
On Knowledge Transfer Skill in Pair Programming

Franz Zieris

Freie Universität Berlin

Institut für Informatik

14195 Berlin, Germany

zieris@inf.fu-berlin.de

Lutz Prechelt

Freie Universität Berlin

Institut für Informatik

14195 Berlin, Germany

prechelt@inf.fu-berlin.de

ABSTRACT
Context: General knowledge transfer is often considered a
valuable e↵ect or side-e↵ect of pair programming, but even
more important is its role for the success of the pair pro-
gramming session itself: The partners often need to explain
an idea to carry the process forward. Goal: Understand
the mechanisms at work when knowledge is transferred dur-
ing a pair programming session; provide practical advice for
constructive behavior. Method: Qualitative data analysis of
recordings of actual industrial pair programming sessions.
Results: Some pairs are much more e�cient in their knowl-
edge transfer than others. These pairs manage to (1) not
attempt to explain multiple things at once, (2) not lose sight
of a topic, (3) clarify di�cult points in stages. Conclusions:
Pair programming requires skill beyond software develop-
ment skill. To be able to identify knowledge needs and then
push such knowledge to or pull it from the partner success-
fully is one aspect of such skill. We characterize a number
of its elements.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous

General Terms
Human Factors

Keywords
agile software development, collaboration, pair programming

1. INTRODUCTION
Kent Beck defines pair programming (PP) as follows“Write

all production programs with two people sitting at one ma-
chine. [. . .] Pair programming is a dialog between two people
simultaneously programming (and analyzing and designing
and testing) and trying to program better.” [2, p.26]. He
also notes that “Pair programming [...] [is] a subtle skill” [1,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ESEM ’14, September 18-19, 2014, Torino, Italy.

Copyright 2014 ACM 978-1-4503-2774-9/14/09 ...$15.00.

p.100]. We agree with this view [11, 12] and this article will
analyze one key ingredient of that skill.

Pair programming can be useful to reduce elapsed time, to
reduce defect density, to improve program design, to make
sure more than one person is familiar with each part of the
code, to increase the amount of knowledge available when
solving a task, to increase focus and keep up discipline, to
accelerate learning, and to build within-team trust, among
other things, see for instance [6, 7, 15]. However, it requires
two developers rather than just one and therefore unsurpris-
ingly is a controversial technique.

A lot of small-scale empirical evaluation of pair program-
ming, often in the form of controlled experiments, has pro-
duced remarkably unstable results [6]. We conjecture that
one reason for the high results variance lies in ignoring pair
programming skill (as opposed to technical software devel-
opment skill) as a factor; we consequently pursue a research
program for analyzing the actual pair programming process
and the skill involved in it. Its long-term goal is to under-
stand what constitutes that skill and to make it teachable
and learnable through behavioral patterns (much like de-
sign becomes learnable by design patterns). Our research
uses qualitative methods to conceptualize the course of a
pair programming session and describe and evaluate the un-
derlying mechanisms.

Knowledge Transfer

Decision-Making

Other

Figure 1: Pair activity type distribution plot for ses-

sion KA1 of gross length 01:59:44; time runs from

left to right. Knowledge transfer covers 35 percent

of the time.

When reviewing pair programming sessions with a focus
on what goes on in the verbal interaction of the pair mem-
bers, two modes of work quickly become apparent as domi-
nant: explaining (knowledge transfer) and decision-making.
Figure 1 shows an example of how much these occur dur-
ing one particular session. We picked knowledge transfer as
the topic of the present research. Knowledge transfer serves
three di↵erent roles: It can be the main purpose of a whole
pair programming session, for instance to bring a new team
member up to speed quickly. It can be a valuable side-e↵ect
of a session by spreading relevant knowledge about require-
ments, technology, existing code, etc. within a team without

Antonio Vetro'
http://dx.doi.org/10.1145/2652524.2652529

separate activity. It is always an unavoidable ingredient of a
pair programming session, because the partners constantly
explain their thoughts and ideas to each other. We ask the
following research question:

What mechanisms underlie knowledge transfer
during pair programming and which of these work
well or not so well?

We will now discuss some related work (Section 2), de-
scribe our method (Section 3), and then present the concep-
tualization of real-life examples of pair programming skill
(Section 4) and derive practical advice from it (Section 5).
We discuss the limitations of our work (Section 6) before we
conclude (Section 7).

2. RELATED WORK
A survey by Begel and Nagappan confirms that pair pro-

grammers are aware of a strong knowledge transfer com-
ponent inherent in pair programming; they rank it fourth
on the list of pair programming benefits [3]. In contrast,
the classical description of the driver and observer roles [16]
suggests that knowledge transfer will usually only involve
the observer telling the driver about her findings (because
the partners each have their own and separate role respon-
sibility) which would hardly be useful beyond the session
itself.

Sillito et al. study pairs (and single programmers) with
respect to the questions they seek answers for and found 44
types from four categories [13]. Their aim, however, is in-
forming the design of programmer support tools and there-
fore the work does not analyze verbal knowledge transfer
from one pair member to the other.

Plonka [9] studies industrial software developers and fo-
cuses on the use of pair programming as a means of trans-
ferring knowledge in expert-novice constellations. She de-
scribes six behaviors of experts to guide novices, such as
making suggestions instead of telling what to do, or gradu-
ally adding information until the novice is able to solve the
task. Her study focuses on a distinct type of pair constella-
tion with a one-dimensional knowledge disbalance in sessions
for which knowledge transfer is the main goal. Both of these
limitations are lifted in our work.

More closely related to our work is that on distributed
cognition of Flor and Hutchins [4, 5]. Like us, they are
interested in the creation of common ground.1 They ob-
serve two professionals performing a somewhat realistic pro-
gram change task, focus on one knowledge transfer of about
20 minutes length which they report in great detail, and
report as their main results four core knowledge representa-
tions used in the transfer process: of subtasks, of program
structure, of program behavior, and of required program
modifications. In comparison, our work uses more data and
aims at findings that pertain to processes (not representa-
tions) and that allow for deriving practical engineering ad-
vice.

Knowledge and knowledge transfer are universally rele-
vant topics; therefore the amount of loosely related work is
almost limitless – one could go back as far as Platon’s Al-
legory of the Cave [8]. In particular, various results from
cognitive psychology, social psychology, and linguistics are

1The definition of ‘common ground’ in that work includes
only aspects that we consider ‘knowledge’.

somewhat relevant, e.g. from problem-solving research, con-
flict resolution research, or research on verbal interaction.
The areas are too broad to cover them here.

3. METHOD
Our analysis is based solely on recordings of pair program-

ming sessions of professional software developers working on
real tasks in their original o�ce environment. A few sessions
reflect distributed pair programming rather than local pair
programming.

