
U
nderstandingqP

airqP
rogra

m
m

in
g:qT

heqB
aseqLa

yer
S

tephan
qS

aling
erq•qLutzqP

rech
elt

StephanqSalingerq•qLutzqPrechelt

UnderstandingqPairqProgramming:

TheqBaseqLayer
Thereq hasq beenq andq stillq isq aq lotq ofq controversyq onq whetherq pairq
programmingqisqaqusefulqengineeringqtechniqueq–qasqifqthisqwouldq
notqstronglyqdependqonqtheqspecificqgoals,qtask,qandqtheqpair-sqpairq
programmingq skill.q Ratherq thanq providingq stillq moreq bottom-line,q
quantitativeq resultsq onq pairq programming,q aq researchq groupq atq
FreieqUniversitätqBerlinqsetqoutqtoqdecipher

–qwhatqisqtheqactualqprocessqofqpairqprogrammingqand

–qwhatqisqpairqprogrammingqskill.

Thisq bookq providesq aq setq ofq conceptsq thatq servesq asq theq
infrastructureq forq studiesq ofq pairq programmingq thatq focusq onq
qualitativeq dataq analysis.q q Itq promisesq toq connectq theq resultsq ofq
suchqstudiesqtoqoneqanother.

Theq bookq isq orientedq towardsq researchersq only,q notq towardsq
practitioners.

StephanqSalingerq•qLutzqPrechelt

UnderstandingqPairqProgramming:qTheqBaseqLayer

9 783732 281930

The Deutsche Nationalbibliothek lists this publication in the
Deutsche Nationalbibliographie:
http://dnb.d-nb.de

Stephan Salinger, Lutz Prechelt:
Understanding Pair Programming: The Base Layer

Typeset with LaTeX in Palatino font
Published and printed by:
BoD — Books on Demand, Norderstedt, Germany
www.bod.de

ISBN 978-3-7322-8193-0

c© Copyright 2013 by Stephan Salinger and Lutz Prechelt

This work is licensed under a Creative Commons
Attribution–NonCommercial–NoDerivatives 4.0 International License
CC BY–NC–ND 4.0
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dear reader, you can get a printed copy of this book at
http://www.amazon.co.uk, but, due to a publishing mishap,
not at http://www.amazon.com. We are sorry for any inconvenience!

http://dnb.d-nb.de
http://www.bod.de
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.amazon.co.uk
http://www.amazon.com

Stephan Salinger • Lutz Prechelt

Understanding

Pair Programming:
The Base Layer

Freie Universität Berlin

Contents

Contents 5

I Introduction 15

1 Introduction 17
1.1 Pair programming . 17

1.1.1 What is pair programming? 18
1.1.2 Is pair programming advantageous? 19

1.2 Current understanding of pair programming 19
1.3 The data used for this book . 20

1.3.1 Session BA1 . 21
1.3.2 Session CA2 . 22
1.3.3 Session ZB7 . 22

1.4 Our research perspective . 22
1.4.1 Basic research perspective: Understanding programming 22
1.4.2 Practitioner perspective: Using pair programming 23
1.4.3 Overall research approach: Work in “layers” 23
1.4.4 Research method: Grounded Theory Methodology . . . 24
1.4.5 On using prior research results 26

1.5 About this book . 27
1.5.1 What this book is . 27
1.5.2 What this book is not . 28
1.5.3 How to read this book . 29
1.5.4 How to start performing research based on this book . . 29

1.6 Terminology and notation . 31

2 Overview of the base layer 35
2.1 What are the base concepts? . 35

2.1.1 Concepts and concept classes 36
2.1.2 HHI concepts vs. HCI/HEI concepts vs. supplementary

concepts . 36
2.1.3 HHI concept class groupings 36

2.2 What is the base layer? . 37
2.3 Key decisions for the base layer 37

2.3.1 Primarily rely on verbalization 38
2.3.2 Model illocutionary acts 38

5

6 Contents

2.3.3 Let segmentation emerge 39
2.3.4 Crave for behavioristic interpretation 39
2.3.5 Model the discourse world, not the activity world 40
2.3.6 Model dialog episodes . 40
2.3.7 Design the concepts to reflect relevant phenomena . . . 41

II The HHI concepts:
Human/human interaction 43

3 Objects and verbs of the HHI concepts 45
3.1 The structure and meaning of concept names 45
3.2 The objects . 46
3.3 The verbs . 47
3.4 The existing object/verb combinations 48
3.5 Types of verbs . 49
3.6 The notion of “knowledge” . 52
3.7 propose vs. explain . 56
3.8 explain vs. think aloud . 56
3.9 disagree+propose vs. challenge . 57

4 Product-oriented concepts: design 59
4.1 Topic of design concepts . 59
4.2 design concepts and their properties 60

4.2.1 Types and intentions of proposals 62
4.2.2 Referring to editing steps 63
4.2.3 Proposals with rationale 64
4.2.4 decide vs. agree . 64
4.2.5 amend vs. a new propose 64
4.2.6 amend or challenge one’s own proposal 64
4.2.7 Indicating agreement vs. indicating attentiveness 65
4.2.8 Short negations . 65
4.2.9 Proposal-less questions 65
4.2.10 Restricted disagreement 66

4.3 Discrimination from similar concepts 66
4.3.1 propose_design vs. ask_knowledge 66
4.3.2 *_design vs. explain_knowledge/explain_finding 66
4.3.3 propose_design vs. propose_step/propose_todo 67

5 Product-oriented concepts: requirement 69
5.1 Topic of requirement concepts . 69
5.2 requirement concepts and their properties 70

5.2.1 remember_requirement . 71
5.2.2 propose_requirement . 71

Contents 7

5.2.3 agree_requirement and challenge_requirement 71
5.3 Discrimination from similar concepts 72

6 Process-oriented concepts: step 73
6.1 Topic of step concepts . 73
6.2 step concepts and their properties 75

6.2.1 propose_step with rationale 75
6.2.2 Purpose of making propose_step utterances 76
6.2.3 Reserving time . 77
6.2.4 Imprecise proposals . 77
6.2.5 decide_step vs. agree_step 78
6.2.6 amend, challenge, or disagree one’s own proposal 78
6.2.7 Indicating agreement vs. indicating attentiveness 79
6.2.8 ask_step . 79

