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Abstract

Domain-speci�c constraints can be exploited to implement compiler optimizations
that are not otherwise feasible: Compilers for neural network learning algorithms
can achieve near-optimal co-locality of data and processes and near-optimal bal-
ancing of load over processors, even for dynamically irregular problems. This is
impossible for general programs, but restricting programs to the neural algorithm
domain allows for the exploitation of domain-speci�c properties: The operations
performed by neural algorithms are broadcasts, reductions, and object-local oper-
ations only; the load distribution is regular with respect to the (perhaps irregular)
network topology; changes of network topology occur only from time to time.

A language, compilation techniques, and a compiler implementation on the Mas-
Par MP-1 are described; quantitative results for the e�ects of various optimizations
used in the compiler are shown. Conservative experiments with weight pruning
algorithms yield performance improvements of 27% due to load balancing; 195%
improvement is achieved due to data locality, both compared to unoptimized ver-
sions. Two other optimizations, connection allocation and selecting the number of
replicates, speed programs up by about 50% or 100%, respectively.

This work can be viewed as a case study in exploiting domain-speci�c informa-
tion; some of the principles presented here may apply to other domains as well.

Keywords: compiler optimizations, high-level parallel language, irregular problems, dynamic

data structures, communication optimization.
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1 Introduction

The �eld of neural networks could in principle bene�t a lot from parallel computation.
Most of the applied work in this area and much of the basic research relies heavily on
simulation. Problem representations, network types and topologies, training algorithms,
theoretical predictions, neural network modularization, combination, and application ap-
proaches are usually explored empirically: Prototypes are built in the form of simulation
programs and are then evaluated in dozens or hundreds of program runs. Since training
a neural network is a computationally intensive task and neural networks contain much
inherent parallelism, parallel implementations are an obvious path. In practice, how-
ever, there is lack of such implementations; only simple neural network models have been
implemented on parallel machines (see Section 2).

1.1 Goals of this work

To understand this situation, we have to recognize that there are two types of users of
parallel machines: Users of type A will do almost anything to get maximum performance,
because their computation requirements are so extraordinarily high. Such users will be
satis�ed with explicit message-passing programming, which is very cumbersome but also
very e�cient. The other, much larger class of users, type B, is willing to trade some
e�ciency for ease of implementation. For regular problems, such users will often �nd
implementations in more abstract languages such as HPF \fast enough". However, when
it comes to irregular problems, no su�cient programming support for type B users is
currently available; the available compilers produce extremely ine�cient implementations
in this case. The present work aims to provide such support.

In this work, I present a compiler that translates high-level programs for constructive
neural network training algorithms. These programs change the interconnection topology
of the neural network during program execution, leading to dynamic and irregular data
and problem structures. The compiler generates implementations that have near-optimal
data locality and load balancing with a minimum of dynamic data redistribution. This
enables type B users to use parallel machines even for irregular problems. The target
architectures are parallel distributed memory machines with hundreds or thousands of
processors that are well-balanced with respect to communication versus computation per-
formance, so that a �ne-grained implementation can be e�cient. See Section 5.5 for a
discussion of other possible platforms.

1.2 The domain-speci�c language approach

The basic idea of my work is the following:

For neural network algorithms, a compiler can �nd inexpensive data and load

distribution schemes that work well even for problems with dynamically chang-

ing structure. However, this is true only if the compiler has enough information

about the semantics of the program. Semantically rich program descriptions

supply such information in the form of constraints on the program behavior

to be expected.
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Dynamically changing neural networks occur in the context of constructive (additive)
learning algorithms and selective (pruning) learning algorithms. Such learning methods
are useful for partially automating the tedious search for an appropriate network topology
(primarily additive methods, but also pruning as a replacement for or complement to
regularization), for �ne-tuning successful topologies (pruning methods), and for reducing
the resource consumption of successful topologies (pruning methods). These methods may
become still more useful as the size of neural networks that can reasonably be trained
increases, because training e�ort is superlinear in network size.

There are two approaches to such semantically rich descriptions of dynamic neural al-
gorithms: An existing object oriented language could be extended by providing a set
of prede�ned classes with �xed semantics and constraints on their use. Or a domain-
speci�c special purpose language could be built. I have used the latter approach; the
neural network programming language designed for this work is called CuPit, after War-
ren McCulloch and Walter Pitts who �rst described a formal neuron in 1943 [18]. For
a description of CuPit see [23]. Using a special-purpose language approach avoids the
enormous complexities that would arise in the implementation of compiler optimizations
when extending a general object oriented language. Such complexities would arise due
to interactions of the extension features with standard features such as general object
references and inheritance.

Compilers for CuPit can exploit typical properties of neural algorithms: Most compu-
tations are local to objects in the network, non-local operations occur in patterns that
are regular with respect to a given network topology, load is almost proportional to the
amount of connections in the network, and the network topology changes only from time
to time. These properties will be further elaborated in Section 3; their exploitation is
explained in Section 4 (approach). The performance improvements obtained with the
techniques are qualitatively presented in Sections 4 (approach) and 5 (implementation)
and will be quantitatively investigated in Section 6 (results).

1.3 Generalizability

Is this work of general importance? It can be considered a case study for the use of
domain-speci�c information in languages and compilers. This approach may provide user-
friendly ways to e�cient parallel implementations also in many other restricted application
domains besides neural algorithms. Wherever non-computer-scientists are to produce
custom parallel software for their personal computing problems, e�cient domain-speci�c
languages could provide much leverage for widespread success of parallel computing. More
concretely, some of the techniques or, more importantly, ideas presented here may be
usable in or transferable to other domains as well.

2 Related work

In general for parallel implementations the problems of data locality and load balancing
need to be solved. Graph partitioning is one approach to solving both at once. As-
pects of these three topics will shortly be discussed. More speci�cally, work on parallel
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implementations of neural networks is obviously relevant so we will also review some of
that.