3.1 Data and data collection method
All pairs have volunteered to be recorded for research pur-

poses in exchange for a reflection session we did with them
the day after the recording after a quick analysis. Most of
their companies used pairing only for di�cult tasks. Most
of the tasks involved extensions or modifications of a large
existing code base. The sessions reflect normal daily prac-
tice. All pair members are experienced software engineers,
speak German and work for German companies.

We recorded their screen with Camtasia Studio along with
a webcam view from atop the monitor and audio. The small
webcam video is laid over the desktop video in the bottom
right corner.

In this manner, we have collected 43 sessions of 28 di↵erent
pairs involving 42 persons from 9 di↵erent companies; the
sessions have a typical length of one to three hours. From
these, we selected for the analysis presented here 4 sessions
of 4 pairs from 4 companies that appeared to reflect a partic-
ularly broad variety of knowledge transfer behaviors and lev-
els of code knowledge (high-high, high-low, low-low pairs);
see the discussion in Section 6.2. Session length ranges from
1:10 hours to 2:26 hours. The members of all but one of
these pairs knew each other well. Two of the pairs had not
paired before (which increases the breadth of behaviors ob-
served). One pair performed distributed pair programming
(DPP), all others local pair programming.

A session recording name such as CA2 means company C,
development project A, second recording within this project.
The four sessions we will use are:
Session CA2 (involves persons C2 and C5, length 1:23
hours): Two experienced (though not senior) developers
from the geo-information system domain continue working
on a task started by C5. The work consists of a prolonged
design-discussion and a medium-sized refactoring in the first
half of the session and of implementation and testing of a
new feature in the second half.
Session DA2 (persons D3 and D4, 2:26 hours): One novice
developer (D3) and one junior developer (D4) work on a
large CRM system and try to implement a new toolbar.
After two long discussions with two additional developers,
they begin a refactoring task which lasts the whole session.
Throughout the session, D4 provides D3 with information
on programming styles, technologies, and so on, whereas D3
is more knowledgeable about the code base and the organi-
zational background.
Session JA1 (persons J1 and J2, 1:10 hours): The session
between a junior developer (J2) and an experienced external
consultant (J1) was intended to perform a large refactoring,
but turned into mostly an explanation of the legacy source
code. During the session, the pair refactors small portions of
the code and eventually decides to rewrite the whole module
(which then they do in session JA2 to JA9). J2 has strong

domain knowledge and intermediate programming skills; J1
has hardly any domain knowledge and very good program-
ming skills. This distribution leads to frequent knowledge
transfers in both directions.
Session KA1 (persons K1 and K2, 2:00 hours): Two ju-
nior developers from di↵erent teams start working on a new
API for aggregating several data sources (K2’s team’s task)
which eventually should be used by a mobile app (K1’s
team’s project). The first half of the session is consumed
by bringing their local Tomcat server and the existing ap-
plications into a runnable state; the second half contains
requirements collection for the API and implementing the
first executable version. The session involves reading a lot
of somewhat-known source code and existing API specifica-
tions, and generates a lot of fresh common ground between
the two.

In all four sessions, the used programming language was
Java. In this article, we will present verbatim quotes mostly
from CA2, JA1, and KA1.

3.2 Data analysis method
Our data analysis uses Grounded Theory Methodology

(GTM, [14]) and aims at a limited (and so far isolated)
Grounded Theory (GT) of knowledge transfer in pair pro-
gramming such that its main concepts directly inform useful
behavioral patterns. We use open coding [14, Section II.5]
(see also [10]), axial coding [14, II.7], but not yet selective
coding [14, II.8]. We will present only the resulting con-
ceptualization, not details from within the analysis process.
The early phases of the analysis were accelerated by using
(but always in fully grounded fashion) the pair programming
base concepts identified in a previous stream of work [11],
but the resulting concepts presented here are all new.

Our theoretical sensitivity [14, I.3] is oriented as described
by the research question and primed by the pair program-
ming base concepts. We apply theoretical sampling ([14,
II.11]) once at the beginning of the research (based on our
knowledge of the recorded sessions), but not iteratively. There-
fore, our work does not provide complete theoretical satura-
tion [14, II.11].

Note that the notion of skill in our articles title refers to
actually exhibited skill, i.e., performance, not the underlying
competence.

3.3 Notation
When we introduce the resulting concepts, we typeset

their names in small caps and discriminate three levels of
elaboratedness as follows. “V” (Some ConceptV) (“vague”)
represents informal concepts that appeal to intuition and for
which there is hardly more description than their name. “S”
(Some ConceptS) marks semi-complete concepts for which
a concrete definition is available but where we expect that
definition to be incomplete and/or unstable (from the point
of view of more detailed further research on the topic). “C”
(Some ConceptC) marks completely elaborated concepts
that we consider stable. Where we subsequently use such
a term, we set it in normal font (Some Concept) to avoid
cluttering the text and also sometimes take the liberty to
inflect it.

In the verbatim quotes, we indicate program identifiers,
pauses, comments, and replacements as follows: “Huh? Re-

moveTargets? (...). No idea. <*sighs*> We could ask
<**chief architect**>.”. For pauses, each dot indicates about

one second of silence, so the above was a three-second pause.

4. RESULTS

4.1 What is knowledge?
As mentioned above, two modes of dialog appear domi-

nant in pair programming: explaining (knowledge transfer)
and decision-making. For this work, we ignore decision-
making, but want to understand knowledge transfer pre-
cisely. Hence, we need a definition of “knowledge”.

Fortunately, we need not determine this from scratch: The
pair programming base concepts [11] describe the basic ac-
tivities that together form the pair programming process.
They can serve as a foundation for deriving our definition;
most of them conceptualize utterances. There are 60 such
concepts, grouped into 12 concept classes. Any class consists
of several concepts that each describe a di↵erent type of ut-
terance such as propose step (proposing what to do next),
agree step (saying yes to such a proposal), challenge step
(saying no by making a counter-proposal), and so on.

Of the 12 concept classes, 5 pertain to di↵erent types of
knowledge: finding and hypothesis relate to fresh knowledge
(“insight”) that is deemed reliable or uncertain, respectively;
standard of knowledge and gap in knowledge relate to meta-
level discussion about what knowledge is available or not
available, and finally knowledge itself relates to pre-existing
knowledge brought in from before the session. These con-
cepts together provide a suitable definition of “knowledge”
and were a valuable starting point for our analysis.