6.3 Discrimination from similar concepts 79
6.3.1 *_step vs. explain_knowledge/explain_finding 79
6.3.2 propose_step vs. propose_design 79
6.3.3 propose_step vs. ask_knowledge 81
6.3.4 ask_step vs. ask_knowledge 82
6.3.5 ask_step vs. ask_design . 82
6.3.6 disagree_step vs. explain_knowledge/explain_finding 82
6.3.7 amend_step vs. explain_knowledge/explain_finding 82

7 Process-oriented concepts: completion 83
7.1 Topic of completion concepts . 83
7.2 completion concepts and their properties 84

7.2.1 Short evaluations . 84
7.2.2 Indirect evaluations . 85
7.2.3 Evaluation of quality . 85

7.3 Discrimination from similar concepts 85

8 Process-oriented concepts: todo 87
8.1 Topic of todo concepts . 87
8.2 todo concepts and their properties 88
8.3 Discrimination from similar concepts 89

8.3.1 propose_todo vs. propose_step 89
8.3.2 propose_todo vs. explain_knowledge/explain_finding 90
8.3.3 propose_todo vs. amend_design/propose_design 90

9 Process-oriented concepts: strategy 93
9.1 Topic and typology of strategy concepts 93

9.1.1 OWP: Organizing Work Packages 93
9.1.2 DPR: Determining Procedure Rules 93
9.1.3 EXS: Expanding a step into a strategy 94

8 Contents

9.1.4 Extensional vs. intensional representation 94
9.1.5 Range . 94
9.1.6 Mixed types . 95

9.2 strategy concepts and their properties 96
9.2.1 Proposal mode . 96
9.2.2 Proposals with alternatives 96
9.2.3 decide_strategy vs. agree_strategy 96
9.2.4 Secondary issues . 96
9.2.5 Forms of amend_strategy 97
9.2.6 Distinguishing proposals: amend, challenge, propose 98
9.2.7 ask_strategy . 99
9.2.8 agree_strategy . 99
9.2.9 disagree_strategy . 99

9.3 Discrimination from similar concepts 99
9.3.1 *_strategy vs. explain_knowledge/explain_finding 99
9.3.2 propose_strategy vs. propose_todo 99
9.3.3 propose_strategy vs. propose_step 100

9.3.3.1 Recycled strategies 100
9.3.3.2 step with forward reference 100
9.3.3.3 steps aiming at advantage 100
9.3.3.4 Multi-part proposals not forming a strategy . . 101
9.3.3.5 The creative act is invisible 101
9.3.3.6 Lowly creative acts 101

9.3.4 propose_strategy vs. propose_design 101
9.3.5 agree_strategy vs. agree_knowledge 102
9.3.6 ask_strategy vs. ask_knowledge 103
9.3.7 ask_strategy vs. ask_step . 103

10 Process-oriented concepts: state 105
10.1 Topic of state concepts . 105
10.2 state concepts and their properties 106

10.2.1 Short agree utterances . 106
10.2.2 Lack of reference to a strategy 106
10.2.3 Partial disagreement . 107

10.3 Discrimination from similar concepts 107
10.3.1 explain_state vs. explain_completion 107
10.3.2 explain_state vs. explain_finding 107

11 Universal concepts: What is “knowledge”? 109
11.1 On knowledge . 109
11.2 The base concepts’ notion of knowledge 110
11.3 Priority rules for assigning knowledge concepts 111

12 Universal concepts: finding 113

Contents 9

12.1 Topic and typology of finding concepts 113
12.1.1 finding type P: perceived event 114
12.1.2 finding type D: discovered issue 114
12.1.3 finding type T: thought . 116
12.1.4 Priority rules for checking finding types 116
12.1.5 finding type indicators and examples 117

12.2 finding concepts and their properties 120
12.2.1 Aggregation of utterances 120
12.2.2 Repeated statements . 121
12.2.3 Thinking aloud . 121
12.2.4 Revoking and replacing findings 122
12.2.5 “Additional” findings . 122
12.2.6 Justifications of proposals 125
12.2.7 Justifications of findings 125
12.2.8 disagree_finding, challenge_finding 125
12.2.9 Reasons for agreement . 127
12.2.10 Doubt . 128
12.2.11 ask_finding? . 128

12.3 Discrimination from similar concepts 129
12.3.1 finding vs. other universal concepts 130
12.3.2 explain_finding vs. propose_design 130
12.3.3 explain_finding vs. *_step 130
12.3.4 explain_finding vs. explain_completion or explain_state . . . 130

13 Universal concepts: hypothesis 131
13.1 Topic of hypothesis concepts . 131

13.1.1 Uncertain knowledge . 131
13.1.2 Hard-to-verify assumptions 131
13.1.3 Readily verifiable conjectures 132
13.1.4 Issue types addressed by hypotheses 132

13.2 hypothesis concepts and their properties 133
13.2.1 propose_hypothesis . 133
13.2.2 agree_hypothesis, disagree_hypothesis, challenge_hypothesis . 133
13.2.3 Conditional agreement . 134
13.2.4 Revoking or replacing one’s own hypothesis 134
13.2.5 amend_hypothesis: One hypothesis or several? 134
13.2.6 Justification of hypotheses 136
13.2.7 Justification by hypotheses 136

13.3 Discrimination from similar concepts 136
13.3.1 propose_hypothesis vs. explain_finding 136

14 Universal concepts: standard of knowledge 139
14.1 Topic of standard of knowledge concepts 139

14.1.1 PT: Preparing knowledge transfer 139

10 Contents

14.1.2 RT: Refusing knowledge transfer 140
14.1.3 AT: Acknowledging knowledge transfer 140

14.2 standard of knowledge concepts and their properties 141
14.2.1 ask_standard of knowledge 141
14.2.2 AT with paraphrasing . 141
14.2.3 standard of knowledge in the making 142
14.2.4 explain_standard of knowledge may be findings 143
14.2.5 Limited-knowledge proposals 143
14.2.6 Implicit statements . 143
14.2.7 Backward-looking statements 143
14.2.8 Signaling ongoing thinking 144

14.3 Discrimination from similar concepts 144
14.3.1 explain_standard of knowledge vs. ask_knowledge 144
14.3.2 explain_standard of knowledge vs. agree_finding or disagree_

finding . 144
14.3.3 explain_standard of knowledge vs. explain_finding 145
14.3.4 explain_standard of knowledge vs. agree/disagree for a pro-

posal . 145
14.3.5 explain_standard of knowledge vs. propose_hypothesis 145

15 Universal concepts: gap in knowledge 147
15.1 Topic of gap in knowledge concepts 147
15.2 gap in knowledge concepts and their properties 148

