Submission to ’Communications of the ACM’
Comparing Java vs. C/C++ efficiency differences
to inter-personal differences

Lutz Prechelt (prechelt@acm.org)
Fakultat fiir Informatik
Universitat Karlsruhe
D-76128 Karlsruhe, Germany
+49/721/608-4068, Fax: +49/721/608-7343

March 23, 1999

The relative efficiency of Java programs is much discussed today, in particular in comparison
to well established implementation languages such as C or C++. Java is often considered very
slow and memory-intensive. Most benchmarks, however compare only a single implementation
of a program in, say, C++to one implementation in Java — neglecting the possibility that al-
ternative implementations might compare differently. In contrast, the current article presents a
comparison of 40 different implementations of the same program, written by 40 different pro-
grammers. The data allows for comparing, for one particular programming task, the average
relative performance between languages as well as the performance differences from one pro-
grammer to another within a group of programs written in the same language. As we will see,
these inter-personal program differences are larger than those between the languages — and the
performance gap between Java and other languages is still shrinking rapidly.

Origin of the data

The 40 program implementations investigated in this report were created by graduate students
in the course of a controlled experiment on a different question [1]. There are 24 programs
written in Java, 11 in C++, and 5 in C. Each program was written by a single person. These
programmers had an average of 8 years of programming experience and estimated they had
previously written a average of 100 KLOC each (median: 20 KLOC).

All programs implement the same functionality, namely a conversion from telephone numbers
into word strings as follows. The program first loads a dictionary of 73113 words into memory
from a flat text file (one word per line, 938 Kilobytes overall). Then it reads “telephone numbers”
from another file, converts them one by one, and prints the results. The conversion is defined
by a fixed mapping of characters to digits.

The task of the program is to find a sequence of words such that the sequence of characters in

these words exactly corresponds to the sequence of digits in the phone number. All possible

solutions must be found and printed. The solutions are created word-by-word and if no word

from the dictionary can be inserted at some point during that process, a single digit from the

phone number can appear in the result at that position. Many phone numbers have no solution
1

at all. Here is an example of the program output for the phone number “3586-75”, encoded
using a German dictionary:

3586-75: Dali um
3586-75: Sao 6 um
3586-75: da Pik 5

A list of partial solutions needs to be maintained by the program while processing each number
and the dictionary must be embedded in a supporting data structure (such as a 10-ary digit
tree) for efficient access. Search functions of such kind might be part of a server in a larger
client /server software system.

The programmers were asked to write as reliable a program as they could. Efficiency was called
less important. However, a run time limit (not quantified to the programmers in advance) was
imposed during the acceptance test and many programs failed to satisfy it in the first attempt
and had to be optimized before they were accepted. Across all 40 programmers, writing the
program took between 3 and 63 work hours (median: 10 hours, mean: 14 hours) and the
resulting program had between 107 and 614 lines (median: 244 lines, mean: 277 lines, excluding
comments).

All measurements presented below were taken on a Sun Ultra 1 Unix workstation with 192 MB
main memory running the SunOS 5.5.1 operating system. The C/C++ programs were compiled
with the GNU gce/g++ compiler version 2.7.2, the Java programs ran under Sun’s JDK 1.2
reference implementation with just-in-time compiler (JIT).

How to analyze the data

For each metric of interest (such as the runtime of the program), we could represent the values
for each language group by their mean, but doing that we would throw away a lot of interesting
information. Therefore, we represent the entire distribution by so-called boxplots. Each graph
contains four boxplots: one for the values obtained from the Java programs, one for the C++
programs, one for the C programs, and one for the union of the C and C++ programs. The
box indicates the location and extent of the "middle half” of the values, i.e., the left edge is
positioned so that just 25% of the values are smaller (the 25% quantile), the right edge so that
just 25% of the values are larger (75% quantile). The T-shaped whiskers indicate the 10% and
90% quantiles, respectively. The fat dot inside the box is the 50% quantile, usually called the
median. The letter M in the plot represents the arithmetic mean of the data and the dashed
line is plus/minus one standard error of the mean. For comparing the averages of two sets of
data, the median is often more appropriate because it is not influenced by outliers.

The other interesting aspect of the data is its variability. Again, the most common measure,
the standard deviation, is sensitive to outliers. The width of the box is a robust measure of
variability. Note that the 25median of the lower half of the data and the 75box edge) is the
median of the upper half of the data. Hence, the 25be called average representatives of the good
(efficient) and bad (inefficient) programs, respectively. We call the quotient of these two values
the ”good/bad ratio”. I will actually present the bad/good ratio instead, because that is easier
to interpret.
2

Memory consumption differences

Let us first investigate the memory requirements of the different programs. Figure 1 shows the
amount of memory required by the programs after they have loaded the dictionary and then
processed 1000 telephone numbers. The memory size reported includes the size of static and
dynamic data structures, the program code and libraries used, and the basic process overhead.
For Java programs it also contains the size of the Java Virtual Machine, including the just-in-time
compiler.

e
Java 0 glﬁogsoo oooo—o|o . 0

C.C+ | k@ ™7, pb o

Figure 1: Total memory consump-
“oM--- . .
CHt | ol e tion for the various programs.