2.1 Data locality

Data locality can be optimized statically for languages with array-based data parallelism,
e.g. [3, 21]. Index analysis is used to compute a good data distribution for programs
that use mostly a�ne index expressions. However, irregular computations can most often
not be expressed by such programs. Fortunately, in the neural algorithm domain explicit
analysis of data dependencies can be avoided, because data interactions are restricted by
the current connection topology of the neural network. This property can be exploited
to achieve high data locality even without using sophisticated program analysis as I will
show in Section 4.

2.2 Load balancing

For load balancing (in the context of data parallel programming sometimes called loop

scheduling), there are two radically di�erent approaches. Dynamic load balancing is the
general approach: Work is distributed as necessary during the execution of a parallel
section. A variety of methods have been proposed, see [5] for an overview. For highly
irregular problems with unpredictable run time of the parts, only dynamic methods can
guarantee satisfactory balance. The disadvantage of dynamic load balancing methods is
that they are inherently unable to guarantee data locality, because it is impossible to
predict on which processor a certain operation will be executed. Static load balancing,
on the other hand, �xes the distribution of work for a parallel section before that section
begins. The simplest version of this approach is implicitly taken with the data locality
optimizations mentioned above: It is the assumption that the work will be balanced when
data is distributed evenly, i.e., that the work to be done is the same for each data element;
a similar assumption is used here for neural algorithms. In this case, static load balancing
is a compile-time method, whereas dynamic load balancing is always a run-time method.

2.3 Graph partitioning

A class of methods trying to solve the data locality and load balancing problem at once
is based on graph partitioning; [10] gives a good overview and references. These methods
assume that the program's communication and computation graph is known in advance.
Graph partitioning tries to cut this graph into a given number of parts minimizing the
weighted sum of cut edges (maximizing data locality) and having roughly the same sum
of vertex weights in each part (balancing the load). The parts are then distributed over
the processors of the machine. The problem with these methods is that since the exact
solution requires exponential time, they are all heuristic and are either quite expensive
or produce poor results. The long running time of the better methods usually forbids
to use them frequently at run time. Graph partitioning is also not readily applicable to
neural algorithms, because graph partitioning methods assume that the program performs
operations on all considered objects (here: all nodes and connections of the network) at
the same time.
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2.4 Implementations of neural networks

Lots of work has been performed on supporting the implementation of arti�cial neural net-
works. Quite a bit was also performed for parallel machines. However, I am not aware of
research towards optimizing implementations of neural networks with dynamically chang-
ing topologies using �ne-grained parallelism. Current work is mostly concerned with either
highly optimized implementations of individual neural algorithms, usually assuming reg-
ular neural network topologies and speci�c machines (e.g. [7, 31, 16] and references in the
latter), mapping of more general but static neural networks to speci�c low-latency [15] or
higher-latency parallel machines (e.g. [6, 30] and references therein), implementations for
special-purpose hardware (e.g. [9, 20, 27]), or more coarse-grained approaches on work-
station clusters (e.g. [6, 12]). Furthermore, there is a substantial number of suggestions
for neural network description languages. Most of them, however, describe only the static
topology of a network and cannot express any actual algorithm. Of the rest, very few
have been implemented on any parallel platform. The probably most advanced proposal
is CONNECT [13, 14], but even this does not support dynamic changes to the network
topology. See [19] for a good survey of parallel neural network platforms.

Summing up, there are currently no approaches that allow for high-level, yet e�cient
parallel implementation of dynamic irregular neural networks.

3 What is a neural network?

Let us de�ne neural networks and neural algorithms as suited to our needs. Many of
the de�nitions given below refer to certain lines in Figure 1 where fragments of a CuPit
program are shown to exemplify the descriptions. Roughly the same program will also be
assumed in the description of the data distribution and code generation techniques later
on. Familiarity with basic neural network terms is assumed.

3.1 Neural network

A neural network is a collection of nodes (often called units or neurons) and directed
connections (often called weights). These nodes and connections form a directed graph.
The structure of this graph is called the topology of the network. We de�ne neural networks
in terms of data types. There are connection types, node types, node group types, and
network types.

A connection may carry an arbitrary data structure of �xed size, determining its connec-
tion type (lines 1-14 of Figure 1). The data structure consists of �elds called data elements

(lines 2-5), just like a record type. A connection links two not necessarily di�erent nodes;
at one node it is an outgoing connection, at the other it is an incoming connection. At
a node, a connection is attached to an interface (lines 19-20) that can accept only either
incoming or outgoing connections of a single connection type.

A node may have arbitrary data elements (lines 21-22). In addition, there are a number of
interfaces to the node (lines 19-20), as mentioned above, each de�ned by an interface mode
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1 TYPE Weight IS CONNECTION 34 TYPE Mlp IS NETWORK
2 Real i := 0.0, 35 Layer f, h, t;
3 o := 0.0, 36 PROCEDURE createNet(Int CONST inputs,
4 weight := 0.0, 37 hidden,outputs) IS
5 delta := 0.0; 38 EXTEND ME.f BY inputs;
6 PROCEDURE prune(Real CONST pruneThreshold) IS 39 EXTEND ME.h BY hidden;
7 IF ME.i <= pruneThreshold 40 EXTEND ME.t BY outputs;
8 THEN REPLICATE ME INTO 0; END; 41 CONNECT ME.f[0].out TO ME.t[].in;
9 END PROCEDURE; 42 CONNECT ME.f[].out TO ME.h[].in;

10 PROCEDURE transport(Real CONST val) IS 43 CONNECT ME.h[].out TO ME.t[].in;
11 ME.i := val; 44 (* ...initialize weights etc. *)
12 ME.o := val*ME.weight; 45 END;
13 END PROCEDURE;
14 END TYPE; 46 PROCEDURE example() IS