15.2.1 explain_gap in knowledge 148
15.3 Discrimination from similar concepts 148

15.3.1 explain_gap in knowledge vs. explain_standard of knowledge 148
15.3.2 agree_gap in knowledge vs. agree_standard of knowledge . . . 148
15.3.3 explain_gap in knowledge vs. propose_step 149

16 Universal concepts: knowledge 151
16.1 Topic of knowledge concepts . 151
16.2 knowledge concepts and their properties 153

16.2.1 Evaluations and judgments 153
16.2.2 Unprompted knowledge transfer 154
16.2.3 Rhetorical questions . 154
16.2.4 Aggregation of utterances 154
16.2.5 amend_knowledge? . 154
16.2.6 “Different” answers . 154
16.2.7 Modes of agreement . 155
16.2.8 Indicating agreement vs. indicating attentiveness 157
16.2.9 Opposition and controversy 157
16.2.10 Disagreeing by agreeing to the opposite 158
16.2.11 Opinions . 158
16.2.12 Limited conviction . 158

Contents 11

16.2.13 ask_knowledge is not always that 158
16.2.14 Questions including possible answers 158
16.2.15 Statement or question? . 158

16.3 Discrimination from similar concepts 159
16.3.1 explain_knowledge vs. propose_step 159
16.3.2 explain_knowledge vs. propose_design 159
16.3.3 explain_knowledge vs. explain_finding 160
16.3.4 explain_knowledge vs. amend_finding, challenge_finding, dis-

agree_finding . 161
16.3.5 explain_knowledge vs. agree_design/disagree_design 161
16.3.6 ask_knowledge vs. propose_hypothesis 161
16.3.7 ask_knowledge vs. explain_finding 162
16.3.8 explain_knowledge vs. explain_standard of knowledge 162
16.3.9 ask_knowledge vs. explain_standard of knowledge 163
16.3.10 agree_knowledge vs. explain_standard of knowledge 163

17 Universal concepts: activity 165
17.1 The notion of facade concept class 165
17.2 Topic of activity concepts . 165
17.3 activity concepts and their properties 169

17.3.1 Granularity of think aloud_activity 169
17.3.2 think aloud_activity phenomena leading to questions . . . 170
17.3.3 HCI/HEI activities resulting from an utterance 170
17.3.4 Disconnect of HCI/HEI activity and verbalization 171
17.3.5 The partner commenting on activity vs. on verbalizations 171
17.3.6 challenge_activity . 171
17.3.7 agree_activity, disagree_activity 172
17.3.8 Comments before the fact 173
17.3.9 Comments after the end 173
17.3.10 amend_activity vs. challenge_activity 173
17.3.11 stop_activity . 174
17.3.12 Interjections leading to activity change 174
17.3.13 think aloud_activity by the “observer” 174
17.3.14 Self-criticism . 174

18 Universal concepts: Miscellaneous 177
18.1 mumble_sth . 177
18.2 say_off topic . 177

III Other concepts 179

19 The HCI/HEI concepts 181
19.1 write_sth . 182

12 Contents

19.2 search_sth . 183
19.3 explore_sth . 185
19.4 verify_sth . 186
19.5 read_sth . 189
19.6 sketch_sth . 189
19.7 show_sth . 189
19.8 do_sth . 190
19.9 On drivers, observers, and co-action 190

20 Supplementary concepts 193
20.1 become_driver . 193
20.2 work in parallel_sth . 193
20.3 work alone_sth . 193
20.4 wait for_sth . 194
20.5 react to_interrupt . 194

IV Using the base concepts 195

21 Guidelines for annotating 197
21.1 How to pick appropriate HHI concepts 197
21.2 How to pick appropriate HCI/HEI concepts 198
21.3 What to consider as context . 199
21.4 When to use double HHI annotations 199
21.5 How to segment utterances . 200
21.6 How to handle specific phenomena 201

21.6.1 How to annotate implicit announcements 201
21.6.2 How to annotate thematic shifts 201
21.6.3 How to annotate repetitions 203
21.6.4 How to annotate incomplete agreement or disagreement 204
21.6.5 How to annotate self-corrections 204
21.6.6 How to annotate justifications 204

21.7 Method hints . 205
21.7.1 Step back . 205
21.7.2 Paraphrase . 205
21.7.3 Peek into the future . 206

22 Guidelines for modifying the base concept set 207
22.1 What makes a good concept set 207
22.2 When to shift a boundary . 208
22.3 When to add a new property value 208
22.4 When to add a concept and which 209

23 Guidelines for creating new concept sets 211

Contents 13

23.1 The idea of layers . 211
23.2 Granularity . 212
23.3 Properties and property values 212
23.4 Forming “nice” layers . 213
23.5 Go! . 213

Bibliography 215

Index 217

14 Contents

Note

The PDF version of this book contains very many cross-reference hyperlinks.
It may be convenient to use the paper version for learning but then the PDF
version for actually working with the base layer.

Acknowledgments

Sincere thanks to Laura Plonka for collecting a large part of our session record-
ings and for working closely with Stephan in the early stage of our analysis,
to Franz Zieris for the first serious third-party use of the base layer, to Franz
Zieris, David Socha, and Helen Sharp for their feedback on the book draft, to
Gesine Milde for proofreading, and to all the pairs that agreed to be recorded
and scrutinized.

Part I

Introduction

. . . in which we explain what this book is all about, how to best use it, and what
notation we will use for the examples.

15

Chapter 1
Introduction

This book is a handbook for researchers attempting to make sense of what is
going on in pair programming sessions; it is based on Stephan Salinger’s Ph.D.
dissertation [11]. The present chapter will introduce pair programming (in
Section 1.1), summarize what research has so far found out about it (Section 1.2),
explain the the raw data we have used (Section 1.3) and the research approach
we propose (Section 1.4), propose how to make use of the book (Section 1.5),
and introduce a few key terms and notations (Section 1.6).

1.1 Pair programming

Assume you have a Ph.D. in dancing science and are the only non-programmer
at a party full of programmers. According to the stereotype, it is hard to talk to
these people. Your best bet would be to grab two or three of them at once and
ask

“Is pair programming a good engineering practice?”

The ensuing discussion will be lively and despite talking to techies you can
have your part in the discussion!