4.2 Some terminology for knowledge transfer
To think about knowledge transfer in pair programming,

we introduced three additional knowledge concepts: First,
the need for knowledge. The need is di�cult to observe di-
rectly and will hence not even be given a formal concept
name. Second, what the knowledge transfer is concerned
with. We will call this the TopicC. Finally, the information
that is able to fulfill the need. We will call this the Tar-
get ContentC. The Topic needs to be recognized at least
vaguely before the knowledge transfer can start. A Target
Content can be an insight (and would then be talked about
with finding utterances), an uncertain assumption (hypothe-
sis utterances), or a piece of existing knowledge (knowledge
utterances).

4.3 Modes of knowledge transfer
Any single knowledge transfer episode is almost always

driven forward by only one pair member. This pair member
has an idea of the Topic (appropriate or not) and pursues its
clarification. We call this person the PropellorS. The Pro-
pellor can be the person in need of the Target Content, the
CustomerC; we say such episodes run in PullC ModeC. Or
the Propellor is the person possessing the Target Content,
the SupplierC; we say such episodes run in PushC Mode.
Occasionally, nobody is in possession of the Target Con-

tent and the pair works to create it; we say such episodes run
in ProduceS Mode. There are two sub-Modes: Sometimes
the pair collaborates closely and discusses the state of their
knowledge, new hypotheses, observations, procedural sug-
gestions, etc., intensely and continuously (Co-ProductionS).
In other cases, e.g. if only one member fully understands the
Topic, only this member performs the investigation, nor-
mally doing think-aloud to keep the partner informed, and

the partner mostly signals understanding or lack thereof
and only sometimes contributes a minor insight or thought
(Pioneering ProductionS). The latter sub-mode appears
to be more frequent: The active member has an idea that is
ahead of the partner, but lacks the knowledge for checking
or elaborating it; rather than explaining this state of a↵airs,
which would be di�cult, she performs the evaluation alone
so that the subsequent explanation becomes a lot easier.

4.4 The Episode structure
A Knowledge Transfer EpisodeC (or EpisodeC for

short) is defined by a single Topic pursued in a constant
Mode. If a second Topic appears and is followed, we consider
this a separate Episode. If the Mode changes, we consider
this a separate Episode as well. The latter is common when a
Pull attempt fails and the Customer initiates Produce Mode,
e.g. by starting to read source code after the partner was
not able to answer certain questions.

This narrow definition of Episode is useful for understand-
ing better the concepts we will present here and we will use
it frequently. We will also sometimes talk about a larger
piece of a session we will call SceneV. A Scene includes
multiple Episodes or other phenomena of interest.

Episodes need not be contiguous, which is why more than
one Episode may be incomplete at a certain time: An auxil-
iary or subordinated Episode may be sandwiched and, rarely,
each pair member may pursue her own di↵erent Topic con-
currently.

An Episode does not end just because of an utterance
(or other event) that does not belong to it. An Episode
ends only as soon as the Propellor no longer pursues its
Topic: Obtaining or transferring the Target Content is no
longer a goal – the researcher will usually have to analyze
subsequent conversation to decide this. So far, we observed
four possible reasons for no longer pursuing a Topic: The
Propellor considers the Target Content to be transferred,
the Propellor recognizes the transfer to be unnecessary, the
Propellor gives up the attempt, or the Propellor loses sight
of the goal.

4.5 Attributes of knowledge transfer utterances
To make sense of Knowledge Transfer Episodes, we first

introduced a number of attributes with which to characterize
individual utterances, mostly of the Propellor. Only one of
them will be used in our subsequent analysis but we present
several here to give the reader a more colorful idea of knowl-
edge transfer phenomena and some additional insight into
our research process.

Information TypeS has about a dozen di↵erent values
such as design decision, characteristic of program artifact,
technology fact, relationship to other tasks, and so on. The
Information Type of an individual utterance is often closely
related to the Topic of the overall Episode. If it is constant
throughout several utterances, it typically characterizes the
Topic. If it changes, this may reflect an attempt to explain or
ask better (because the previous approach did not appear to
work well), or it can be a sign of confusion or of an attempt
to clarify several things at once.

Scope ChangeS describes whether the part of the world
being discussed has been kept the same relative to the previ-
ous utterance or has been made smaller or larger. This con-
cept led to the discovery of the Explanation Trigger Types;
see below.

MediumS of a transfer can be pure verbalization, verbal-
ization plus demonstration (such as a test run or a code
walkthrough), or “by typing” (“What I mean is this.”). The
medium may change several times during an Episode.

AssessmentSs relate to a previous utterance and evaluate
an explicit proposition or implicit assumption contained in it
or implied by it, typically as part of a“question”. Many such
“questions” are not, in fact, questions – another observation
that paved the way for the discovery of the Explanation
Trigger Types.

Is Termination AttemptS is one of a set of boolean
attributes and characterizes whether the utterance aims at
terminating the Episode. So far, we only observed the Pro-
pellor doing so because she felt the Episode was successful.
However, other combinations (e.g. non-Propeller/giving up)
are plausible as well.

Is Hasted ReplyS means an explanation starts before the
respective question was complete or the next question starts
before the previous explanation was complete. It can speed
up the process in case of needlessly detailed questions or
explanations, but can also get the pair into trouble because
the understanding of the hasty speaker may in fact be wrong.

RedundantizesS means an utterance mostly or fully re-
peats information that was transferred before, but in a di↵er-
ent formulation or with an additional question-and-answer
pair in between. This attribute applies to questions as well
as explanations. The former pointed to one particular Ex-
planation Trigger Type: State Known Fact.

Is UncertainS means the wording or intonation make it
clear that the speaker is not fully sure of the correctness of
her statements. This applies to explanations as well as to
feedback on explanations (e.g. a hesitant “Okaaaaay”).

The final attribute we call Explanation Trigger TypeC.
It was the most productive of them all for our research and
will be at the heart of the next subsection.

4.6 The Clarification Cascade
The following situation is common in pair programming

knowledge Pull situations: A pair member recognizes a knowl-
edge need (Topic) in herself that is too complicated to be
fulfilled by only a single question. ThisTopic ComplexityS

may either be recognized from the start or from an answer to
a first, naive question where the answer is incomprehensible
or reflects a misunderstanding.

What typically happens then is that the Customer de-
vises a series of utterances-aiming-at-eliciting-explanations
(Explanation TriggersC) that serve to (1) check one-by-
one the assumptions or hypotheses she has come up with
so far and (2) guide the Supplier through a series of steps
that serve to make the Supplier (a) understand the Topic
and (b) generate answers in digestible bites. This series
of utterances is an Episode. We call this type of Episode
Clarification CascadeC.