47 ME.f[].forward (false, true)
15 Real REDUCTION rsum IS 48 ME.h[].forward (true, true);
16 RETURN (ME + YOU); 49 ME.t[].forward (true, false);
17 END REDUCTION; 50 ME.t[].backward(false, true);

51 ME.h[].backward(true, true);
18 TYPE SigmoidNode IS NODE 52 END PROCEDURE;
19 IN Weight in; 53 END TYPE;
20 OUT Weight out;
21 Real inData; 54 Real IO x1, x2;
22 Real outData; 55 Mlp VAR net; (* the NETWORK*)
23 PROCEDURE forward(Bool CONST doIn,doOut) IS
24 IF doIn THEN 56 PROCEDURE program() IS
25 REDUCTION ME.in[].o:rsum INTO ME.inData; 57 net[].createNet(inputs,hidden,outputs);
26 END; 58 REPLICATE net INTO 1...300;
27 IF doOut THEN 59 REPEAT
28 ME.outData := activation(ME.inData); 60 getExamples(x1,x2,REPLICATES(net));
29 ME.out[].transport(ME.outData); 61 net.f[].inData <-- x1;
30 END; 62 net.t[].outData <-- x2;
31 END PROCEDURE; 63 net[].example();
32 END TYPE; 64 (*...merging,weight update,etc.*)

65 UNTIL stopTraining() END REPEAT;
33 TYPE Layer IS GROUP OF SigmoidNode END; 66 END PROCEDURE;

Figure 1: Fragments of an example CuPit program. The procedures activation, backward,
getExample, and stopTraining are not shown.

(either \incoming" or \outgoing") and a connection type. Data elements and interfaces
together determine a node type (lines 18-32).

Nodes are aggregated into node groups. Objects of a particular node group type (line 33)
can consist of zero or more nodes of that node type.

A network may have arbitrary data elements (not shown in the example). In addition, a
network type declares a �xed number of node groups (line 35) to be part of the network
type (line 34-45).

Note that this de�nition rules out symmetric network types (like Hop�eld networks) that
require the connections to be undirected. In other respects, though, the model is quite
exible, as one program can contain an arbitrary number of types.

3.2 Neural algorithm

A neural algorithm is a program that manipulates such a neural network with operations
of only the following kinds: A sequential program called the central agent (lines 56-66 of
Figure 1) that controls the learning algorithm can

{ read and write data from and to the nodes of the network (lines 61-62) using I/O
bu�ers (lines 54, 60) and

{ call network procedures (lines 57, 63).

Network procedures can

{ manipulate the data elements of the network object (not shown),
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{ call node procedures to be executed for all or some of the nodes of a particular node
group that is part of the network (lines 47-51),

{ create or delete nodes in a node group (lines 38-40),

{ create or delete connections between a particular pair of interfaces of some or all of
the nodes of two node groups (lines 41-43), and

{ compute a reduction over a particular data element of some or all nodes of a node
group using an arbitrary reduction operator (not shown).

Node procedures can

{ manipulate the data elements of the node object (line 28),

{ call connection procedures to be executed for all of the connections attached to a
particular interface of the node (line 29),

{ delete the node they are applied to or create multiple copies of the node (including
cloning of all the connections, not shown), and

{ compute a reduction over a particular data element of all connections attached to a
particular interface using an arbitrary reduction operator (line 25).

Connection procedures can

{ manipulate the data elements of the connection object (lines 11-12), and

{ delete the connection object they are applied to (line 8, the prune procedure could
be called, indirectly, from line 64).

Note that calls to node procedures and connection procedures imply parallelism (\group
calls"). Network procedures, node procedures, and connection procedures operate only
on the local data elements of the particular network, node, or connection object they are
applied to and on the parameters that are supplied with the call. Such parameters are
read-only.

In addition, we de�ne network replication to mean the following:

{ Creating network replicates (line 58) means to make identical copies of a network;

{ merging network replicates (not shown) means to unify the data in all networks in
a set of replicates by means of user-de�ned, elementwise reduction operations and
redistribution of the results;

{ deleting network replicates (not shown) means to create a single network from a set
of replicates by merging without redistribution;

{ executing a network operation on replicates (line 63) means to execute the operation
for each replicate using the same procedure but di�erent training examples.

Replicates can identify themselves by a replicate number. While several replicates of a
network exist, the topology of these networks may not change, because this could lead to
diverging topologies, which can not uniquely be merged again. With network replication,
calls to network procedures imply parallelism, too (line 63).

Network replication essentially implies parallelism on the level of training examples in
a neural algorithm. This kind of parallelism is applicable to many but not all neural
algorithms.

The above formulation of neural algorithms gives three nested levels of parallelism: The
sequential program invokes a network procedure on several network replicates in parallel,
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a network procedure invokes a node procedure on several nodes in parallel, and a node
procedure invokes a connection procedure on several connections in parallel.

The explicit modeling of the network, node, and connection types and their operations
in CuPit enables a compiler to access most information required for optimizations quite
easily. In particular, the compiler straightforwardly knows which kinds of operations will
be applied to which objects and thus can use appropriate data and process distributions,
as described in the following section.

4 Approach

The kernel of a typical neural algorithm consists of repeatedly putting a training example
into the network and then propagating it through the nodes and connections of the net-
work one or several times. Most time is spent in the broadcast from nodes to connections,
reduction from connections to nodes, and local operations in nodes and connections. Note
that what is called reductions above will actually be a number of reductions at once, one
for each node.

In this context, the following considerations lead to the maximization of data locality:
(1) Local operations can be forced to have full data locality by attaching the computation
to its data object. (2) Reductions cannot have full data locality in any useful parallel
implementation; they can, however, exploit both block-wise locality and neighborhood
relations in the communication network of the parallel machine. (3) Many broadcasts can
be avoided using data replication and additional computation.