Pair programming is a subtle matter and so any good answer to the question
ought to begin with “Well. . . ”, but (and that is what makes the discussion so
lively) many people appear to have a simplified notion of it and a correspond-
ingly clear opinion.

Why is that so? And what, exactly, is pair programming anyway?

17

18 Chapter 1. Introduction

1.1.1 What is pair programming?

Pair programming is an old technique. Fred Brooks (of Mythical Man-Month
fame) reports: “Fellow graduate student Bill Wright and I first tried pair program-
ming when I was a grad student (1953–56). We produced 1500 lines of defect-free
code; it ran correctly first try.” [15, p.8]. Its modern popularity is largely due to
Kent Beck’s 1999 book on eXtreme Programming (XP) [2], a holistic method for
small-team software development consisting of twelve practices, a core one of
which is pair programming. In the section on pair programming, Beck states
“Pair programming really deserves its own book. It’s a subtle skill” [2, p.100], and
indeed such a book appeared in 2002: “Pair Programming Illuminated”. It
offers the following characterization:

“Pair programming is a style of programming in which two programmers
work side by side at one computer, continually collaborating on the same
design, algorithm, code, or test. One of the pair, called the driver, is
typing at the computer or writing down a design. The other partner, called
the navigator, has many jobs, one of which is to observe the work of the
driver, looking for tactical and strategic defects.” [15, p.3]

Note that more than half of this definition is concerned with describing the
roles of driver and navigator (the latter is now more (Google-)commonly called
“observer”). But once you have read this book (or any substantial part of it),
you will know that while the first part of the definition is alright, the second
part is misleading: The description of both roles is wrong in many respects and
the whole driver/observer distinction does not go far in characterizing the pair
programming process anyway.1

Kent Beck’s description is shorter: “Pair programming—All production code is
written with two programmers at one machine.” [2, p.54]. There is elaboration
later, but this is arguably his definition of this all-important practice. The 2004
second edition of the book is more explicit:

“Write all production programs with two people sitting at one machine.
Set up the machine so the partners can sit comfortably side-by-side. Move
the keyboard and mouse back and forth so you are comfortable while you are
typing. Pair programming is a dialog between two people simultaneously
programming (and analyzing and designing and testing) and trying to
program better.” [3, p.26]

“Sitting comfortably” sounds like trivial information compared to the presum-
ably illuminating driver/observer characterization, but it is relevant. And once

1We will occasionally use the terms driver and observer anyway (and without a particular
connotation) when they are handy to express something.

1.2. Current understanding of pair programming 19

you have read the present book, you will appreciate that the above definition
captures, very inconspicuously, a key property of pair programming: “Pair
programming is a dialog”. Yes!

At this point, we have nothing to add to that.

1.1.2 Is pair programming advantageous?

This leaves the other question: Why do some people have such a simplified
(and then strong) notion of whether pair programming is a good engineering
practice? The strongest ones tend to be the strict opponents: their attitude
is usually the belief that the obvious cost of pair programming (occupying
two precious software developers rather than just one) is so large that no
corresponding benefits can possibly outweigh it.

More thoughtful discussants will not readily agree because the list of potential
benefits is impressive. Here is (in paraphrased form) the one presented in “Pair
Programming Illuminated” [15, p.4]:

• The resulting code may contain fewer defects.

• The pair will likely finish faster than an individual would.2

• “Pair programmers are happier programmers.”

• Pair programming builds within-team trust and improves teamwork.

• Unless you use fixed pairs only, a developer will become acquainted with
larger fractions of the overall code, design, and requirements.

• Pair partners learn from each other.

How much do we know about which of these are true and to what degree? Not
much.

1.2 Current understanding of pair programming

Since the pioneering study of Nosek (which appeared even before Kent Beck’s
book) in 1998 [10] there have been many empirical studies on pair program-
ming, in particular controlled experiments comparing it to solo programming,
but the amount of knowledge produced by these studies is not large; an
overview of research until 2007 is provided by Hannay et al. [8]. We do
not aim at a detailed overview here. Roughly speaking, there is good evidence
that pairs tend to be faster than solo programmers, some evidence that their

2The book claims “in about half the time”, but that is oversimplifying matters; see Section 1.2.

20 Chapter 1. Introduction

work tends to have fewer defects, and beginning evidence that the designs
produced are better. The size of each of these effects, however, is hardly under-
stood: The results of individual studies differ so much (and those differences
remain unexplained) that taken together the results are inconclusive.

What is worse, their validity is highly questionable as the conditions un-
der which most of them were created are highly unrealistic: mostly non-
professional programmers, normally non-gelled pairings, usually either devel-
opment from scratch or work on fairly small programs, generally little or no
relevance of domain knowledge. Even the most ambitious of the controlled
experiments, which hired 295 professionals for one day, concluded: “It is pos-
sible that the benefits of pair programming will exceed the results obtained in this
experiment for larger, more complex tasks and if the pair programmers have a chance
to work together over a longer period of time.” [1]. This statement is also one of
the few exceptions of the disturbing tendency that most studies tacitly assume
there is no such thing as a specific pair programming skill distinct from general
software development skill. We believe that this assumption is wrong and that
successful pair programming research needs to reflect that. This implies a lot
of qualitative pair programming research will be required before meaningful
designs for quantitative pair programming studies can even be formulated.

For such qualitative types of research questions, the amount of work done
so far is much smaller3 although the number of questions is larger: There is
evidence that different capability levels of the pair members play a role [5]
and some evidence that personality characteristics of the pair members may
play a modest role, too [9]. Only few studies discuss high-level behaviors or
mechanisms and those do not do much decomposition or analysis yet, e.g. [6],
or are even based on anecdotal evidence only, e.g. [16].

In our view, the most conclusive of the qualitative studies showed that the
description of the driver and navigator roles from the above definition does
not represent reality: Rather than working on different levels of abstraction
(low and high for the navigator versus medium for the driver) as the definition
assumes, the partners in fact strongly tend to move through these abstraction
levels together [4, 6]. Work towards a more meaningful roles model is still in
its infancy [13].

1.3 The data used for this book

The results and all examples presented in this book are based on complete
recordings of individual pair programming sessions. The recordings consist of
audio, a pixel-precise recording of all screen activity, and a webcam recording of
the pair (usually recorded from atop the monitor). We use Techsmith Camtasia

3We ignore surveys here, because surveys observe attitudes only, not actual practice.

1.3. The data used for this book 21

Studio4 for recording and place the webcam video into the lower-right corner
of the screen video. See [12] for a few more details.

