
D
R

A
FT

Submission to 'Communications of the ACM'

Comparing Java vs. C/C++ e�ciency di�erences

to inter-personal di�erences

Lutz Prechelt (prechelt@acm.org)
Fakult�at f�ur Informatik
Universit�at Karlsruhe

D-76128 Karlsruhe, Germany
+49/721/608-4068, Fax: +49/721/608-7343

March 23, 1999

The relative e�ciency of Java programs is much discussed today, in particular in comparison
to well established implementation languages such as C or C++. Java is often considered very
slow and memory-intensive. Most benchmarks, however compare only a single implementation
of a program in, say, C++to one implementation in Java | neglecting the possibility that al-
ternative implementations might compare di�erently. In contrast, the current article presents a
comparison of 40 di�erent implementations of the same program, written by 40 di�erent pro-
grammers. The data allows for comparing, for one particular programming task, the average

relative performance between languages as well as the performance di�erences from one pro-
grammer to another within a group of programs written in the same language. As we will see,
these inter-personal program di�erences are larger than those between the languages | and the
performance gap between Java and other languages is still shrinking rapidly.

Origin of the data

The 40 program implementations investigated in this report were created by graduate students
in the course of a controlled experiment on a di�erent question [1]. There are 24 programs
written in Java, 11 in C++, and 5 in C. Each program was written by a single person. These
programmers had an average of 8 years of programming experience and estimated they had
previously written a average of 100 KLOC each (median: 20 KLOC).

All programs implement the same functionality, namely a conversion from telephone numbers
into word strings as follows. The program �rst loads a dictionary of 73113 words into memory
from a 
at text �le (one word per line, 938 Kilobytes overall). Then it reads \telephone numbers"
from another �le, converts them one by one, and prints the results. The conversion is de�ned
by a �xed mapping of characters to digits.

The task of the program is to �nd a sequence of words such that the sequence of characters in
these words exactly corresponds to the sequence of digits in the phone number. All possible
solutions must be found and printed. The solutions are created word-by-word and if no word
from the dictionary can be inserted at some point during that process, a single digit from the
phone number can appear in the result at that position. Many phone numbers have no solution

1



D
R

A
FT

at all. Here is an example of the program output for the phone number \3586-75", encoded
using a German dictionary:

3586-75: Dali um

3586-75: Sao 6 um

3586-75: da Pik 5

A list of partial solutions needs to be maintained by the program while processing each number
and the dictionary must be embedded in a supporting data structure (such as a 10-ary digit
tree) for e�cient access. Search functions of such kind might be part of a server in a larger
client/server software system.

The programmers were asked to write as reliable a program as they could. E�ciency was called
less important. However, a run time limit (not quanti�ed to the programmers in advance) was
imposed during the acceptance test and many programs failed to satisfy it in the �rst attempt
and had to be optimized before they were accepted. Across all 40 programmers, writing the
program took between 3 and 63 work hours (median: 10 hours, mean: 14 hours) and the
resulting program had between 107 and 614 lines (median: 244 lines, mean: 277 lines, excluding
comments).

All measurements presented below were taken on a Sun Ultra 1 Unix workstation with 192 MB
main memory running the SunOS 5.5.1 operating system. The C/C++ programs were compiled
with the GNU gcc/g++ compiler version 2.7.2, the Java programs ran under Sun's JDK 1.2
reference implementation with just-in-time compiler (JIT).

How to analyze the data

For each metric of interest (such as the runtime of the program), we could represent the values
for each language group by their mean, but doing that we would throw away a lot of interesting
information. Therefore, we represent the entire distribution by so-called boxplots. Each graph
contains four boxplots: one for the values obtained from the Java programs, one for the C++

programs, one for the C programs, and one for the union of the C and C++ programs. The
box indicates the location and extent of the "middle half" of the values, i.e., the left edge is
positioned so that just 25% of the values are smaller (the 25% quantile), the right edge so that
just 25% of the values are larger (75% quantile). The T-shaped whiskers indicate the 10% and
90% quantiles, respectively. The fat dot inside the box is the 50% quantile, usually called the
median. The letter M in the plot represents the arithmetic mean of the data and the dashed
line is plus/minus one standard error of the mean. For comparing the averages of two sets of
data, the median is often more appropriate because it is not in
uenced by outliers.