The following consideration leads to load balancing on the relevant (i.e., connection) level:
For each call of a connection operation, each processor should hold approximately the
same number of connections on which the operation works. This simple rule is su�cient,
because for each parallel connection operation the work to be performed is nearly the
same for each connection, since connection operations usually contain no loops. Note
that the data locality and load balancing goals conict.

t1 t2 t3

h1 h2 h3

f1 f2 f3 f4 Processor

Figure 2: Example irregular neural network and basic idea of the implementation approach.

The above considerations lead to the implementation approach schematically shown in
Figure 2. The basic idea is to reserve a particular block of processors (or a fractional
processor in more coarse-grained cases) for a node plus all its connections and choose the
size of that block proportional to the amount of work to be performed on the connections.
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The �gure will become fully understandable only later on. Please refer back to it whenever
necessary for keeping the global picture. To realize the approach of Figure 2, the problems
shown in Figure 3 have to be solved. Both the approach and the individual problem
solutions will be described in detail below.

further
optimization

getting the
information implementation

basic approach

identifying
objects (3.1, 3.2)

determining
load (4.A7)

choosing
granularity (5.1)

choosing
block size (4.A7)

distributing
blocks (4.A7)

choosing
allocation (5.3)

bundling commu−
nication (5.3)

Figure 3: Subproblems to be solved to implement the approach. The numbers in parentheses
indicate in which section the problem is discussed.

The approach is suitable for implementation on any distributed memory parallel machine,
SIMD or MIMD. For simplicity of description, in the rest of the text we will assume a
2-D grid as the interconnection network and a rather large number of processors. Other
topologies can be handled analogously, small numbers of processors require to allocate
fractional processors. See also Section 5.5.

The approach taken in this work to combine all of the above considerations is the following:

A1, training example parallelism: Partition the machine into 2-rectangular segments

of several processors each and use one such segment for each network replicate, if any; a
segment is 2-rectangular i� it is rectangular with the height being a power of two and the
width being either the same as the height or twice the height, all measured in number
of processors. This form minimizes the diameter while making address computations
simple and fast. See also A6. All segments have same size and contain exactly the same
data structure, only with di�erent values. Using replicates trades additional work for
replicate creation (once) and replicate merging (repeatedly) for increased parallelism and
a reduction of the average communication distance.

A2, node parallelism: For each node group, partition the segment into 2-rectangular
node blocks of one or several processors. Allocate one node block for each node. See Fig-
ures 2 and 4 for an example of segment and node block partitioning. How the partitioning
is actually computed will be described in A7 below.

A3, connection parallelism: For each interface of each node, distribute evenly the con-
nections of the interface over the node's block. See Figure 5 for an example of connection
distribution over node blocks.

A4, data locality: Use the owner-computes rule, so that local operations on networks,
nodes, and local connections always have full data locality. To get data locality for the
parameter broadcast of calls that introduce additional parallelism, replicate scalars on
all processors of the machine, replicate the data elements of networks on all processors
of the network's segment, and replicate the data elements of nodes on all processors of
the node's block. This data replication costs one machine-wide broadcast per network
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h3 h3

h3

Processor

Node block

h3

h1

h2 h2

h2

h1

h2

h1

h1

Figure 4: Example segment and node block layout of node group h of the example network
from Figure 2 on a 4x8 processor grid using 4 replicates. Segment boundaries are indicated by
solid lines.

h3

Processor

Node block

Node object

Connection object

h3 h3

h3 h3
Remote connection

h1 h1

h1

h2

h2h2

Figure 5: Distribution of node, connection, and remote connection objects of node group h of
the example network from Figure 2 within one segment from Figure 4.

procedure call, a broadcast of the result after each reduction, and some memory. The
corresponding broadcast savings are at least equivalent to the above broadcast costs. More
savings result if the user program computes additional parameters locally in a node. See
A8 for a discussion of locality of multiple nodes.

A5, minimize communication frequency: Do not replicate connection data at both
ends of a connection. Writes are almost as frequent on connections as are reads, hence
the savings on reads that arise due to replication would be eaten up by re-replication cost
after writes. Instead, one end of a connection (called the remote end) contains only a
pointer to the other end (called the data end); the data end contains a pointer to the
remote end plus the actual connection data object. For best e�ciency, the correct decision
has to be made at which end to put the actual data. Communication for operations on
remote connections can easily be aggregated. See Section 5.3 for details.

A6, minimize communication distance: To make reductions of connection data into
nodes cheap, choose node blocks to be small-diameter sets of processors. Small diameter
also speeds up data replication in a node block, which is necessary after a reduction. For
instance in Figure 4, the block h3 is sized 2� 2 instead of 4� 1. 2-rectangular blocks are
good in this respect: they have minimum diameter for up to 256 processors (and are for
instance only 5.5% larger than the minimum for 8192 processors). For other topologies
than grids, analogous de�nitions of 2-rectangular can be found.

A7, load balancing: Make the size of each node's block proportional to the work per-
formed on the connections attached to the node. Work can easily be directly measured
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at run time. When di�erent interfaces of a node have a di�erent number of connections,
node block size can only on the average be proportional to the amount of work. The algo-
rithm given below can be used to compute the node block sizes b1 : : : bk of k nodes having
connection work equivalents of w1 : : : wk, respectively, for a segment of S processors. In
addition to the algorithm given, node blocks must be forced to have at least size 1. The
problem solved by the algorithm is to start with the optimal node block size proportions
given by the work proportions and to compute 2-rectangular node block sizes that mini-
mize slack yet maintain maximal faith to these optimal node block size proportions. Let
p(n) mean 2n.