We possess a substantial collection of such recordings of typically one to three
hours length. 55 recordings stem from pairs of 48 different volunteer industrial
software developers (called A1 to K4, see session descriptions below) doing
their normal work in their usual environment (domain, code, task, tools, hard-
ware, office, etc.) in one of 11 different companies (called A to K). The reality
distortion of these videos is presumably negligible; the pairs do not show (nor
report when interviewed afterwards) any acute awareness of being recorded
beyond a minute into their work. The videos reflect a variety of domains,
developer constellations, and task types; most tasks can be subsumed under
extension programming. They reflect only small cultural variety, though: All
sessions are from German companies and involve German-speaking develop-
ers. See the note on translation in Section 1.6.

Further 28 recordings stem from pairs of 56 different volunteer graduate stu-
dents (called Z1 to Z56) working in one of 5 different controlled laboratory
settings (called ZA to ZE). The advantage of these recordings is that the re-
searcher has a good understanding of the code base, the task, and correct
solutions for the task, making it often much easier to understand what is really
going on in the session.

Only 7 of these recordings (6 professional/industrial and 1 student/laboratory)
were used for the research reflected here. For the concepts reported here, we
reached theoretical saturation (see Section 1.4.4) with only this many.5 For
the examples presented in this book, we even confine ourselves to only three
of these sessions, so that over time you can get better acquainted with their
respective topics; some of the examples are even understandably related. These
three sessions are the following:

1.3.1 Session BA1

An industrial session (with a duration of 1:47 hours) of two professional pro-
grammers B1 and B2 who worked for a large community portal operator B
and had paired several times before. They built an extension to the community
portal, which is implemented in PHP. The task difficulty had several aspects

4http://www.techsmith.com/
5Actually, most subsets of any random three of them would have sufficed. This will be different

in subsequent research when investigating more specialized pair programming phenomena which
do not occur frequently, yet still have many facets and variations that need to be understood. For
our purposes here, however, attributes such as the level of programming skill, the amount of pair
programming experience, the exact nature of the task play, and many others are of minor relevance,
as we are concerned only with uncovering phenomena, not with determining their frequency or
interplay.

22 Chapter 1. Introduction

including understanding the design and design rationale of the pre-existing
code, which had been written by nearshore programmers.

1.3.2 Session CA2

An industrial session (duration 1:16 hours) of two professional programmers C2
and C5 who worked for a software product company C. The product they work
on is a geographic information system (GIS) desktop GUI application written in
Java. The design of this software uses abstraction elaborately; the task involves
a small functional extension and its main difficulty lies in understanding and
properly applying the existing design abstractions.

1.3.3 Session ZB7

A laboratory session (duration 2:58 hours) of two graduate students Z19 and
Z20 who had worked together as a pair several times before. They built a
small extension to a cleanly designed Java EE web shop system with which
they were modestly familiar. The main task difficulty lay in the need to apply
certain Java EE technologies (JMS, JNDI, JBoss application server) that the
developers had learned about in a recent graduate course but had not applied
often beforehand.

1.4 Our research perspective

The purpose of this book is to lay the groundwork for a stream of research aim-
ing at thoroughly understanding pair programming. We will now explain why
we believe this is relevant from the perspective of basic software engineering
research (Section 1.4.1) as well as from a practitioner perspective (1.4.2), what
the overall architecture of this research will look like (1.4.3), which specific
research method we suggest to primarily use (1.4.4) and what the benefits are
with respect to science’s principle of knowledge accumulation (“standing on
the shoulders of giants”, Section 1.4.5).

1.4.1 Basic research perspective: Understanding programming

Several decades after research began that attempted to understand what is
going on in the activity we call “programming”, this understanding is still very
much in its infancy. Pair programming provides a wonderful opportunity for
making a lot of progress there, because rather than having to rely on artificial
think-aloud data gathering techniques, pair programmers verbalize naturally
much of the time.

Pair programming will surely be different from solo programming in many
respects, but probably also fundamentally similar. And while think-aloud

1.4. Our research perspective 23

studies may occasionally be possible even in industrial work contexts, they
tend to be difficult to arrange. In comparison, pair programming data can be
gathered more easily and almost uninvasively in industrial work contexts on
real work tasks; see Section 1.3. This whole basic research aspect, however, is
more a fringe benefit, not the core reason why we started this line of work.

1.4.2 Practitioner perspective: Using pair programming

Our overall research goal is to understand the mechanisms of pair program-
ming sufficiently well to provide practitioners with detailed advice regarding
(a) in which situations to use pair programming and (b) how pair members
might behave to make pair programming effective, smooth, and efficient.

The basic idea for achieving this is to understand many sub-behaviors at work
within pair programming and formulate this understanding into one or more
patterns or antipatterns of behavior for each. This research will be almost
purely qualitative; better quantitative research can then be started based on
this differentiated and advanced understanding.

1.4.3 Overall research approach: Work in “layers”

The goals described in Sections 1.4.1 and 1.4.2 are far too ambitious for a single
research project; the work needs to be modularized somehow. This, however,
will not be easy: Initially, many fundamentals need to be understood before
even the first few useful patterns will emerge. Later on, of the various topics
studied, many will be interdependent or at least layered on top of each other.

Our overall approach is therefore to first lay a foundation of elementary con-
cepts useful for analyzing and understanding pair programming sessions. This
is what the current book is about. We call this foundation the base layer. It
consists of a set of base concepts (surprisingly called the base concept set and
introduced in Chapters 3 to 20) and rules for its use (Chapter 21) and extension
(Chapter 22).

On top of this foundation, a subsequent study of some pair programming
topic X (such as “decision-making”) can then build an X-layer of concepts that
together characterize X. While working on the X-layer, the study can make use
of the base layer and of the concepts found in subsequent studies performed
earlier on other topics A, B, C (say, “pair programming roles” and others). If,
for understanding X, some other topic Y (say, “knowledge transfer”) is relevant,
the study on X will obtain a minimal understanding of Y required internally
but needs not work it out fully.

Once the study of Y has been performed later (which may also use the X-
layer fully), the X-layer can be consolidated into also using the Y-layer. This
will break the layering for the overall results (pair programming is a holistic

24 Chapter 1. Introduction

activity after all!), but still keeps a convenient mostly-layered work style for
the individual sub-studies.