4.6.1 Explanation Trigger Types

A Clarification Cascade is characterized by a typical se-
quence of utterance types; not each type occurs in every
Clarification Cascade and the same type may occur multi-
ple times in a row. What gives the Clarification Cascade
its name is not the clarification of Target Content, it is the
successive narrowing-down of a Topic. The need for further
narrowing down may be on the Customer’s side as well as
the Supplier’s side. These Explanation Trigger TypesC

(or TypesC for short) are the following:
• FindingS: Form: Proto-questions, often in the form

of thinking aloud, reading identifiers aloud, paraphrasing a
snippet of code, or signaling and somewhat locating confu-
sion.
Example 1: J1: “So we go in there with the currentTime”,
which paraphrases a method signature and triggered J2 to
elaborate on the parameter’s meaning.
Example 2: J1: “And that means what?”, which locates con-
fusion at “that”.
Role: Locating a general area of interest when the speaker
does not yet understand her own knowledge need well enough
to formulate the Topic.

• Direct QuestionC: Form: Asking a question formu-
lated as such, usually as an open question, only sometimes
as a yes/no question.
Example 1: K1: “What is that for, I mean, what does it give
me?”, where “it” is a member variable called type.
Example 2: D4: “But can you attach, er, a context menu to
it? You know, an SWT context menu or so?”
Direct Questions are the prototypical entry point into a
Clarification Cascade, but all Types can fill that role. In
contrast to utterances of Type Finding (but like all other
Types), isolated and multiple subsequent Direct Questions
are both common.

• Stating Known FactsC: Form: The speaker repeats
something that was already stated earlier in the session in
the same or similar form.
Context is required to give an example, so please see the
long example of a complete Clarification Cascade below.
Role: This is a means for narrowing down the area of the
partner’s attention. It signals a Topic area of interest (that
should be explained) and a subarea that is already under-
stood (and thus needs no further explanation).

• Simple StepC: Form and role: Like Stating Known
Facts, Simple Steps refer to and use reliable common ground.
The form is typically that of an assertion. The speaker of
a Simple Step has a clear idea what she wants to know and
the utterance is intended to lead the thinking of the partner
towards a particular spot. To do this, it makes a statement
that entices the partner to make a particular mental step –
in the direction favored by the speaker.
We use paraphrased examples here because verbatim ones
would require too much context.
Example 1: J1: “A connection between these has to be cre-
ated somewhere.” This speaker aims to find out why “these”
are connected or how or what program part is responsible
for it. The first part of the utterance is Stating a Known
Fact. It is the last word “somewhere” that turns the utter-
ance into a Simple Step.
Example 2: J1: “In this block, the variable is always not
null.” The word “always” is making the Step here. The
speaker wants to investigate why there are statements for
handling the case in which the variable is null.
Simple Steps may use irony.

• PropositionS: Form: The speaker states a proposition
with the expectation that the partner will either accept or
refuse it; a usually implicit and sometimes explicit yes/no
question.
Example 1: J1: “That means you could get it in each case
simply by calling getLastFile again?” This aims at validat-
ing an assumption about the semantics of the getLastFile

method by posing a di↵erent manner of using it.

Example 2: J1: “That which overwrites it (.) that is really,
well, if you take any two files and compare them, then they
are somehow always di↵erent.” The part up to the “well” is
a failed first formulation attempt.
Role: Reducing the partner’s possibilities for giving irrele-
vant information to zero.

4.6.2 The escalation of difficulty

Propositions are the Propellor’s ultimate tool for obtain-
ing relevant information (as opposed to just some informa-
tion), but are di�cult to devise; this is why they constitute
the last level of the Clarification Cascade. The previous
levels are easier: Finding requires only a vague association
of the type “Hmm, this might be relevant somehow”. Di-
rect Question requires a first attempt at formulating this
“this” and make palpable the speaker’s interest in it. Stating
Known Facts in addition requires to locate the area of this
interest more narrowly. Simple Step is much more di�cult
because it requires at least a rough understanding of the
di↵erence between the speaker’s and the partner’s current
line of thinking. Proposition is still more di�cult in that it
requires forming a specific hypothesis – a construction task.

4.6.3 The different effects of the Types

Each of the Types may trigger the partner to provide all
of the explanation sought (the Perfect AnswerS) but will
usually result in much less (the Actual AnswerS, which
may also be the Expected AnswerS), so that the cascade
needs to continue. In this respect, Stating Known Facts and
Simple Step are fascinating because the Expected Answer
is always “yes” and has no information value. These two
Explanation Trigger Types are clever intellectual tools, yet
good pair programmers appear to use them intuitively.

4.6.4 An example Clarification Cascade

Few cascades ever comprise all of the Types at once. Here
is a Scene containing a complete Clarification Cascade from
session JA1 (time range 0:04:10–0:06:15) that has all Types
except Finding:
J2: “For now I could tell you what this plugin does overall.”
J1: “Yep.”
J2 now starts a longer Push Episode that ends with“It starts
checking how the file its size still changes. That is, it looks
until the file does not get bigger anymore, then it is appar-
ently ready. And then it is fetched and handed over to pro-
cessing.”
At his point, J1 has a question which J2 misunderstands
and this starts a Clarification Cascade: J1: “In what time
window are you looking?” (Direct Question)
J2: “I start looking two minutes after the full hour, because
then it’s guaranteed that news files exist if any exist.”
J1: “OK.”
J2: “And monitor this file as long as needed until it’s ready.
That can take up to seven minutes, depending on the source.”
J1: “Hm ya but mh the time window for the change?” (an-
other Direct Question)
J2: “Yes, right, that is, er, time window for the change is
variable, depends on how the news go. I can’t know that. It
is so they always start a new file. When the news are over
again a file is created. This means, I never actually have
more than the news.”
J1: “Yes, no, I mean ’cause you said you look for so long,
er, until the size stops changing, right?” (Stating Known

Facts) “Then you need to plan for a time window in which
a change could happen.” (Simple Step)
J2: “Yeah, well, until up to five before the hour. I really take
my time.”
J1: “<*laughs*> No I really mean the size now, the size of
the time window, I mean (.) you wait for 10 seconds, then
after 10 seconds you decide: In those 10 seconds nothing has
changed, so the file appears to be ready.” (Proposition)
J2: “Ahhh, that’s what you mean. No, 30 seconds.”
J1: “30 seconds, that’s what I wanted.”
J2: “That’s 30 seconds long the time window. Now I got
you.”
One can almost hear the relief that the di�cult Clarification
Episode was successful eventually. Note that in terms of our
conceptualization, the main work result of the clarification
process is not providing J1 with the value “30 seconds”, it is
providing J2 with J1’s intended meaning of the word “time
window”.

4.6.5 Interpretation and context conditions

The clarification cascade is e↵ectively an iterative question
design technique (conscious or unconscious) for complicated
situations. Its result is a kind of modularization-plus-unit-
testing structure for the Pull-Propellor’s knowledge acquisi-
tion process with the e↵ect that the partner can catch mis-
takes or false assumptions in the speaker’s reasoning, e.g.
by rejecting a Simple Step.