Node block size computation algorithm:

W :=
Pk

i=1wi; (*total work*)
Forall i 2 [1 : : : k] :

si := S � wi=W ; (*theoretical fractional node block sizes*)
ui := p(dlog

2
sie); (*2-rectangular sizes obtained by rounding up*)

di := p(blog
2
sic); (*2-rectangular sizes obtained by rounding down*)

ri := ui=si; (*rounding ratios*)
by binary search approximate the maximum � 2 [1 : : : 2] so that
P

i;ri<� ui +
P

j;rj�� dj � S
(*now we have the best block sizes using a �xed splitting point �*)
(*we minimize slack by rounding some more blocks up instead of down:*)
now let J be the sequence of indices j from above and
�J a leading subsequence of J . Find the maximal �J that maintains
P

i;ri<� ui +
P

c2 �J uc +
P

j2Jn �J dj � S
and, using the above index sets of i; c and j, set

bi := ui; bc := uc; bj := dj for all i; c; j from above

From this set of node block sizes the actual node block layout is computed by a bin packing
algorithm. The constrained version of the bin packing problem assuming 2-rectangular
bins and pieces can be optimally solved in time proportional to the size of the bins and
is parallelizable to logarithmic time. An example result of these two algorithms is shown
in Figure 2.

A8, node co-locality: Attempt no optimization of remote connection locality since it
does not pay o�. We could arrange the node blocks within a segment and the connections
within a node block in a way that maximizes remote connection locality, i.e., that results in
having both ends of a connection on the same processor as often as possible. There are two
reasons for not doing this: First, little such locality can be obtained in neural networks,
since their topology typically exhibits almost no clustering of connections. (An exception
are modular neural networks, for which a \locality preference" for the connections holds,
e.g. [30]). With only small gains in locality, the long run time of the optimization
computation takes too long to amortize; see the end of Section 6.1 for a quanti�cation of
this argument. Second, arrangement of nodes for optimal extra-object locality interferes
with arrangement of node blocks for minimum waste of processors within a segment.
Hence, we either have to trade extra-object locality for processor utilization or have to
give up using 2-rectangular node blocks. The latter would make the layout algorithm
expensive. See the end of Section 6.2 for a quantitative justi�cation of this crucial decision.
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5 Implementation

The implementation discussed here is for a MasPar MP-1 (Model 1216A). The MP-1
is a 16384 processor SIMD machine that is a good basis for this work because of two
properties: First, due to the large number of processors scaling behavior is explored
properly. Second, the machine's communication performance is well balanced with its
computation performance. For the mix of communication operations found in neural
algorithms each oating point communication takes about as long as 5 to 20 oating point
multiplications (including loads and stores). Most machines today are very much slower,
but future machines may be better by using latency hiding techniques and appropriate
faster network hardware and software.

The CuPit compiler was implemented using the Eli compiler construction system [8] and
generates MPL [17] code, MasPar's data parallel variant of C. The compiler is used much
like a normal C compiler. With the exception of choosing the number of replicates (which
is not currently automated), all optimizations are applied fully automatically; no user
intervention in the form of annotations or selection of compiler options is required. The
source code of the compiler is available as a literate programming document [25]. Some
details of the implementation will be described in the following subsections.

5.1 Networks

Network replicates are created only on request from a user program. After topology
changes, the network data structure is completely reorganized when replicates are created
again or upon program request. Calls to network procedures are executed on all processors
of the segment.

CuPit lets the programmer specify the number of network replicates as an interval; the
program may choose any number of replicates from this interval at run time. The best
value with respect to execution time depends on the current size of the network, the
number of training examples in the dataset, the size of the machine, and the training
algorithm used. Therefore, the only practical way to �nd good choices for this parameter
automatically is to generate code that makes the program search iteratively, at run time,
for optimal values, using changes in run time per training iteration to trigger the search.

5.2 Nodes

Calls to node procedures are executed on all processors of the node blocks of the partic-
ipating nodes. No broadcast of parameters is necessary, since these are locally available
due to network data element replication. An exception are input or output of train-
ing examples into or from nodes, performed by special CuPit operators that are called
from the sequential part (central agent) of the program and that act on all nodes of a
node group in all network replicates at once. The input operator implies broadcast over
the node block. Another special case are reduction operations over the connections of a
node. Such reductions return their result in the �rst processor of each node block; it is
then immediately broadcast to all processors of the node block in order to maintain data
replication.
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5.3 Connections

Within each node block, the connections attached to the node are distributed evenly on
a per-interface basis. For each connection type, a decision is made as to whether the data
end of the connections is located at the input interface or the output interface. When
using the recommended CuPit coding style it is obvious for any given program which
is the right decision. Therefore, the decision is �xed in the compiler but can be changed
via a compiler switch if necessary. Calls to connection procedures are executed on all
processors of the node blocks of the nodes issuing the call, so no broadcast of parameters
is necessary.

The CuPit compiler computes the sets of elements to be fetched and sent at the beginning
and end of remote calls for each connection procedure by a very simple conservative static
analysis. The criterion used is textual presence of an element in any read (right hand
side) or write (left hand side) position, respectively, somewhere in the static call chain of
the procedure. This criterion works well for typical neural algorithms and need not be
replaced by sophisticated data ow analysis. The elements to be fetched or sent are not
communicated individually but are aggregated into packets that minimize communication
time. On the MasPar, this means to aggregate all elements that have gaps of less than
12 bytes between them into one packet and to transfer also the gaps instead of starting
a new communication; packing and unpacking is not feasible in reasonable time on this
machine but may be appropriate on others.