Each such study may provide a number of behavioral patterns and antipatterns.
The role of the base layer is special because it provides common terminology
that not only jumpstarts but also connects the other studies such as to form
a whole rather than a set of separate pieces. The number of concepts in the
base layer is sufficiently small to allow the various researchers to stay on top of
them, so there are good chances of actual (near-)consistency between studies
even of different researchers rather than only formal pseudo-consistency.

1.4.4 Research method: Grounded Theory Methodology

When we started with this work, we felt that many of the common statements
made about pair programming were likely misleading or at least naive, but we
had no expectation of what a better characterization would be like. We shared
Kent Beck’s view that pair programming is “a subtle skill”. So once we had made
the decision to analyze session recordings such as those described in Section 1.3,
we had no idea which aspects of them would be relevant: The dialog content?
Its wording? Phrasing? Intonation? Screen content? Changes of screen content?
Human activity on the computer? Gestures? Facial expressions? The list went
on and on. We quickly decided it would be important to pick a research method
that was as empty of assumptions as possible.

Ethnographical approaches are rather far away from software engineering
thinking, so we decided for Grounded Theory Methodology (GTM) [14] as our
basic research approach. We selected the Straussian variety because we expect
its higher degree of structuredness to be more appealing to software engineers
compared to the Glaser style – and we believe that both methods, if understood
correctly, will lead to similarly valuable results.

We will not give a primer on Grounded Theory Methodology here. If you have
not used GTM before, you might want to get a textbook about it and read it
up; there are a number of such books. The Strauss/Corbin book (or its second
edition but preferably not the third) is a possibility although other books may
be easier to work with. To summarize it in a nutshell, GTM suggests to work
as follows:

• GTM work aims at a conceptual explanation (theory) of some phenomenon of
interest for which each element of the explanation (called a concept or category;
we will only use the former term) is directly connected to one or more raw
observations (grounding).

• Formulate your research interest. In our case this was “Define the elementary
behaviors which constitute pair programming.”6 The research question is allowed

6Note this aims only at elements of a theory, not the theory itself and hence requires not all

1.4. Our research perspective 25

to drift freely during GTM work.

• Obtain some observation data. In our case this was the first handful of session
recordings. GTM work does not require to pre-plan the data collection nor
to achieve any kind of representativeness. Additional data will be collected
once the researcher has found for what sub-phenomena more data is needed
(theoretical sampling). For instance, a study of knowledge transfer in pair pro-
gramming might find that the general knowledge level difference within the
pair appears to be highly relevant. If no recording of an expert working with
a true novice is yet available, the researcher would look for such a context
and make a recording there. Representativeness is not required because GTM
results focus on explaining things that exist, not on making claims about their
frequency.

• Work through the observation data and annotate labels to phenomena that
appear “interesting” with respect to the research focus. You need theoretical sen-
sitivity to select relevant phenomena and appropriate labels. The phenomenon
can be anything and of any granularity. Each label is the name of a (prelim-
inary) concept; see Chapters 4 to 20 for examples. It is meant to be reused in
several places in the data. Each concept is chosen such as to help explain some
aspect of the phenomenon (theoretical coding). This process is called open coding.

• When assigning the same label again, make sure the phenomena are similar
so that you will obtain a consistent concept. To do so, compare to all previous
annotations of this concept (constant comparison), determine the commonalities,
and record them in a memo. Make sure your concept assignment is fully
grounded, that is, is based only on phenomena actually present in your data, not
on any prior knowledge you might have (or rather: assume). The ungrounded
use of any prior assumption when assigning a concept is called forcing.

• If the differences between phenomena annotated with the same concept
appear relevant, represent them by auxiliary concepts: attributes (properties)
and attribute values (also properties); apply constant comparison and memoing
to them as well. This process is called dimensionalization. Avoid forcing.

• If you have accumulated enough isolated concepts, start discovering relevant
relationships between concepts and validate them for specific phenomena. The
relationships may pertain to context factors, constraints, causes, effects, the
actor’s strategies, etc. This process is called axial coding and should also involve
constant comparison as well as a lot of memoing. Avoid forcing. Meanwhile,
open coding continues as well.

• If you have accumulated enough relationships, determine the core of the
subject matter and extract those concepts around it that allow to formulate

components of the GTM. Only subsequent studies will aim at actual theories of (some aspects of)
pair programming.

26 Chapter 1. Introduction

a narrative (grounded theory) that explains what is going on around this core
concept. This process is called selective coding. Beware of forcing! Selective
coding can start as soon as you have the first idea for it and should start no
later than when you find you are detecting only known concepts, not creating
new ones (theoretical saturation). Selective coding will often point out gaps in
your conceptualization and hence trigger theoretical sampling, in particular if
you start it early.

Working in this manner (with mostly open coding, some dimensionalization, a
little axial coding, and no selective coding) and considering all of the above-
mentioned aspects of the data, we were initially totally overwhelmed by the
amount of information residing in our recordings. To cope with this, we
developed several additions to plain GTM (see [12] for details), in particular:

• A perspective on the data: GTM suggests to initially conceptualize “every-
thing” that may be of relevance and only start focussing on fewer concepts
during selective coding. This approach does not work for data as rich as ours
with a research question as open as ours. We decided early on that we would
need to constrain ourselves to behavioristic concepts as much as possible (see
Section 2.3.4 for details) and soon thereafter to conceptualize verbal interaction
in far more detail than other behaviors (see Section 2.3.1).

• Structured concept names to further constrain and structure the applica-
ble concept universe in order to make it manageable. See Section 2.1.1 and
Section 3.1 for details.

• Pair conceptualizing: Doing GTM in pairs (which we originally called pair
coding) helps to quickly weed out or improve inadequate conceptualizations,
in particular early in a study when the concept set is still small and hence open
to a multitude of possible additions, including additions that lead astray. This
practice can save inordinate amounts of time and frustration.

• Furthermore, most GTM books recommend transcribing the data but ade-
quate transcription of hour-long audio/video data that is as fine-grained and
feature-rich as ours is hardly practical. So we annotate these data directly
(without transcription) in the ATLAS.ti7 data analysis software.

1.4.5 On using prior research results

When doing GTM, knowing a lot about your phenomenon in advance is a
mixed blessing: On the one hand, such prior knowledge can greatly enhance
your theoretical sensitivity and hence speed up the research process a lot. On
the other hand, it can lead to forcing and thus ruin the validity of your results
if you are not careful.

