

/h
ou

r

2

4

6

8

10

12

14

16

18

20

Ansi K&R

Figure 4. Boxplots of productivity (in FU/hour) over
both tasks.

F
U

/h
ou

r

2

4

6

8

10

12

14

16

Ansi K&R

Figure 5. Boxplots of productivity (in FU/hour) for
�rst task.

There are no signi�cant di�erences in the number of
gaps in the delivered programs (entry 12). However,

F
U

/h
ou

r

2

6

10

14

18

22

26

Ansi K&R

Figure 6. Boxplots of productivity (in FU/hour) for
second task.

the p-value of 0:061 for productivity (entry 13) in the
second task strongly suggests that ANSI C is helpful for
programmers after the initial interface learning phase.
The combined (both languages) productivity rises sig-
ni�cantly from the 1st task to the 2nd task (p = 0:0001,
not shown in the table); this was also reported by the
subjects.

The distributions of productivity measured in
FU/hour are shown in Figures 4 to 6. We see that
ANSI C makes for a more pronounced increase in pro-
ductivity from the �rst task to the second than does
K&R C.

al

l r
em

ai
ni

ng
 e

rr
or

s

-1

0

1

2

3

4

5

6

7

8

Ansi K&R

Figure 7. Boxplots of total number of remaining er-
rors in delivered programs over both tasks.

se

ve
re

 r
em

ai
ni

ng
 e

rr
or

s

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Ansi K&R

Figure 8. Boxplots of number of remaining severe

errors in delivered programs over both tasks.

A clear advantage of ANSI C over K&R C is the
number of errors still present in the delivered program
(entry 8). As entries 9 to 11 indicate, this result stems

7

se

ve
re

D
 r

em
ai

ni
ng

 e
rr

or
s

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Ansi K&R

Figure 9. Boxplots of number of remaining severeD

errors in delivered programs over both tasks.

from the direct detection of errors through type check-
ing; little or no reduction of non-detectable errors (en-
try 10) is achieved. The both-task distributions for
entries 8, 10, and 11 are shown in Figures 7 to 9. As
we see there, the distributions for severe errors di�er
only in the upper tail (Figure 8), whereas the distribu-
tions for the severeD errors di�er dramatically in favor
of ANSI C (Figure 9), resulting in a signi�cant overall
advantage for ANSI C (Figure 7).

A detailed analysis of the errors remaining in the
delivered programs indicates a slight, but not statis-
tically signi�cant tendency that other frequent errors
also were reduced in the ANSI programs: using the
wrong variable as a parameter or an assignment tar-
get (p = 0:28) or using a wrong constant value as a
parameter (p = 0:35).

There were no signi�cant di�erences between the
two tasks. All of the above results hardly change if one
considers the tasks A and B separately (not shown).

Finally, the subjective impressions of the subjects as
reported in the questionnaires are as follows. 26 of the
subjects (79%) noted a learning e�ect from the �rst
program to the second. 9 subjects (27%) reported that
they found the ANSI C type checking very helpful, 11
(33%) found it considerably helpful, 4 (12%) found it
almost not helpful, 5 (15%) found it not at all helpful.
4 subjects could not decide, 1 questionnaire was lost.

5. Conclusions and further work

Our experiment con�rms the following hypotheses:
1. Type checking can reduce the number of interface

errors in delivered programs.

2. When using an interface, type checking can in-
crease productivity, provided the programmer has
gained a basic understanding of the interface.

One must be careful generalizing the results of this
study to other situations. For instance, the experiment
is unsuitable for determining the proportion of inter-
face errors in an overall mix of errors, because is was

designed to prevent errors other than interface errors.
Hence it is unclear how large the di�erences will be if
error classes such as declaration errors, initialization
errors, algorithmic errors, or control
ow errors are in-
cluded.

Nevertheless, the experiment suggests that for many
realistic programming tasks, type checking of interfaces
improves both productivity and program quality. Fur-
thermore, some of the resources otherwise expended on
inspecting interfaces might be allocated to other tasks.

Further work should repeat similar error analyses in
di�erent settings (e.g. tasks with complex data
ow or
object-oriented languages). In particular, it would be
interesting to compare productivity and error rates un-
der compile-time type checking, run-time type check-
ing, and type inference. Other important questions
concern the in
uence of a disciplined programmingpro-
cess such as the Personal Software Process [5]. Finally,
an analysis of the errors occurring in practice might
help devise more e�ective error detection mechanisms.

Acknowledgements

Thanks to our experimental subjects. Many thanks
in particular to Paul Lukowicz for patiently guinea-
pigging the experimental setup.

References

[1] V. R. Basili and B. Perricone. Software errors and com-
plexity: An empirical investigation. Communications of
the ACM, 27(1):42{52, Jan. 1984.

[2] A. Ebrahimi. Novice programmer errors: Language
constructs and plan composition. Intl. J. of Human-
Computer Studies, 41:457{480, 1994.

[3] P. G. Frankl and S. N. Weiss. An experimental com-
parison of the e�ectiveness of branch testing and da-
ta
ow testing. IEEE Trans. on Software Engineering,
19(8):774{787, August 1993.

[4] P. Hudak and M. P. Jones. Haskell vs. Ada vs. C++
vs. awk vs. : : : an experiment in software prototyping
productivity. Technical report, Yale University, Dept.
of CS, New Haven, CT, July 1994.

[5] W. Humphrey. A Discipline of Software Engineering.
Addison-Wesley, 1995.

[6] J. H. Morris. The snickering type checking experiment.
unpublished, 1978.

[7] E. Soloway and S. Iyengar, editors. Empirical Studies
of Programmers. Ablex Publishing Corp., Norwood,
NJ, June 1986. (The papers of the First Workshop on
Empirical Studies of Programmers, Washington D.C.).

[8] J. G. Spohrer and E. Soloway. Analyzing the high fre-
quency bugs in novice programs. In [7], pages 230{251,
1986.

[9] N. Wirth. Gedanken zur Software-Explosion. Infor-
matik Spektrum, 17(1):5{20, February 1994.

8

