Submission of accepted article 111768 to ‘IEEE Software’

Accelerating Learning from Experience:
Avoiding Defects Faster

Lutz Prechelt (prechelt@computer.org)
Fakultat fiir Informatik
Universitat Karlsruhe
76128 Karlsruhe, Germany
current address: abaXX Technology AG, Forststr. 7,
70174 Stuttgart, Germany
+49/711/61416-1500, Fax: -1111

April 25, 2001

Abstract

Over time, any programmer will learn from repeated mistakes. Can we speed up this learning
and save many unnecessary repetitions of similar errors? This article presents a technique
called “defect logging and defect data analysis” (DLDA) for doing exactly this. The technique
is inspired by Humphrey’s Personal Software Process but has much lower learning cost. It
was validated in a controlled experiment which showed significantly faster improvement in
the experiment group compared to the control group, despite a small group size (which makes
it hard to obtain statistical significance). We urge practitioners to try the technique, which
produces noticeable improvements at low cost and with very low risk.

Keywords: error, defect, process improvement, quality management, controlled experiment

Introduction

All programmers learn from experience. A few of us are rather fast at it and learn to avoid
a particular kind of mistake after they have made it only once or twice. Others are very slow
and make a similar mistake hundreds of times. Most are somewhere in between: They reliably
learn from their mistakes, but it is a slow and tedious process. The probability of making a
structurally similar mistake again decreases only slowly during possibly some dozen repetitions.
That way, it often takes years before one has properly learned a certain rule — positive or
negative — for one’s own behavior.

The topic of this article is how to accelerate this process of learning from mistakes for an
individual programmer, no matter whether learning is currently fast, slow, or very slow.

One successful approach to improving individual learning is the Personal Software Process (PSP)

developed by Watts Humphrey [1]. A report on the success obtained in the PSP course was

published in this magazine [2]. The techniques applied by the PSP for improving learning

from mistakes are based on defect logs. Each and every defect found during design, design

inspection, coding, code inspection, testing, or operation is recorded along with a description,
1

defect type classification, origin and cause of the error leading to the defect (if known), and the
time required for locating and repairing the defect. When enough defect data has been collected
after a few months, the data is analyzed for recurring types of mistakes and the insights gained
are converted into entries on inspection checklists and changes to the development process itself.
Besides this defect prevention technique, the PSP provides effort estimation and time planning
techniques and a complete framework for process definition, process measurement and control,
and continuous process improvement.

However, the PSP approach has a drawback. The effort for learning the methodology is im-
mense. In the standard form (aimed at undergraduate or graduate software engineering courses),
15 complete working days (spread over 15 weeks) are required. Many project managers are in-
terested in the PSP at first — until they hear about the learning effort. Even a reduced PSP
variant such as the one presented by Humphrey in [3] and aimed at introductory programming
education is considered by most industrialists to be far too expensive to learn. Furthermore, the
volume of bookkeeping proposed by the PSP is so large that data quality may become dubious

[4]-

The problem is that you cannot learn the PSP just by listening to a few presentations and then
applying the techniques in your daily work. Under normal work pressure, very few programmers
are able to keep up the discipline for following all those cumbersome PSP techniques before they
have experienced the advantages to be gained from them. However, the advantages can only be
experienced if one follows the techniques at least for a while. That is why the course is required:
for providing a pressure-free playground on which to learn about the effectiveness of the PSP
techniques.

The present article reports how it is possible to learn and apply defect logging and defect data
analysis (DLDA) in isolation, without any PSP course at all. The effort is only about one half
day and the requirements for self-discipline are moderate. The technique applies not only to
coding, but rather to most phases and activities in the software process. A controlled experiment
indicates that even the first application of the technique by a programmer results in a significant
improvement. This result suggests that it is possible to obtain an important part of the PSP
benefits without the substantial investment into a complete PSP course.

The DLDA technique

To clarify the terminology, if a programmer commits a mistake, we call this an error, one possible
result of an error is a defect in the software document. Once turned into code, the execution
of a defect can result in a failure of the software. Thus, errors (by human beings) and failures
(by machines) are events, but defects are structural deficiencies. Much of the software process
is concerned either with avoiding or with detecting and removing such deficiencies. A explicit
focus on avoidance and early detection is a characteristic of a mature process. Improving such
activities is the aim of defect logging and defect data analysis (DLDA), but it can be applied
even in otherwise immature software processes.

As the name suggests, DLDA consists of two separate phases. Defect logging is performed
during all software construction activities where defects in the product might be found, that
is during requirements definition, requirements review, design, design review, implementation,
code review, testing, and maintenance. Defect data analysis is a process improvement activity
that is performed only rarely, when enough defect data has been collected after some weeks or
months.