7http://en.wikipedia.org/w/index.php?title=Atlas.ti&oldid=559282786

http://en.wikipedia.org/w/index.php?title=Atlas.ti&oldid=559282786
http://en.wikipedia.org/w/index.php?title=Atlas.ti&oldid=559282786

1.5. About this book 27

The solution suggested by (in particular Glaserian) GTM is to treat all sources
of such prior knowledge (even if you have written them up yourself!) as
additional observations – of a very different kind, but still to be considered.
This idea is called all is data.

For the derivation of the base concept set, we were afraid of forcing and so
have chosen to err on the side of knowing too little rather than too much (or the
wrong things). So we started from the epistemological8 stance of Pragmatism9

(very roughly speaking: knowledge should be considered true if it leads to
satisfactory results when applied in the world), hoped that we would have
sufficient talent for abductive reasoning10 to invent helpful concepts, went
ahead, and read up on related work only after we had found and conceptualized
the respective phenomena. The most important example of this is the notion
of an illocutionary act (see Section 2.3.2) which we developed (and validated
as consistent) in constant comparison manner before we searched for it in the
literature, found it (as a central idea of speech act theory), and hence convinced
ourselves that the approach was probably sound and valuable.

But this approach can obviously not continue if we are to use the overall
research approach outlined in Section 1.4.3: If subsequent studies build on
top of the base layer, this will involve using prior assumptions (in form of the
base concepts) and obviously creates a danger of forcing. The danger is small
because the concepts are grounded in data from the very domain. Also, the
base layer safeguards against this danger by pointing out in many places that
modifying certain details of individual concepts may be sensible in subsequent
studies and by providing guidelines for how to do that in an orderly fashion;
see Chapter 22 for details.

1.5 About this book

1.5.1 What this book is

• This book aims at providing a foundation for qualitative research into pair
programming; research that aims at explaining the pair programming
process.

• As this foundation, this book introduces and explains the base layer of
concepts for understanding basic events in pair programming sessions.11

The base layer consists of the base concept set plus rules for its use.

8http://en.wikipedia.org/w/index.php?title=Epistemology&oldid=565995152
9http://en.wikipedia.org/w/index.php?title=Pragmatism&oldid=567854814

10http://en.wikipedia.org/w/index.php?title=Abductive_reasoning&oldid=

562949053
11Additional discussion can be found in [11].

http://en.wikipedia.org/w/index.php?title=Epistemology&oldid=565995152
http://en.wikipedia.org/w/index.php?title=Pragmatism&oldid=567854814
http://en.wikipedia.org/w/index.php?title=Abductive_reasoning&oldid=562949053
http://en.wikipedia.org/w/index.php?title=Epistemology&oldid=565995152
http://en.wikipedia.org/w/index.php?title=Pragmatism&oldid=567854814
http://en.wikipedia.org/w/index.php?title=Abductive_reasoning&oldid=562949053
http://en.wikipedia.org/w/index.php?title=Abductive_reasoning&oldid=562949053

28 Chapter 1. Introduction

Subsequent studies can build on this to create higher-level concepts and
eventually theory.

• The base layer has two goals:

– Helping a pair programming researcher to make faster progress
with any one study.

– Helping the pair programming research community to produce
studies the results of which are compatible and that can easily be
related to one another.

• This book explains each concept or concept class via a combination of
(1) abstract definition (by means of prototypical properties that instances
of each concept will usually share), (2) ostensive definition (by means of
contextualized examples such as Example 3.1, Example 8.2), and (3) sep-
arate discussion of the delineation between pairs or tuples of concepts
where the definition is not obvious from (1)+(2) alone.

• This book is a handbook for researchers (as opposed to a textbook). To
make practical work handy, it is full of cross reference hyperlinks and
often prefers hyperlinks to good Wikipedia articles over references to
more scholarly12-looking paper-based sources – you can find such sources
in the Wikipedia articles.

We guess that the base concepts may also be helpful when investigating types
of technical pair work other than pair programming, even outside the software
domain.

1.5.2 What this book is not

• This book does not contain advice for pair programming practitioners.

• This book does not contain a theory (complete or partial) of pair program-
ming.

• This book does not provide a coding scheme (see Section 2.1).

• This book introduces no concepts for which we have never seen instances
in our research data (but accurately grounded concepts only).

• This book provides (almost) no introduction into the qualitative research
method we suggest to use (Grounded Theory Methodology).

12We would have liked to make this word a link to the “scholarly method”13 Wikipedia article.
Unfortunately, that article does not have good quality, so we do not.

http://en.wikipedia.org/w/index.php?title=Scholarly_method&oldid=573530784

1.5. About this book 29

• This book provides only little description of the research process by which
we have arrived at the concepts explained herein. Refer to [11] if you
need more detail.

1.5.3 How to read this book

Since we consider this book a handbook, not a textbook, there is no need to
read it in full. Rather, you should develop a good understanding of its basic
ideas and then consult it whenever a decision is unclear that arises in your
research work. Here is a proposal how to develop your understanding of the
basic ideas:

1. Read chapters 1 to 3 to obtain an overall orientation of how it all works.

2. Read the introduction and first subsection of each of the chapters 4 to
17 to deepen your understanding of the major concept classes and their
distinction. As you go, take note which of them you find most interesting
or intriguing.

3. Now pick the two most intriguing concept classes and read the respective
two chapters in full in order to appreciate the subtlety of discriminating
the concepts consistently. Study the examples thoroughly. Follow some
of the cross references to get a feel for the hypertext character of the book.
Make use of the index a few times, e.g. to locate additional examples or
discussion involving a particular concept.

4. Read the introduction of Chapter 19 and skim at least its subsections
19.2, 19.3, and 19.4 to understand the non-dialog-oriented part of the base
concept set.

5. For sake of completeness, have a short look at chapters 18 and 20.

6. Skim chapters 21 to 23.

An alternative method would be to start off to read the whole book, but then
skip to the beginning of the next chapter whenever you get bored or over-
whelmed.

Done? Congrats! You are now ready to go with your own base-layer-based
pair programming research.

1.5.4 How to start performing research based on this book

To give you a rough idea how research based on this book might proceed, we
provide a short sketch for your first attempts here. You should develop your
own style over time.

30 Chapter 1. Introduction

1. Learn about the base layer by following the instructions in Section 1.5.3.

2. Formulate your research question.

3. Obtain a handful of recordings of pair programming sessions. If the
phenomena you investigate are frequent, three to five recordings will be
sufficient in the beginning; you can get additional ones later once you
have a better idea what you are looking for (theoretical sampling).