Figure 5 shows the data distribution inside the node blocks of Figure 2 for one segment.
Each processor contains one node object copy, plus zero or more connection objects,
plus zero or more remote connection objects. Connection objects correspond to outgoing
connections, while remote connection objects correspond to incoming connections. The
block size has been chosen in proportion to the amount of connection work to be done by
each node, as shown in A7. This amount is a weighted sum of the numbers of incoming and
outgoing connections; the weights used are the average amount of work to be done for each
connection kind. This amount is usually higher for remote connections, since sending and
fetching remote connection parts takes a signi�cant part of overall connection operation
run time.

h3 t1 h3 t1 h1 t2 h1 t2

h2 h2t3h3t3h3

p1 p2 p3

p4 p5 p6 p7

p0

Figure 6: Layout of nodes of node groups h and t of the example network and the connections
between them. Each connection is implemented as a pair of a connection object and a remote
connection object, each having a pointer to its counterpart.

Figure 6 shows the distribution of connections and corresponding remote connections be-
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tween node groups h and t from Figure 2 for one segment. The distribution of t shown in
the �gure uses the straightforward node block sizes; in contrast to these, the node block
size computation algorithm given above would assign 4 processors to t1 or to t3, thereby
spreading their connections more evenly and thus improving overall communication per-
formance.

5.4 Miscellaneous details

All objects carry along descriptors that indicate their validity status (existence) and other
data as needed: Networks know their replicate number and segment size. Node groups
know their number of nodes and local array size. Nodes know their index and their block
size. Connection interfaces know their local array size, number of connections, and amount
of work performed per connection. Connections know the location of their opposite end.

Self-deletion of connections and nodes is done by setting the existence indicator in the
respective descriptors to false; the actual removal of the data objects occurs at the next
reorganization of the data structure during a REPLICATE call. Creation of nodes is done
by instant reorganization of the node group. There is always an exact one-to-one corre-
spondence of the data structures in each segment, thus replicate merging can be computed
easily.

5.5 Implementing CuPit on other platforms

One might ask whether or how the techniques described above apply to parallel imple-
mentation platforms other than SIMD machines. The most important instances of these
are MIMD machines with either message-passing or bus-based shared memory (SMPs)

For MIMD message-passing platforms the central di�erence is one of granularity. The
number of processors is comparatively much smaller and the ratio of computation to
communication performance much larger. Hence, a �ne-grained distribution of the neural
network based on the individual connections would be ine�cient. It will not be used
and all related techniques are no longer needed. Given that, however, some simple form
of adaptive node group partitioning needs to be used in order to achieve load balancing
for irregular networks. The other ideas described above still apply in similar form. In
particular, communication aggregation can be extended to accommodate messages from
multiple nodes in a single packet.

The issues when implementing CuPit on symmetric shared-memory multiprocessors
(SMPs) were investigated in our work on CuPit-2. The results are described in [11].
Roughly speaking, similar issues of granularity come up as for MIMD message-passing.
In addition, optimizing cache performance becomes a central task in order to avoid con-
tention of the central bus.

6 Results and discussion

The e�ectiveness of the compiler optimizations was evaluated in various ways.
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1. To measure the improvements achieved by load balancing, a series of experiments
was run with the same programs with and without load balancing.

2. To estimate the savings due to data locality, code with additional communication
operations to simulate non-local data distribution was generated and its run time was
compared with the optimized code. The cost-performance ratio of graph partitioning
methods for still better data locality was also assessed empirically.

3. To estimate the cost of computing and creating the data distribution that leads
to data locality and load balancing, the fraction of time spent in data distribution
procedures was measured.

4. To estimate how good the overall performance is, a comparison with the code gener-
ated by an optimizing compiler for a general-purpose high-level language was made.

5. One experiment assessed the relative speed obtained by making the optimal versus
the non-optimal decision for connection allocation.

6. To estimate the usefulness of communication aggregation, programs with aggregation
were timed against programs that fetched each element individually.

7. One experiment assessed the relative speed obtained by dynamic adaptation versus
static choice of the number of network replicates.

These experiments and their results are described and discussed in the following sections.

How to use CuPit for actual programming is discussed in some more detail in [26]. That
reference allows for better judgment of the adequacy and ease of use of the language.

6.1 Load balancing

For the load balancing experiments, irregular network topologies were created by a net-
work pruning algorithm. Such algorithms start with a large, fully connected network
and remove some of the connections in several pruning steps during the training process.
Which connections to remove was decided using a statistical measure of signi�cance that
the weight is non-zero (autoprune method, see [4] for a detailed description). As experi-
ments showed, the actual pruning criterion is far less important for the results than the
dataset used to train: Some datasets show signi�cantly higher irregularity in pruned net-
works than others. The higher the network irregularity, the more performance is gained
by load balancing.

Training started with 4-layer networks with 20+20 hidden nodes and all possible feed
forward connections, including all shortcut connections. To ensure comparability, a static
pruning schedule was used: prune 30%, 15%, 15%, 15%, and 15% of the remaining weights
after epoch 40, 80, 120, 160, and 200, respectively. Altogether, this schedule prunes
about two thirds of the initial connections. Although such a static pruning schedule is
not the way pruning would be used in a real application, it is su�ciently close to real
pruning schedules for our timing measurement purposes. Note that the measurements are
conservative: In real network pruning, often more than 80 or 90 percent of the connections
are removed; load balancing would be even more e�ective then, compared to the results
shown below.