1999-04-13 13:09:37 bts

1999-04-13 13:12:23 be

1999-04-13 13:22:24 ee cd we ty # multiplied instead of adding

1999-04-13 14:39:34 be

1999-04-13 14:46:35 ee cd ma om # forgot to reset stdDeviation after first calc

Figure 1: Two example defect log entries. The first defect was detected (be, “begin error”)
at 13:12 hours, three minutes after the start of the testing phase (bts, “begin test”), and was
located and removed (ee, “end error”) ten minutes later at 13:22. It had been introduced in the
coding phase (cd), is of structural type “wrong expression” (we) and the reason for making it
was a typo (ty). The second defect was of type “missing assignment” (ma) and was produced
due to omission (om, i.e., in principle the programmer knew that it had to be done). A typical
DLDA describes defects by between 2 to 10 phases, 10 to 50 defect types, and 7 defect reasons
(omission, ignorance, commission, typo, missing education, missing information, external).

Defect logging consists of creating a protocol entry whenever the presence of a new defect in
a software document is detected. The entry is started by recording a time stamp. When the
defect has been localized, understood(!), and repaired, the entry is completed by another time
stamp and additional descriptive information about the defect, for instance the exact location
of the defect, the type of the defect according to some fixed defect type taxonomy, the phase
when the defect was presumably created, the estimated reason why it was created (such as: lack
of information, defects elsewhere, trivial omission, trivial mistake, etc.), and possibly a short
or long verbal description; see Figure 1 for an example. After some practice and when using a
compact format, recording this information is much simpler and faster than it sounds, provided it
is done with a tool that records the time stamps and performs some simple consistency checking.

In the defect data analysis phase, the programmer clusters the defects found into groups of
related ones according to whatever criteria seem appropriate. The grouping is guided by the
defect categorizations used in the defect log. These groups are then analyzed to understand the
most frequent and the most costly types of mistakes and the programmer tries to understand
why s/he makes these mistakes (root cause analysis). Again, there is no prescribed method
for doing this. The analysis is entirely data-driven and relates to whatever understanding a
programmer has of his/her own software process. Tabulations of defect data by work phase,
defect type, repair cost etc. can be created automatically and are used to aid the analysis.

Unfortunately, defect logging requires quite a bit of discipline and most programmers are unable
to keep that up in the middle of their normal work. That is why coaching is the third important
ingredient of DLDA. When a programmer starts with DLDA s/he should first be instructed how
the technique works and must be motivated by at least one convincing example of an insight
gained by DLDA — ideally an insight of somebody s/he knows well. Then during the first few
days of defect logging, a coach must be around who stops by from time to time, asks for the
most recent defects, reminds the programmer of logging, and discusses any how-to questions
that might have come up. Coaching will only work with programmers who want to apply DLDA
— there is no point in trying to force the technique on anybody not willing to give it a chance.
Obviously, the coach should be somebody who does not only know how to do DLDA, but also is
really convinced of its benefits. Once enough defect data has been collected (about one hundred
defects are a good start), the coach should also counsel during defect data analysis. The coach
should explain how to summarize the data and may also help with the actual conclusions insofar
as the programmer does not find them her/himself.
3

The experiment

We validated DLDA in a controlled experiment. We prepared two programming tasks, both
of an algorithmic nature. Task 1 consisted of computing the “skyline” for a set of “buildings”
represented as rectangles described by 2-d coordinates. Task 2 is computing the convex hull for
a set of 2-d points, also described by their coordinates. In both cases, the algorithms to be used
were given in coarse pseudocode (4 statements for task 1, 7 statements for task 2). Both tasks
involve computations with 2-d coordinates. The resulting programs had 80 to 206 lines of code
for task 1 and 93 to 160 for task 2.

Each participant of the experiment worked alone and solved both tasks, starting with task 1.
There were two groups: the experiment group, which used DLDA, and the control group, which
did not. The members of both groups were asked to protocol the time required for each work
phase (design, coding, compilation, test) and to track and subtract the time for interruptions.
Only the experiment group was additionally asked to perform defect logging as described above.
The total time required by the participants who finished the tasks ranged from 3.6 to 10.7 hours
for task 1 and from 1.8 to 6.0 hours for task 2.