The other interesting aspect of the data is its variability. Again, the most common measure,
the standard deviation, is sensitive to outliers. The width of the box is a robust measure of
variability. Note that the 25median of the lower half of the data and the 75box edge) is the
median of the upper half of the data. Hence, the 25be called average representatives of the good
(e�cient) and bad (ine�cient) programs, respectively. We call the quotient of these two values
the "good/bad ratio". I will actually present the bad/good ratio instead, because that is easier
to interpret.

2



D
R

A
FT

Memory consumption di�erences

Let us �rst investigate the memory requirements of the di�erent programs. Figure 1 shows the
amount of memory required by the programs after they have loaded the dictionary and then
processed 1000 telephone numbers. The memory size reported includes the size of static and
dynamic data structures, the program code and libraries used, and the basic process overhead.
For Java programs it also contains the size of the Java Virtual Machine, including the just-in-time
compiler.

M
oooo oo o ooo ooo oo o

M
o ooo o o oooo o o

o oo oo o ooo
o oo

M
oooo o

M
oo

o oo oo ooo o

C

C++

C, C++

Java

20000 40000 60000

memory (after 1000 inputs) [Kbytes]

Figure 1: Total memory consump-
tion for the various programs.

We make the following observations:

1. The average memory requirement of the Java programs is two to three times that of the
C or C++ programs.

2. Even the most modest Java programs require a little more memory than the average C/C++

programs and 3 to 4 times as much as the best C/C++ programs.

3. The good/bad ratio is 3.7 for the C/C++ programs and 1.7 for the Java programs.

As wee see, the Java programs indeed require substantially more memory on average, but the
ratio to the C or C++ programs is not larger than the good/bad ratio.

Run time di�erences

The total CPU time required by the programs (run time) consists of two parts; one for loading
the dictionary (load time) and one for actually processing the 1000 inputs (processing time).
Figure 2 shows the total run time.

These are the main observations:

1. The median run time of the Java programs is over three times that of the C/C++ programs.
Due to four huge outliers in the Java group (361, 360, 151, 130 minutes, not shown in the
plot), the mean is very di�erent from the median in the Java group so that it is 18 times
the mean of the C/C++ group.

The ratio of the median load time is 6 to 1 for Java versus C/C++, the ratio of median
processing time is 3 to 1.

3



D
R

A
FT

M
oo o oo ooo oooo oo oo

M
o ooo o ooo ooo ooo oooooo

M
oo ooo

M
o o oo oo ooo oo

C

C++

C, C++

Java

0 20 40 60 80

runtime (load dict., process 1000 inputs) [minutes]

Figure 2:

2. The three fastest Java programs are about twice as fast as the median C/C++ program
and 10 times slower than the three fastest C/C++ programs.

3. The run time good/bad ratio is 32 for C/C++ and 37 for Java.

This high variability stems from rather huge di�erences in the actual search routines: The
load time good/bad ratio is only 3 for C/C++ and 5 for Java, but the processing time
good/bad ratio is as high as 153 for C/C++ and 71 for Java!

4. The C programs are substantially faster than the C++ programs. Due to the small number
of C programs the ratio can not be quanti�ed accurately.

The processing time (and hence also the total run time) re
ects that part of the programming
task that is not straightforward but rather requires substantial design considerations by the
programmer. Promptly, the individual di�erences are huge compared to the di�erences between
languages, even though the latter are quite large as well.

The memory, run time, and processing time data is summarized in Figure 3. From the error
bars in that graph we can learn another important lesson: Large performance ratios like many
of those presented here are unstable even if they are estimated from a substantial number of
programs. Consequently, performance comparisons based on only a single program pair should
be considered highly dubious unless it is guaranteed that both programs are equally well designed
| appropriate for the language in which they are written.

Other di�erences

The above results are actually biased against the Java programs: On average, the Java pro-
grammers had only half as much programming experience in Java as the C programmers had in
C or the C++ programmers had in C++. On the other hand, no clear relationship between the
programming experience and the run time or memory e�ciency of the resulting program could
be found in the data. The work time required for writing the program is also quite similar for
the Java group versus the C/C++ group, except for three Java outliers who took over 30 hours.

The length of the resulting programs (excluding comments) is similar in all three groups but the
Java programmers inserted a signi�cantly larger amount of comments into their programs than
the C++ programmers and even much more than the C programmers.