Frequent occurrence of long cascades suggests that the
pair’s thinking may still lack common ground, because if it
had enough, the partner should usually be able to under-
stand a knowledge need more quickly. Frequent long cas-
cades may thus indicate there is an improvement potential
for the pair.

Long cascades may also happen frequently (and are not
problematic then) if an experienced Customer lacks back-
ground knowledge (on the software product and/or its do-
main) but suspects a problem in the code: Such a suspi-
cion often involves a number of assumptions that the asker
wants to check one-by-one to avoid asking a question that is
not understandable. Sometimes, the Customer is in fact a
pseudo-Customer and works through a Clarification Cascade
although she is fully sure there is a problem in the source
code and what it is; in this case cascadic querying serves to
save the partner’s face.

We conjecture that being aware of the nature of Clarifica-
tion Cascades and the individual Explanation Trigger Types
will automatically improve engineers’ knowledge transfer skills
somewhat. Shortly reflecting (in mid-flight) on Clarification
Cascades that were longer than ought to have been neces-
sary (such as the example above) is also likely to help. We
will formulate an explicit procedure for employing Clarifi-
cation Cascade behavior in Section 5; likewise for behaviors
arising from the remaining results subsections.

4.6.6 Clarification in Push Episodes?

Push Episodes exhibit a related phenomenon that also
appears to result in a sort of modularization and involves
alternating between Stating Known Facts and Stating New
FactsS. However, we have not yet analyzed it su�ciently
to fully present it here.

4.7 How to handle multiple Topics
For knowledge transfer to be successful, it appears to be

necessary that the Propellor has a fairly clear understanding
of the Topic, and, even if multiple things are to be clarified,
only chooses one Topic at a time. If, in contrast, a Propellor
tries to Push or Pull multiple things at once, confusion will
usually result.

We provide one positive and one problematic example. In
the positive case, a developer recognizes the di�culty of his
Push plan (multiple Sub-Topics) and actively thinks about
a helpful sequence.

4.7.1 Positive Example

From session JA1 (time range 0:57:30–0:59:40): During a
code walkthrough by author J2, the following facts and cir-
cumstances are unclear for J1, and J2 needs to explain them:
(1) The software loads files from multiple remote systems
and then processes them. (2) Not each remote system will
have the requested data each time it is queried. In that case,
it asks a superordinate fallback system which will always
provide a single set of ersatz data files which are then tagged
as such and returned. (3) Therefore, the queries to several
systems may return the same result in fact coming from the
fallback. (4) Downloading these data is slow. (5) There-
fore, files coming from the fallback system are cached to
avoid downloading them multiple times. (6) Other files are
deleted immediately, not cached. (7) When a file is deleted,
a pointer to the file needs to be deleted in the program.

J1 already understands point (1), but needs to understand
all seven, so J2 has to explain the whole situation. This ex-
planation proceeds as follows (respective fact numbers as
<*comment*>):
J1: “Now we have return response here and return re-

sponse there. That’s. . . ”
J2: “Yes, that is, problem is, that down there is, because this
local file needs to be reset <*(7)*>” (he points “down there”
to this.localFile = null;) “(..) that is (...) ’cause the
thing is this: for <**machine1**> and <**machine2**>
it is so that we want the local file deleted after processing
<*(6)*>. Yes you see that here too when you look at the
arguments of processFile. The second one is a boolean –
ain’t pretty but works – deleteSourceFile”
J1: “Unghhhh m-hm” (a long guttural sound plus an a�r-
mation)
J2: “And now I just see. . . (..) No, that’s correct so, ’cause
we have <*sigh*> where should I start explaining this (...)
er (.) yes. It’s more complicated than you’d think.”
J1: “Doubtless.”
J2: “Because if <**machine2**> or <**machine1**> don’t
have their own data, if they failed somehow, then they use
these <**fallback machine**> files. <*(2)*> Yes, those,
and depending if it’s their own ones. . . if that construct back
here is true, then it is their own files.”
J1: “Yesyes, I see.”
J2: “Then it should delete them <*(6)*>. If it’s <**fall-
back machine**> files, it should of course not delete them
<*(5)*>, because there may be others who need them too
<*(3)*> (...) Yes that, but that could all be done a bit dif-
ferent later.”
J1: “A di↵erent kettle of fish! That is<*interrupted*>”
J2: “Yes that is a di↵erent issue, ’cause I did that only be-
cause the downloads took so long of those stupid files <*(4)*>.
So I thought it need not take even longer so I’d use the same
one for them all <*(5)*>. Of course if it runs on a local
file system that’s a whole lot faster and then it doesn’t hurt

to download twice, I guess, and we need not keep it.”
J1 appears to understand the construct during the repetition
of (6), but J2 goes on nevertheless. 2

We do not claim our post-hoc explanation in points (1)
to (7) to be the best serialization of this complex Target
Content and the one actually created by the Propellor is even
worse, but that is not the point. The point is: The Propellor
became aware of the complexity of the Target Content and
the di�culty of Pushing it; he took some time to think it
through, informed his partner about the di�culty, finally
found a serialization – and his partner even understood it
sooner than expected.

4.7.2 Negative Example

From session CA2 (time range 0:09:30–0:19:40). In con-
trast to the competent developers above who successfully
(if not exactly masterly) juggle 6 items needing clarifica-
tion, the present example shows a developer struggling with
merely two Topics.

Company C makes two variants (Basis and Pro) of its
product. Both rely on a joint library. Outside the library,
Pro may statically depend on Basis but Basis must not
statically depend on Pro. Nevertheless there are framework
parts in Basis that need to call Pro functionality.

C5 starts the session with explaining to C2 the previous
work he has done. There are two Topics. First, to explain a
key constraint: The goal is moving as little code as possible
from Pro to Basis (C5 had consulted the chief developer
with this) while absolutely avoiding static dependencies from
Basis to Pro. Second, explain the new content (and state
of this work) of new or modified classes.