The experiment group received a one page instruction sheet for defect logging before they started
task 1. After reading it, their understanding of the method was checked by a one page scenario
for which they were to fill in the defect log entries. Mistakes made in that test, if any, were then
explained by the coach; the experimenter acted as the coach for all participants. The defect
data analysis was part of the task for the experiment group. A defect data recording template
was given to the participants as well as a two page template for the defect data analysis plus one
page of concrete instructions for its use. In the experiment, we used a scaled-down variant of
DLDA. Besides a short description, the repair time, inject phase, and remove phase of the defect,
only the error reason class was recorded, but no defect type class. Consequently, defect data
analysis was also simplified accordingly. On the other hand, since the tasks are small, we asked
the participants to log even simple defects such as syntactical defects and missing declarations.

During the experiment, the participants were unintrusively observed. If a participant failed to
fill in the time log or the defect log correctly, the coach reminded him; if necessary he clarified
again how to apply the method. The coach painstakingly watched out to help only with the
DLDA technique, but not at all with the programming task itself. A finished program was
accepted only when it passed a certain fixed set of tests.

The participants were 18 male graduate or senior undergraduate students of Computer Science,
Electrical Engineering, and Computer Engineering from the University of Massachusetts in
Dartmouth. Several of these dropped out during the experiment: 3 were too inexperienced
and were not capable of solving the first task, 5 were unwilling to invest the time for the second
task after they had finished the first. This leaves 10 participants, 5 in each group. Fortunately it
was possible to pair these 10 participants into 5 pairs of subjects with similar levels of experience,
thus ensuring a reasonable balance between the groups. The members of each pair were assigned
to the groups randomly. 7 of these 10 had one or several years of experience as professional
programmers.

For all participants, the source code of each program version compiled was saved along with
a time stamp. From this data we later determined the number of defects introduced into a
program and the time required for eliminating each of them.

4

Improvements from task 1 to task 2 in percent

é T oo
. ilﬁ f——éff

{ {

O, on. {0
Cf() Cﬁ g

Osy 0., 0., Oor, 0o 7 7
"y, ey o f/efe [/a’@/; 0)@@ 07@@

' 8’78/ 6)/78/’ O'@’) BTN
B, sy sy ey,
Yy Yy by)y Yy

Figure 2: Performance changes of the defect logging group (L) versus the non-logging group ()
for several metrics: defect density, test defect density, defect latency (average defect lifetime),
total work time, program length. In each boxplot, the whiskers indicate the value of the best
and worst participant, the box those of the second best and second worst, and the middle line
those of the median.

Results

Given only 5 participants in each group one might expect that obtaining meaningful results is
impossible. But as we will see, this is not the case.

From the data collected during the experiment, we computed the following basic metrics for
each task of each participant. The total time required for the task, the resulting program size in
lines of code (LOC), the number of compilations, the number of defects inserted in any program
version, and the number of defects removed during testing. From these, we then compute the
defect density, i.e., the number of defects inserted divided by the size of the program. The test
defect density accordingly considers the defects removed during test only. The defect latency
expresses the average lifetime of a defect from its insertion to its removal as visible in the
compiled program versions.

Due to our small group sizes it would be dangerous to assume the exact equivalence of the two
groups and to compare their performance on one task directly. Since the two tasks are obviously
different from one another, it is also not meaningful to compare the first task to the second
task within one group. Hence, the most sensible approach to evaluating our data is to compare
the performance changes from first to second task of one group to the performance changes of
the other group. Therefore we compute the improvements (in percent) for the above metrics
by comparing task 1 results to task 2 results for each group. The most interesting results are
shown in Figure 2.

In that plot, each box and the median line within it indicate the improvements of the middle
three subjects of one group for one metric. The whiskers indicate the other two subjects. We
see that with at most one exception per group there was always an improvement from the first
task to the second. Only subject 1 (from the logging group) and subject 8 (from the control
group) performed worse in their second task.

The improvement differences between the experiment group and the control group are not huge,
5

but appear quite substantial. Are they real or accidental? For answering this question we
can use a statistical hypothesis test (see text box). A one-sided Wilcoxon Rank Sum Test
informs us that the reductions in median defect density and test defect density each have a
probability of only 11% of being accidental — reasonable evidence that DLDA improves defect
prevention. This is corroborated by the corresponding comparison of the mean reductions, using
a bootstrap-based test, which indicates a 9% and 10% probability for defect density and test
defect density, respectively, that the observed differences are random, non-systematic events.
For the defect latency, the same tests indicate a 35% and 54% chance, respectively, that there
is no real improvement, which suggests that DLDA did not cause faster defect remowval, at least
in this experiment.