For the experiments reported here, 11 real training problems from 10 di�erent domains
were used, all taken from the Proben1 benchmark set [24]. The name and size of

15



Problem Nin Nout Nex dbal nbal noloc cwrong comm repl
building 14 3 2104 102 123 244 145 110 99
are 24 3 533 105 120 289 141 112 165
hearta 35 1 460 102 114 325 151 111 110
cancer 9 2 350 110 150 305 144 97 98
card 51 2 345 102 139 333 164 108 120
diabetes 8 2 384 108 129 294 159 110 161
gene 120 3 1588 102 115 221 149 119 77
glass 9 6 107 114 130 309 165 101 102
heart 35 2 460 105 130 320 153 111 110
soybean 82 19 342 105 132 288 167 115 130
thyroid 21 3 3600 100 120 247 144 121 114
(average) 34 4.2 934 105 127 289 154 110 115

Figure 7: Problem sizes and relative run time of non-optimized program versions. Nin, Nout,
Nex: Number of input nodes, output nodes, and training examples, respectively. dbal, nbal,
noloc, conall, comm, repl: Relative run time (in percent) of dumb load balancing, no load
balancing, no data locality, wrong connection object placement, no remote connection access
communication bundling, and static choice of number of network replicates, respectively, com-
pared to optimized version for various data sets in a network pruning situation.

each problem is given in the �rst four columns of Figure 7. For all these problems,
three di�erent versions of the pruning program were timed: An optimized one with load
balancing based on actual measurements of workload at each connection (called bal), one
with load balancing based on mere connection counting as opposed to load measurement
(called dbal for \dumb balancing"), and one without load balancing (called nbal , for
\no balancing"). The cost of the actual run-time load measurement is negligible on the
MasPar. The timings reported here are based on the time needed for training in epoch
210, i.e., after the last pruning step. The values are normalized so that bal is always 100.

The results appear in Figure 7 (ignore the rightmost columns for now, they will be de-
scribed in later sections). Summing up, we �nd an average relative run time for load
balancing based on load estimation instead of load measurement of 105% and for unbal-
anced load of 127%. Note that the latter value is a very conservative estimation of the
e�ect of load balancing, for two reasons. First, on the MasPar, communication latency
is extremely low for low communication tra�c. Hence, communication gets faster almost
in proportion to the reduction of tra�c as it happens in programs with misbalanced load
and reduces the e�ect of load misbalance. Other machines are less friendly in this respect.
Second, the irregularities in the networks of the example runs were only moderate, since
only two thirds of the connections had been pruned. Therefore, the potential for speedups
from load balancing was only moderate, too. Thus, for most situations we can expect the
actual e�ects of load balancing to be higher than the 27% mentioned above.

Additional experiments were performed in order to estimate the e�ects of load balancing
for machines that perform latency hiding. The compiler was instrumented to generate
code that simulates such machines by completely ignoring time used for communication of
remote connection data in timing measurements as well as in load balancing computations.
We might expect load balancing to be less e�ective in this situation. Experiments with the
gene data sets showed, however, that the decrease in e�ect of load balancing was minor:
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The relative run time of the latency hiding program without load balancing compared
to that with load balancing was 113%. This e�ect of load balancing is less than 2%
weaker than for the normal MasPar implementation. Hence, even for machines that have
quasi-zero latency, performance gains due to load balancing will be signi�cant.

Under the assumption that network pruning leads to topologies that have a typical degree
of irregularity, I conclude that load balancing uniformly can save at least about one �fth
of overall run time on a variety of machines.

6.2 Data locality

It is not quite clear with which alternative implementation to compare code generated
by the compiler for an evaluation of the e�ect of data locality. I chose an array-based
implementation with regular array distribution. The connections of irregular networks
could be stored in such arrays as follows: The set of all connections attached to one
interface of all nodes of one node group are densely stored in one array. Each node has a
pair of indices indicating the part of the array where its connections are stored. Such a
scheme would have remote connection access for all connection operations. Furthermore,
node data replication can no longer be used to avoid broadcast of the parameters of
connection operations. On the other hand, this array-based implementation has a better
memory utilization and always has perfectly balanced load. This approach to irregular
problems is used by languages such as NESL [2].

In order to estimate the impact of such array-based implementations on performance, the
CuPit compiler was instrumented to generate code that simulated having no connection
object data locality for connection operations (but still avoided parameter broadcast,
thus again leading to a conservative estimate). Timing measurements with these non-
data-local variants of the otherwise unchanged program produced the results indicated
in the noloc column of Figure 7. Note that the time for merging network replicates is
excluded in these values, which is equivalent to measuring with very large training sets.
This correction was made because the replicate merging code generated by the modi�ed
compiler did not ignore data locality, which would have inuenced the results. As we see,
implementations without data locality take about two to three times as long to execute.

Further experiments (performed using the the Chaco [10] program) showed that using
graph partitioning methods (Kernighan-Lin heuristic and spectral bisection or octasec-
tion) to compute the data distributions would not pay o�: After pruning two thirds of all
connections graph partitioning could increase remote connection locality only by about
10%. The following numbers depend heavily on the actual network size and structure:
with graph partitioning we can expect savings in run time on the order of typically be-
tween 0% and 15% due to increased connection locality, depending on the amount of
irregularity. However, these savings would be outweighed by the heavily increased cost
for the data distribution procedure of about additional 4% to 22% run time, because the
current cost of 2% to 11% of overall run time for the data distribution would roughly
triple.
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6.3 Cost of data distribution

The above results all exclude the time spent in the general data distribution procedure
that are able to achieve data locality and load balancing. But doing without data locality
or without load balancing might allow for simpler and faster data distribution procedures.
Therefore, using the same experimental setting as in Section 6.1, I measured how much
time was spent in the general data distribution procedures: Depending on the size and
structure of the network and the number of replicates, the data distribution procedures
accounted for 2 percent (gene problem) to 11 percent (glass problem) of run time. This
includes the initial creation of replicates after the construction of the network and the
deletion and recreation of replicates before and after each pruning step.

As we see, the cost of data distribution (of which only parts could be saved) is signi�cantly
smaller than the gains from load balancing let alone data locality. This is true even for
problems with extremely small data sets such as the glass problem where there is little
training time to amortize data distribution costs. I conclude that the data distribution
described in this work is not only e�ective but also e�cient in accelerating program
execution.