But rather than explaining the constraint first, C5 pursues
both Topics in parallel as follows (the technical background
will be explained below):
C5: “Then, let us, I’ll first show you I guess what I’ve done?”
C2: “Ok.”
C5 starts explaining. C2 interrupts him and lets his dislike
of C5’s design shine through: C2: “Okaaaay (...) do we re-
ally have a ColumnAttribute there? Is that so?” He leans
back with folded arms.
A bit later C2 interrupts C5 and explains a simpler, more
direct design (which further complicates the Scene: there
are two Propellors now): “What data structures do we have
for the GUI? Is a ColumnAttribute in them? If not, I would
simply use them as they are.”
But C5 never isolatedly discusses the constraint topic, all re-
spective statements are embedded in statements about his
work results. For instance, he opens an interface that has
only one method and says “More, more than this isn’t there
yet because (...) because, er, it is (..) er, I, more (..) more,
I have, we have, we need a ColumnAttribute to insert this
in this getAll (.) when you fetch them all.”
The further explanations make clear (to the researcher who
viewed the 10-minute scene a dozen times, took notes, and
drew diagrams) that these “more”-statements are part of
the work results topic: “I did not yet get farther than this,
but we will need such an interface eventually.” The “need
a ColumnAttribute”-statements, however, are part of the
constraint topic: IColumnAttribute is an interface from the
joint library and is the result type of the Basis product’s
getAllAttributeColumnsmethod. C5 wants this method to
return a ColumnAttribute object that he needs for carrying
functionality from the Pro product into the Basis product

without introducing a static dependency.
But in the live situation, C2 never gets to the point of seeing
this: C2: “Is that so? Do we really need that in the attributes
table for the visualization?”
C5: “We need for the visualization in the attributes table,
if we want to make with getAllAttributeColumns(), an
IColumnAttribute.”
C2: “If we want to do it that way, OK.”C2 has now under-
stood the existing design, but still not the rationale behind
it.
C5: “If we want to do it that way, that’s right. But that’s
what I had taken to be our agreement. I haven’t put in more
yet.” Again, “agreement” is about the constraint, “more” is
about work status.
As far as we can see, C2 over and over mis-takes the ratio-
nale explanations as justifications for the incompleteness of
the results and continues to consider his own unsound “sim-
pler” design a valid idea.
It takes all of ten minutes of Pushing from C5 (work con-
tent/state and constraint) alternating with Pushing from C2
(alternative “simpler” design) before C2 eventually asks the
pivotal question: “Is there any reason not to go the easy
way?”.
Only now do the two Topics finally come together in C5’s
answer: “Um (..), well, right now there is no reason (.) I
am not sure yet, whether the things, so, I did it this way
(.) because (.) because we, because I wanted to move as
little as possible to Basis of these things. And (.) the inter-
face (.) um (.) that I already moved only knows things that
are known in Basis.” Only now does C2 recognize that the
functionality the pair is concerned with resides in the Pro

product and must not be used directly, and that this fact is
the reason for the seemingly circuitous design proposed by
C5. 2

The problem in this Scene is not with explaining two Tar-
get Contents, it is with recognizing there are two relevant
Topics: C5 apparently is unaware that C2 is unaware of the
imminent Basis-Pro coupling issue and so only alludes to it
rather than stating it explicitly. The fact that C2 starts pur-
suing his own design idea further complicates the situation,
but should in fact have been a trigger to make C5 aware of
C2’s lack of awareness.

4.7.3 Context conditions

Most Knowledge Transfer Episodes start and continue
rapidly and without utterances indicating notably increased
mental load (such as the “where should I start explaining
this?” in the positive example above). It looks like usually
only one uncertain aspect of the ongoing session stands out
clear enough to be chosen as the Topic of an Episode.

So far, we have observed cases of multiple Topics only in
Push Mode, presumably because a Pull-Propeller only needs
to be aware of her own knowledge and its boundaries and
much more easily manages to focus on one thing at a time.

We conjecture that problematic Scenes will typically arise
only when a Propellor is not aware that she needs to ex-
plain a second Topic as well and mentions it only on the
side, so being aware of this possibility is probably helpful
for practitioners.

4.8 On focusing on Topics
Obviously, the Propellor’s clear understanding of the Topic

at the beginning of a Knowledge Transfer Episode is impor-

tant. But sticking to that Topic is important as well.

4.8.1 Positive Example

From session JA1 (time range 0:06:15–0:06:45). This ex-
ample continues a Scene which starts with a 50-second Push
Episode of J2 regarding what the NewsPlugin does overall.
This Push Episode is interrupted by a 75-second Pull of J1
regarding how often a certain file size was polled; a rather
tiny detail (this one was the core of the long example from
Section 4.6). Once that is finished, J1 imperturbably returns
to the original Topic (although that had been introduced by
J2!). The first three lines are repeated from the long exam-
ple above.
J2: “Ahhh, that’s what you mean. No, 30 seconds.”
J1: “30 seconds, that’s what I wanted.”
J2: “That’s 30 seconds long the time window. Now I got
you.” (end of repetition)
J1: “And within this whole procedure the NewsPlugin does
what? Exactly this monitoring and then the delegation to
the individual channel plugins, huh?” (Direct Question fol-
lowed by Proposition).
J2: “No, the (.) the NewsPlugin is only concerned with,
it is called periodically, by the cron server (.), um, it gets
triggered and then the NewsPlugin starts the respective Pro-

cessors. And they take charge of the monitoring and the
delegation then to the transcoding software.” 2

Despite what could be considered a circuitous route, J1
never loses sight of J2’s Push goal. At other times, however,
a pair (even the same pair) may lose sight of the Topic while
clarifying something else:

4.8.2 Negative Example

From session JA1 as well (time range 0:14:00-0:16:30). In
this Scene, J2 explains a method. J1 asks about the mean-
ing of the possible case remoteFile == null, never gets a
semantic answer, but does not follow up. The code in ques-
tion can be paraphrased like this:

this.remoteFile = this.getLastFile(this.remoteDir);

if (this.remoteFile != null) {

this.remoteFileSize = this.remoteFile.getLength();

return State.FILETRACKING;

}

log.error("No current file found");

return State.ERROR;

After J2’s line-by-line explanation of this code, J1 wonders
about the null case (which could mean for instance the file
is missing, the directory is unreadable, the connection failed,
there is no “last” file, or other things) and asks “Is this an
expected case? Can it happen?” (Direct Question).
J2 does not hear this question, because this session is dis-
tributed pair programming and there is a short gap in the
Skype connection. J1 asks it again as “It should never slide
into the return ERROR case, right?” (Proposition)
J2 agrees, J1 is satisfied, but then J2 proceeds to explain
“Well, if it found a file, it does not get there. Because then
it is in this FILETRACKING mode.”
J1 recognizes that J2 has interpreted his question on a control-
flow level rather than a meaning level. He follows up several
times, each time stating his question as a Proposition like
above until eventually J2 agrees.
But the problem is still not gone: J2 continues by saying“Of
course I could as well throw an exception in getLastFile,

a FileNotFoundException. That would even be nicer now
that I think about it.”
J1 agrees, J2 writes a TODO into the code, the pair proceeds
in the source code – and the original Pull Episode has simply
disappeared without a proper ending. 2

Should J1’s issue be a serious problem, the pair has just
lost an improvement opportunity.