The chance that the median work time reduction is accidental is only 5% (for the mean: 3%).
With a probability of 0.8, the improvement percentage is larger by at least 16 in the experiment
group, although we should be aware that part of this improvement is because the defect logging
is getting faster itself — in the first task, the DLDA participants were undoubtedly slowed down
a bit by their unfamiliarity with the technique. However, on average they logged only 25 defects
in 6 hours, which is a minor effort in any case.

The difference in program length is quite interesting. During the defect data analysis, several
participants recognized that they should have spent more effort on properly designing their
program. The more careful design in task 2 then resulted in more compact programs as well.
The median difference to the control group is accidental with a probability of only 5% (for the
mean: 2%).

We see that despite the small group sizes we can be reasonably sure of the evidence found in
the experiment. DLDA results in better defect prevention and thus increases productivity.

One might fear that these results do not transfer to professional programmers at all. It would
be plausible that our inexperienced subjects had so much more room for improvement than an
experienced software engineer that DLDA might be worthless in practice despite the experiment
results. However, we found some evidence to the contrary in our data. For the test defect
density, our data shows a clear trend that the more experienced among our subjects actually
obtained a larger improvement than the others. This is true no matter whether experience is
measured in years of professional programming experience as well as measured by the length of
the largest program ever written by the subject.

Statistical hypothesis tests

A statistical hypothesis test is a mathematical procedure for comparing two data samples
(sets of related values). For instance, the Wilcoxon Rank Sum tests compares the medians
of two samples, the t-Test compares the means, a Bootstrap-based means-differences test
compares the means but does not require assuming a normal distribution, etc. Based on the
variation within the observed data, such a procedure will compute the probability (called
the p-value) that the apparent differences between the two samples are not real but rather
merely due to chance. For example in our case, if that probability is small, we will be willing
to believe that the observed additional improvements in the DLDA group are not accidental
and will consider the experiment good evidence of the usefulness of DLDA. Comparing the
medians indicates whether for a single individual we should expect an improvement or not.
In contrast, comparing the means indicates whether we should expect an improvement when
averaging across a team (a group of individuals).

Conclusion

Defect logging and defect data analysis (DLDA) appears to be a viable technique for accelerating
learing from experience: programmers learn to prevent mistakes faster than usual. For most
programmers, learning DLDA will require a coach experienced in the technique, but apart from
that the learning cost is low. In a controlled experiment we found that a group using DLDA
for only one small programming task (a half day) solved a second task faster and with smaller
defect density than a control group — despite the fact that the experiment used only a simplified
version of DLDA due to time constraints.

Nevertheless, for someone who is sceptical about the usefulness of DLDA, our experiment will
not be completely convincing, because its participants were not experienced as professional
software engineers. However, we believe in the validity of the DLDA approach and hence we
urge practitioners to try it for themselves with a few colleagues. It is a low-cost, low-risk
technique with considerable potential benefits; a champion who quickly takes on the role of the
coach can usually be found.

Further Research

The research presented above leaves a number of questions open. Selecting participants: Our
experience with teaching the PSP indicate that more than half of all programmers appear to be
unable to keep up the self-control required for a process such as defect logging. This appears to
be a personality issue. How can we quickly and safely determine whether training somebody in
DLDA will lead to actual usage later? Just asking the candidate solves (only) about half of the
problem.

Tools: What tools provide best support for defect logging? The web page
http://wwwipd.ira.uka.de/PSP/ provides some tools for defect logging, a tool for defect data
summarization, and a defect classification standard.

Detailed methodology: What defect classification categories are most useful? In which contexts?
What criteria are best for defect analysis? How far can defect analysis be standardized and
simplified before losing value? Our only insights so far are that for most (but not all) people
it appears that more value comes directly from the logging, rather than from the analysis.
However, a useful defect classification scheme may play an important role even then.

Coaching: What minimum intervention by the coach is sufficient in general? How can the coach
best adapt the interventions to the needs of the specific trainee? Should DLDA best be combined
with pair programming?

Acknowledgements

The experiment was carried out by Georg Griitter. We thank Michael Philippsen for commenting
on a draft of this article and our experimental subjects for their participation.

References

[1] Watts S. Humphrey. A Discipline for Software Engineering. SEI series in Software Engi-
neering. Addison-Wesley, Reading, MA, 1995.
7

[2] Watts S. Humphrey. Using a defined and measured personal software process. IEEE Software,
13(3):77-88, May 1996.

[3] Watts S. Humphrey. Introduction to the Personal Software Process. SEI series in Software
Engineering. Addison-Wesley, Reading, MA, 1997.

[4] Philip M. Johnson and Anne M. Disney. The personal software process: A cautionary case
study. IEEE Software, 15(6):85-88, November 1998.