6.4 Overall performance

To justify all other evaluations, we must be sure that the compiler produces code that
is reasonably e�cient, since otherwise large improvements would not mean much. For
this purpose, I compared the run time of a CuPit program to an equivalent Modula-2�

(pronounce: Modula-two-star) program. The latter was translated by a compiler that also
targets the MasPar1 and that is known to generate quite e�cient code [22]. The problem
chosen was backpropagation using the RPROP learning rule [28] for a fully connected
3-layer feed forward network.

The best was done to ensure that the code generated by the Modula-2� compiler was as
e�cient as possible: A regular network was used, since that (and only that) made the
Modula-2� compiler generate code having data locality; procedure calls on the node and
connection level were inlined in order to avoid the cost implied by the copy-in-copy-out
semantics of array parameter passing in Modula-2�; all levels of parallelism were unrolled
into a single FORALL statement to minimize startup costs of parallel sections; remote
data read more than once during one operation was bu�ered in local variables.

Two disadvantages remained for the Modula-2� code: The code generated for the
FORALL is more general than that used by the CuPit compiler to start parallel sec-
tions, and the Modula-2� compiler is not capable of combining multiple communication
operations for remote connection access. On the other hand, the Modula-2� program had
two advantages over the CuPit program: First, its hand-written code does of course not
copy unnecessary data upon redistribution of the network data after a network replicate
merge operation. This optimization is not implemented in the CuPit compiler. Second,
it fetches and sends only those elements of a remote connection that are really used at

1The Modula-2� compiler was the only one available on the MasPar for any general-purpose parallel

language that completely hides machine architecture and communication operations from the user | and

hence provides a language level comparable to that of CuPit.
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run time while CuPit code fetches all elements that may be used as determined by a
very simple static analysis.

Timings were taken for runs of the following problems: a 128:13:127 network (that means
128 input nodes, 13 hidden nodes, and 127 output nodes) with 127 training examples
using 64 or 16 replicates, a 129:13:128 network with 128 training examples using 16
replicates, and a 501:13:500 network with 500 training examples using 16 or 4 replicates.
These problems were chosen to put the CuPit code at signi�cant disadvantage: 13 node
blocks of equal size cannot be distributed well over a 2-rectangular segment, and the small
number of training examples emphasizes the overhead in redistribution after merge. Thus,
the results obtained will, again, be rather conservative.

The results indicate that Modula-2� code may be faster than CuPit code when many
replicates are used: for the 64 replicates example, the relative run time of the Modula-2�

program compared to the CuPit program was 90%. This result is due to the savings
during data redistribution after network merge. For smaller numbers of replicates, CuPit
code was always faster despite the di�cult conditions chosen. Over all examples, the
average relative run time of the Modula-2� program was 142%. Even when the ability of
the CuPit compiler to combine multiple fetch or send operations was switched o�, the
average was still 130%.

As we see, the CuPit code is roughly one third faster than that generated by a known-to-
be-e�cient general purpose parallel compiler. This result suggests that the overall quality
of the code generated by the CuPit compiler is good. It must be emphasized that this test
was done on static, regular problems that the Modula-2� compiler is well suited for but
that are not the typical domain of the CuPit compiler which targets dynamic, irregular
problems. No useful comparisons with other compilers could be performed for irregular
problems, because no compilers that optimize for irregular problems are available on the
MasPar.

6.5 Connection location

A decision must be made by the compiler where to locate the actual connection objects:
at the input interface or at the output interface (see Section 5.3). An experiment explored
the results of making the wrong decision in this respect. The experimental setup was as in
Section 6.1; a program called cwrong that placed connection objects at output interfaces
(which is the wrong decision for this program) was timed. The results are shown in the
respective column of Figure 7.

As we see, a signi�cant performance penalty of about 50 percent run time increase can
be avoided by the ability to choose the better connection location. Note that this value
depends on the actual algorithm of the user program and on the way it is coded.

6.6 Communication aggregation

As is shown in column comm of table 7, not having communication aggregation (see
Section 5.3) costs an additional average 10% run time on the MasPar. The value would
be higher for machines with higher latency-to-bandwidth ratio.
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6.7 Selecting the number of replicates
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Figure 8: Automatic replicate number optimization: The horizontal axis shows the iterations
through the training set (\epochs"). The curves show changes in number of replicates and
corresponding run time (in seconds) per epoch initiated automatically after the pruning step in
epoch 755.

Dynamically adaptive search for the optimal number of network replicates (see Section 5.1)
was also timed using a pruning algorithm with various networks and data sets and com-
pared with a static number chosen by educated guess. Figure 8 shows an example of
how the adaptive search works. The relative performance using dynamic search (static
search normalized to 100) is shown in table 7 in column repls. As we see, something can be
gained in most cases. The bad result on the gene problem is due to the too simple-minded
prototype implementation of the search method, which always uses complete epochs in
each step, even for large training sets.

7 Conclusion

This work considered the problem of compiling neural algorithms formulated in a problem-
oriented and machine-independent parallel language. These neural algorithms describe
data parallel computations on a dynamically changing irregular neural network. The
article described an approach to compiling such programs into code that exhibits near-
optimal data locality and load balancing; this is an example of using domain-speci�c
constraints for performing optimizations that would otherwise be infeasible.

Over a variety of irregular problems, a prototype implementation of the approach pro-
duced the following performance improvements: 27% due to load balancing, 195% due
to data locality, and 54% due to optimal remote connection object placement. The cor-
responding data distribution computations consumed 2% to 11% of the time needed for
the user program computations. Even for regular problems, the code generated by the
prototype compiler was shown to be as fast as that of a good optimizing compiler for a
general-purpose high-level parallel language.
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I conclude that in the domain of neural algorithms an optimizing compiler can automat-
ically produce e�cient code for irregular problems from a high-level description. The
principles of the approach should also be applied to machines with smaller numbers of
processors and be compared to other techniques. Furthermore, the general idea of ex-
ploiting domain-speci�c constraints should also be applied to parallel computing in other
application �elds.
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