4.8.3 Context conditions

Losing sight of a Topic does not appear to be a particularly
frequent problem. Most cases we have seen were minor or
even subtle. The frequency appears to rise, however, when
there are two Propellors each pursuing their own Topic (see
the next section), so the pair should make sure to develop
well-oiled routines of “You go first”-behavior.

4.9 On determining the Propellor
Clarification becomes harder if each partner pursues a dif-

ferent Topic. On the other hand, having two Topics that are
unclear, is quite normal in pair programming. Gelled pairs
manage to determine a single Topic and a single Propellor
quickly.

4.9.1 Positive Example

From session KA1 (time range 0:50:50-0:51:30). The pair
has just finished a work item and committed the code. As for
the next step, both pair members have done relevant work
before the session and both now begin to speak at once:
K1: “Shall we <*interrupts himself*>” || K2: “Well, you
wanted to put the same into the mobile app – Mobile First,
right?” (Mobile First is company K’s tactic of trialing new
functionality in the mobile application first before publish-
ing it in the web portal.)
As we see, K1 immediately stops himself and lets K2 go first;
K2 promptly takes the initiative and starts Pulling what K1
has done before the session in Mobile First regard. K1 im-
mediately and completely gives up his own idea for the next
step and follows K2’s:
K1: “Yes, exactly. I even got quite far with it. I have over
there built myself such an, a Mock-JSON (.) that would be
cool if it roughly <*interrupted*>”
K2: “Have you checked it in?”
K1: “Uh, no, it’s not checked in (.), I didn’t want my previ-
ous web-app (..) to be trashed.”
K2: “Ah OK, well I can show you what we have so far and
then we can compare.” 2

Although K2 interrupts K1 twice, K1 is not at all frus-
trated or angry. K2’s decisive action led to a quick transfer
of all relevant knowledge: (1) A data format for a new API
that will be required has been thought out (Mock-JSON)
by K1; (2) it may be complete but is not immediately ready
for integration; (3) some work on the functionality behind
the API-to-be has been done by K2; (4) that work is far
from complete, and (5) K2 suggests the pair should continue
there. The result is fluent session progress.

4.9.2 Negative Example

From session CA2 (time range 0:09:30-0:19:40). This is
the same negative example as seen in Section 4.7 (regard-
ing the Basis-Pro dependencies). The Scene is not only
plagued by the non-recognizing of the second Topic, but also
by a constant struggle for Propellorship: In principle, two
Knowledge Transfer Episodes with di↵erent Propellors could

interleave and so proceed at the same time; in practice, this
is cognitively way too hard to be sensible.

In this Scene, the original Propellor C5 is polite and for a
long time reacts on each of C2’s proposals until eventually
he attempts stopping C2 by saying: “Let’s carry on for now.
It’s not tied up yet, what I did (..) did so far.”
This is meant to mean “Could we please defer your criticism
until later?”.
However, what C2 understands instead is “OK, let us post-
pone my line of work and talk about yours now.”
Unfortunately, neither pair member appears to recognize
this misunderstanding and the dual Propellorship contin-
ues as before.
When C2 finally stops Pushing his own design idea later, it
is only to shut himself o↵ of C5’s explanations and start a
Produce Episode of his own, reading code concentratedly.
C2 works in Pioneering Production Mode without explain-
ing what he does, thus shutting out C5 of his progress. C5
gives up his Propellor role and attempts to join C2 for a Co-
Produce Episode: When C2’s reading reaches an interesting
line, C5 provides information about it, but this is appar-
ently ignored by C2. This is hardly pair programming any
more. 2

5. ADVICE FOR PRACTITIONERS
This section formulates insights derived from the above

observations in the form of explicit, procedural, practical
advice; quotations refer back to the examples from Section 4.

5.1 For explaining an information need (Cus-
tomer)

Naturally, the information need of a Customer is only per-
ceived by herself unless she makes it palpable for the Sup-
plier in form of a Topic. To do this, the Customer might use
the following pattern:
(1) Signal the existence of an information need through a
Finding.
(2) If this does not already make the Supplier deliver the
Target Content, formulate a Direct Question that makes the
Topic explicit.
(3) If the Supplier misinterprets the Topic, make use of com-
mon ground by Stating a Known Fact to provide the Sup-
plier with context information.
(4) If this does not su�ce, entice the Supplier to make a
Simple Step that follows the line of thought towards the in-
formation need.
(5) If the Supplier still does not understand the Topic, for-
mulate a Proposition that she can easily validate. Then, the
Target Content is constructed by rather then transferred to
the Customer.

5.2 For handling a complex Topic (Supplier)
When the Supplier becomes aware of the complexity of

the Topic:
(1) The Supplier makes this di�culty explicit (like J2 did
by uttering “Where should I start explaining this?”).
(2) The partner accepts her role as the Customer and allows
the Supplier to be the Propellor, i.e. to take her time to
finish her thoughts and to set the pace of her explanations.
(3) The Supplier claims the Propellor role, explains the dif-
ferent relevant aspects of the Topic separately, and ensures
the Customer understands all of them, i.e. does not allow
the Customer to finish the Episode prematurely.

5.3 For managing concurrent Episodes
When the Customer asks for a detail during a Push Episode

which in turn starts a Pull Episode:
(1) The Customer ensures that her Pull Topic is actually
clarified (e.g. by making it explicit, as J1 did by saying “30
seconds, that’s what I wanted to know.”).
(2) Once finished, the Customer then hands over to the
former Push-Propeller so she can continue her interrupted
Episode.

If a second, somewhat unrelated Knowledge Transfer Episode
appears while one is already running, the right thing to do
is:
(1) postponing one of them immediately and
(2) resuming it once the other is finished.

In particular the second step will work much more safely
if done explicitly. See the positive example from Section 4.8:
J1 returns to the previous Topic by Pulling and explicitly
mentioning the Topic again in his question.

6. LIMITATIONS AND FURTHER WORK

6.1 Validity
Results of GTMwork explain phenomena that have specif-

ically been observed to exist. Threats to the results’ valid-
ity hence are restricted to inappropriate conceptualization.
Many of the concepts we present show up directly in the ex-
amples shown (and so can partially even be validated by the
reader). The validity of our results is therefore likely high.

6.2 Generalizability and breadth
Results of GTM work explain phenomena that exist; they

neither claim to capture all such phenomena nor to quantify
their frequency or distribution. Therefore, even the results
derived from only a small amount of material will be valid
and can be relevant.

Nevertheless, the amount of material we have analyzed is
rather small and although the breadth of phenomena seen
increases very quickly during the first few sessions analyzed,
the set of phenomena we describe is likely incomplete; we
have not yet reached theoretical saturation. Therefore, gen-
eralizing our results is not invalid (because (1) we do not
claim completeness and (2) additional phenomena will not
invalidate existing ones) but might be misleading. Further
work will have to investigate more and di↵erent source ma-
terial in order to achieve broad coverage of the pair pro-
gramming knowledge transfer phenomena.