I I I
20000 40000 60000
memory (after 1000 inputs) [Kbytes]

We make the following observations:

1. The average memory requirement of the Java programs is two to three times that of the
C or C++ programs.

2. Even the most modest Java programs require a little more memory than the average C/C++
programs and 3 to 4 times as much as the best C/C++ programs.

3. The good/bad ratio is 3.7 for the C/C++ programs and 1.7 for the Java programs.

As wee see, the Java programs indeed require substantially more memory on average, but the
ratio to the C or C++ programs is not larger than the good/bad ratio.

Run time differences

The total CPU time required by the programs (run time) consists of two parts; one for loading
the dictionary (load time) and one for actually processing the 1000 inputs (processing time).
Figure 2 shows the total run time.

These are the main observations:

1. The median run time of the Java programs is over three times that of the C/C++ programs.
Due to four huge outliers in the Java group (361, 360, 151, 130 minutes, not shown in the
plot), the mean is very different from the median in the Java group so that it is 18 times
the mean of the C/C++ group.

The ratio of the median load time is 6 to 1 for Java versus C/C++, the ratio of median
processing time is 3 to 1.

__
:
:

8:
;
.
:

RE
:
:

H
:
:
:
:
o
:
:
:
:
.

Java

b®% 0

Ct+t) Figure 2:
c |
| | | | |
0 20 40 60 80

runtime (load dict., process 1000 inputs) [minutes]

2. The three fastest Java programs are about twice as fast as the median C/C++ program
and 10 times slower than the three fastest C/C++ programs.

3. The run time good/bad ratio is 32 for C/C++ and 37 for Java.

This high variability stems from rather huge differences in the actual search routines: The
load time good/bad ratio is only 3 for C/C++ and 5 for Java, but the processing time
good/bad ratio is as high as 153 for C/C++ and 71 for Javal

4. The C programs are substantially faster than the C++ programs. Due to the small number
of C programs the ratio can not be quantified accurately.

The processing time (and hence also the total run time) reflects that part of the programming
task that is not straightforward but rather requires substantial design considerations by the
programmer. Promptly, the individual differences are huge compared to the differences between
languages, even though the latter are quite large as well.

The memory, run time, and processing time data is summarized in Figure 3. From the error
bars in that graph we can learn another important lesson: Large performance ratios like many
of those presented here are unstable even if they are estimated from a substantial number of
programs. Consequently, performance comparisons based on only a single program pair should
be considered highly dubious unless it is guaranteed that both programs are equally well designed
— appropriate for the language in which they are written.

Other differences

The above results are actually biased against the Java programs: On average, the Java pro-
grammers had only half as much programming experience in Java as the C programmers had in
C or the C++ programmers had in C++. On the other hand, no clear relationship between the
programming experience and the run time or memory efficiency of the resulting program could
be found in the data. The work time required for writing the program is also quite similar for
the Java group versus the C/C++ group, except for three Java outliers who took over 30 hours.

The length of the resulting programs (excluding comments) is similar in all three groups but the
Java programmers inserted a significantly larger amount of comments into their programs than
the C++ programmers and even much more than the C programmers.

4

o

5 —

—

o

O —~

—
Figure 3: Left bar group: Ratios
of Java group versus union of C
and C++ group for median mem-
ory consumption, median total run
time, and median pure processing

3 L time. Right bar group: good/bad

T ratios for each of the groups sepa-
rately. The error bars indicate 50%
confidence intervals (computed by
bootstrapping).
I ;—, 1 - =
O — - - — - —_— — - —_ —
\o@v%\o \m.o\oo. &@0%»@0%\0 %@o Qb\oobwoo .
7 e Uy, 7 O e e Yy, Uy,
Ty U, S R ZZ
Uy Uy’ 45.0759,50 0 9% 9%
g Vi e Ui "y Wy O 19, Vg,
@.O@.OV@ o&woO o&@oO&oQ&oO
O Cy, Ooxx Ly *Cx Ty *Cx, Uy 0y,
Conclusions

I see three important conclusions from this data:

e As of JDK 1.2, Java programs are typically indeed much slower than programs written in
C or C++. They also consume much more memory.

e However, even for one and the same language the inter-personal differences between imple-
mentations of the same program written by different programmers (good/bad ratio) are
much larger than the average difference between Java and C/C++. Performance ratios of
factor 30 or more are not uncommon between the median programs from the upper versus
lower half. As a result, an efficient Java program may well be as efficient as (or even more
efficient than) the average C or C++ program for the same purpose.

e As a consequence, it is wise to train programmers for writing efficient programs and/or to
ensure reasonable efficiency by means of design and code inspections.

Similar conclusions probably apply to many kinds of tasks, though certainly not to all. In
particular, the programming problem investigated here required a non-trivial algorithm and
data structure design. However, the data clearly shows that the importance of an efficient
technical infrastructure (such as language/compiler, operating system, or even hardware) is often
vastly overestimated compared to the importance of a good program design and an economical
programming style.

References

[1] Lutz Prechelt and Barbara Unger. A controlled experiment on the effects of psp training:
Detailed description and evaluation. Technical Report 1/1999, Fakultat fiir Informatik,
Universitat Karlsruhe, Germany, March 1999. ftp.ira.uka.de.