4



DRAFT

0 50 100 150

m
em

ory, Java vs. C
,C

++

run tim
e, Java vs. C

,C
++

proc. tim
e, Java vs. C

,C
++

m
em

ory g/b ratio Java

m
em

ory g/b ratio C
,C

++

run tim
e g/b ratio Java

run tim
e g/b ratio C

,C
++

proc. tim
e g/b ratio Java

proc. tim
e g/b ratio C

,C
++

F
igu

re
3:

L
eft

b
ar

grou
p
:
R
atios

of
Java

grou
p

versu
s
u
n
ion

of
C

an
d

C
+
+
grou

p
for

m
ed

ian
m
em

-
ory

con
su
m
p
tion

,
m
ed

ian
total

ru
n

tim
e,

an
d
m
ed

ian
p
u
re

pro
cessin

g
tim

e.
R
igh

t
b
ar

grou
p
:
go

o
d
/b

ad
ratios

for
each

of
th
e
grou

p
s
sep

a-
rately.

T
h
e
error

b
ars

in
d
icate

50%
con

�
d
en

ce
in
tervals

(com
p
u
ted

by
b
o
otstrap

p
in
g).

C
o
n
c
lu
sio

n
s

I
see

th
ree

im
p
ortan

t
con

clu
sion

s
from

th
is
d
ata:

�
A
s
of

J
D
K

1.2,
J
ava

p
rogram

s
are

ty
p
ically

in
d
eed

m
u
ch

slow
er

th
an

p
rogram

s
w
ritten

in
C
or

C
+
+
.
T
h
ey

also
con

su
m
e
m
u
ch

m
ore

m
em

ory.

�
H
ow

ever,
even

for
on
e
an
d
th
e
sam

e
lan

gu
age

th
e
in
ter-p

erson
al
d
i�
eren

ces
b
etw

een
im

p
le-

m
en
tation

s
of

th
e
sam

e
p
rogram

w
ritten

b
y
d
i�
eren

t
p
rogram

m
ers

(go
o
d
/b
ad

ratio)
are

m
u
ch

larger
th
an

th
e
average

d
i�
eren

ce
b
etw

een
J
ava

an
d
C
/C

+
+
.
P
erform

an
ce

ratios
of

factor
30

or
m
ore

are
n
ot

u
n
com

m
on

b
etw

een
th
e
m
ed
ian

p
rogram

s
from

th
e
u
p
p
er

versu
s

low
er

h
alf.

A
s
a
resu

lt,
an

e�
cien

t
J
ava

p
rogram

m
ay

w
ell

b
e
as

e�
cien

t
as

(or
even

m
ore

e�
cien

t
th
an
)
th
e
average

C
or

C
+
+
p
rogram

for
th
e
sam

e
p
u
rp
ose.

�
A
s
a
con

seq
u
en
ce,

it
is
w
ise

to
train

p
rogram

m
ers

for
w
ritin

g
e�

cien
t
p
rogram

s
an
d
/or

to
en
su
re

reason
ab
le
e�

cien
cy

b
y
m
ean

s
of

d
esign

an
d
co
d
e
in
sp
ection

s.

S
im

ilar
con

clu
sion

s
p
rob

ab
ly

ap
p
ly

to
m
an
y
k
in
d
s
of

task
s,

th
ou
gh

certain
ly

n
ot

to
all.

In
p
articu

lar,
th
e
p
rogram

m
in
g
p
rob

lem
in
vestigated

h
ere

req
u
ired

a
n
on
-triv

ial
algorith

m
an
d

d
ata

stru
ctu

re
d
esign

.
H
ow

ever,
th
e
d
ata

clearly
sh
ow

s
th
at

th
e
im

p
ortan

ce
of

an
e�

cien
t

tech
n
ical

in
frastru

ctu
re
(su

ch
as

lan
gu
age/com

p
iler,

op
eratin

g
sy
stem

,
or

even
h
ard

w
are)

is
often

vastly
overestim

ated
com

p
ared

to
th
e
im

p
ortan

ce
of

a
go
o
d
p
rogram

d
esign

an
d
an

econ
om

ical
p
rogram

m
in
g
sty

le.

5



D
R

A
FT

References

[1] Lutz Prechelt and Barbara Unger. A controlled experiment on the e�ects of psp training:
Detailed description and evaluation. Technical Report 1/1999, Fakult�at f�ur Informatik,
Universit�at Karlsruhe, Germany, March 1999. ftp.ira.uka.de.

6