6.3 Depth
Our results so far consist of several islands of conceptu-

alization that are only weakly connected to each other and
to the pair programming process overall. The results do
therefore not yet constitute an actual Grounded Theory of
knowledge transfer in pair programming. Further work will
have to perform additional analysis to achieve greater con-
ceptual depth: to weave the partial conceptualizations to-
gether2 (axial coding) and extract an overall narrative of
pair programming knowledge transfer from it (selective cod-
ing).

6.4 Engineering implications
2and into a conceptualization of the overall process that does
not even partially exist yet.

The goal of our research is to provide not only scientific
understanding of pair programming but also practical advice
to software engineers, e.g. in the form of pair programming
process patterns. The advice presented in Section 5 is still
somewhat implicit (declarative) and only partially procedu-
ral. Further work will have to find out how to make the
advice fully procedural and how to teach such behavior to
pair programmers.

7. CONCLUSION
We have identified four elements of knowledge transfer

skill in pair programming. When putting them together,
they allow to formulate a rough sketch of the problem solving
process for knowledge transfer challenges.

• Whenever both partners perceive a di↵erent (perhaps
vague) knowledge need at the same time, they need to
determine an order for satisfying those needs and must
not allow two Propellors, that is, must not pursue both
needs at once.

• The Propellor must make sure to recognize if the knowl-
edge need contains multiple elements that together are
too complicated to be explained at once and so need
to be split up into multiple Topics for separate clarifi-
cation.

• If a Direct Question is insu�cient for successfully com-
municating the Topic, and it often is, the Customer
needs to construct a sequence of Explanation Triggers
of escalating di�culty along the (up to) five Explana-
tion Trigger Types of the Clarification Cascade in or-
der to lead first herself and then the partner towards
a su�ciently precise understanding.

• The pair must not lose sight of a Topic until it is re-
solved or they find a good reason to give up. Losing
sight can happen easily because additional Knowledge
Transfer Episodes often intervene.

The above process sketch is incomplete; we have not ana-
lyzed all relevant sub-phenomena of pair programming knowl-
edge transfer by far.

However, even these few behaviors are su�ciently di�cult
to make some pairs much more e�cient in their knowledge
transfer than others. We consider such pairs to possess the
superior pair programming skill.

Note that the concepts we found are not bound to spe-
cific software engineering issues; they are completely generic.
This is good, because it provides wide applicability. It also
means that in principle, the same phenomena might also
occur in dialogs in very di↵erent domains. However, we
conjecture that this will not be common. Rather, software
engineering dialog is special because of the enormous con-
creteness and precision required to create software. Insofar,
the results presented here do not describe general dialog
skill, they describe pair programming skill.

Acknowledgments
This work was supported by a DFG grant. We thank our
pairs for allowing us to record and scrutinize their sessions.

8. REFERENCES
[1] K. Beck. Extreme Programming Explained: Embrace

Change. Addison-Wesley Professional, 1999.
[2] K. Beck and C. Andres. Extreme Programming

Explained: Embrace Change, Second Edition.
Addison-Wesley Professional, 2004.

[3] A. Begel and N. Nagappan. Pair programming: what’s
in it for me? In ESEM ’08: Proceedings of the Second
ACM-IEEE international symposium on Empirical
software engineering and measurement, pages 120–128,
New York, NY, USA, 2008. ACM.

[4] N. V. Flor. Side-by-side collaboration: A case study.
International Journal of Human-Computer Studies,
49(3):201–222, 1998.

[5] N. V. Flor and E. L. Hutchins. Analyzing distributed
cognition in software teams: A case study of team
programming during perfective software maintenance.
In Empirical studies of programmers: Fourth
workshop, pages 36–64. Ablex Publishing Corp., 1991.

[6] J. Hannay, T. Dyb̊a, E. Arisholm, and D. Sjøberg.
The e↵ectiveness of pair programming: A
meta-analysis. Information and Software Technology,
51(7):1110–1122, 2009.

[7] J. T. Nosek. The case for collaborative programming.
Communications of the ACM, 41(3):105–108, 1998.

[8] Platon. Politeia.
[9] L. Plonka. Unpacking collaboration in pair

programming in industrial settings. PhD thesis, Open
University, 2012.

[10] S. Salinger, L. Plonka, and L. Prechelt. A coding
scheme development methodology using grounded
theory for qualitative analysis of pair programming.
Human Technology: An Interdisciplinary Journal on
Humans in ICT Environments, 4(1):9–25, 2008.

[11] S. Salinger and L. Prechelt. Understanding Pair
Programming: The Base Layer. BoD, Norderstedt,
Germany, 2013. 978-3-7322-8193-0.

[12] S. Salinger, F. Zieris, and L. Prechelt. Liberating pair
programming research from the oppressive
driver/observer regime. In Proc. 35th Intl. Conf. on
Software Engineering (ICSE), pages 1201–1204. IEEE
Press, 2013.

[13] J. Sillito, G. C. Murphy, and K. De Volder. Asking
and answering questions during a programming
change task. IEEE Transactions on Software
Engineering, 34(4):434–451, 2008.

[14] A. L. Strauss and J. M. Corbin. Basics of Qualitative
Research: Grounded Theory Procedures and
Techniques. SAGE, 1990.

[15] L. Williams and R. Kessler. Pair Programming
Illuminated. Addison-Wesley Professional, 2002.

[16] L. Williams, R. R. Kessler, W. Cunningham, and
R. Je↵ries. Strengthening the case for pair
programming. IEEE Software, 17(4):19–25, 2000.

	Introduction
	Related work
	Method
	Data and data collection method
	Data analysis method
	Notation

	Results
	What is knowledge?
	Some terminology for knowledge transfer
	Modes of knowledge transfer
	The Episode structure
	Attributes of knowledge transfer utterances
	The Clarification Cascade
	Explanation Trigger Types
	The escalation of difficulty
	The different effects of the Types
	An example Clarification Cascade
	Interpretation and context conditions
	Clarification in Push Episodes?

	How to handle multiple Topics
	Positive Example
	Negative Example
	Context conditions

	On focusing on Topics
	Positive Example
	Negative Example
	Context conditions

	On determining the Propellor
	Positive Example
	Negative Example

	Advice for practitioners
	For explaining an information need (Customer)
	For handling a complex Topic (Supplier)
	For managing concurrent Episodes

	Limitations and further work
	Validity
	Generalizability and breadth
	Depth
	Engineering implications

	Conclusion
	References