4. Exercise with the base layer, for example by fully annotating all base con-
cepts that apply to at least a five-minute stretch of each of your sessions.
Intensely make use of the book as you go. Try to pick an interesting-
looking stretch by first viewing the whole session once in TV fashion and
taking some notes.

5. When you proceed to develop your first own concepts, there is a big
difference depending on your research interest. For some interests, one
or a few base concepts will lend themselves for an easy start. For exam-
ple, if you are interested in knowledge transfer phenomena, you might
start by annotating all explain_knowledge utterances and build islands
of annotations around them. For other research interests, this does not
work, because there are no obviously related base concepts to start from.
For instance, if you are interested in pair members’ roles, you cannot
pick out a few helpful base concepts that are obviously relevant. Rather,
you would perhaps start annotating all phenomena with base concepts
until you detect interesting phenomena and start introducing your own
concepts for them. There is no need to think about layers yet; you can
decide this later.

6. If you find yourself modifying the base layer (rather than just adding to
it) in places where this possibility is not mentioned in this book14, re-
read Chapter 22, be honest with yourself, and make sure you are doing
the Right Thing. (Such modifications are dangerous, because they may
reduce the compatibility of base-layer-based studies which is a key idea
of our research approach.)

7. Now several things need to be done for which there is no obvious order.
Do them all at once or find your own best ordering: Refine your own
concepts; learn annotating base layer concepts and your own concepts
concurrently in one go or in some efficient sequential fashion; find out
which base layer concepts you do not need to annotate for your research
focus (or at least not always).

14The possibilities that are mentioned in the book are marked by the pen symbol in the margin.

1.6. Terminology and notation 31

8. Move from open coding into axial coding and selective coding; do not for-
get to write enough memos; formulate your theory. Write your research
article.

1.6 Terminology and notation

The goal for the base layer is to provide a set of abstractions that can be used to
explain15 what pair programmers say and do. We call each such abstraction
a concept. If the concept is about saying, the piece of saying explained by the
concept is called an utterance, if it is about doing, the piece of doing explained
by the concept is called an activity. The act of applying a concept to explain an
utterance or activity (by assigning the concept to the utterance or activity) is
called annotation. All other terminology will be introduced as we go.

Much of the discussion in the book will make use of quotes taken from the raw
data used for our research. Such quotes are marked by quotation marks, color,
font, and an icon in the margin as follows:

“OK, what did we want to do?”

Some of these quotes are offset from the text (as above) but most appear inline,
like this: “The VirtualAttribute is here”. Program identifiers (such as the
VirtualAttribute here) are typeset in non-proportional font.

The quotes are not verbatim: As the original recordings featured only German
speakers, the utterances have been re-composed in English in such a way as to
best reflect the illocution (see Section 2.3.2) and “feel” of the utterance and its
apparent real-time thought process, rather than the wording or normal English
phrasing – the German phrasing was far from textbook German as well.

If a quote is fictitious rather than real, it is quoted and italicized, but appears in
black and without the icon, like this: “I never said this. Nobody did.”.

Many quotes not only contain words and standard punctuation marks but also
other marks, using a very simple transcription system with only the following
markup elements:

• (...): Speaking pause
One or more dots in parentheses. Each dot represents a pause of about
one second.
Example: “To go on here (.) I think it’s good to reflect for half an hour in your
head how really (..) to go the way.”

15For “explaining” versus “describing”, see Section 1.4.4.

32 Chapter 1. Introduction

• (;;;): Speaking pause with other activity
One or more semicolons in parentheses. Each semicolon represents a

speech pause of about one second but meanwhile the speaker performs
some manual activity (typically operating the keyboard or mouse).
Example: “OK. (;;;;) That would be (!...!)”

• (~): An incomprehensible word

• (~~): Multiple incomprehensible words

• (~word): An almost incomprehensible (and hence unreliable) word

• <*information*>: Comment added by the transcriber
The content of triangle-star brackets is not spoken at all. These brackets
contain additional contextual information added by the researcher during
the transcription to make the actual verbal content more intelligible.
Example: “The VirtualAttribute is here in pro <*points on screen*>.”

• (quiet words): Quiet speaking
A word or words in parentheses are spoken very quietly, more to oneself
than to the partner.
Example: “The get (..) (missing)”

• <**replacement**>: Replacement of a proper noun
A name appearing in the quote has been taken out and replaced by
a generic term in triangle-doublestar brackets in order to protect the
anonymity of a person or company.
Example: “The thing is, <**Developer**> and I yesterday discussed that we
change the FeatureProxySet.”

• (!...!): breaking off
A bang-tripledot-bang in parentheses means the utterance ends prema-
turely; the speaker breaks off or trails off in mid-sentence for no observ-
able reason in particular.
Example: “Really great would be, if we could return something that always
(!...!) (..) hm (...) Wait-a-sec that always (!...!)”

• (!!...!!): getting interrupted
A bangbang-tripledot-bangbang in parentheses means the utterance ends
prematurely because the partner starts speaking, thus interrupting the
previous speaker. What the partner actually says may be quoted subse-
quently, paraphrased in subsequent discussion, or ignored entirely.
Example: “They could send every minute or every ten (!!...!!)”

• (!!subutterance!!): both partners speaking at once
The partner begins to speak (and the utterance is shown in a separate
quotation) while the speaker continues to speak (and the respective part

1.6. Terminology and notation 33

of the utterance is shown with the markup in the present quotation).
Example: “Um, then you can easily, then you can easily change it. (!!That had
confused me.!!)”

When annotating concepts to quotations, it sometimes becomes necessary to
annotate more than one. There are two notations for this. Where two concepts,
A and B, are annotated, A + B means “A applies to some part of the utterance
and B applies to some other part (but we still consider it a single utterance)”. In
contrast, A/B means “both concepts apply at once to an ambiguous utterance
as a whole”. In Example 8.2 (2), both of these notations appear at once:

C5.explain_knowledge + C5.amend_strategy/C5.disagree_step
means one part of the utterance contains an explain_knowledge and another part
has aspects of both an amend_strategy and a disagree_step.

The real-world phenomena explained by the concepts described here are far
too complex to provide complete instructions for classification. You will often
get to a point where our instructions end and you need to make up your mind
yourself. Insofar as we are aware of these spots, the most interesting cases will
be marked with the “Think!” symbol shown on the side of this paragraph. The
respective page numbers are collected in the index under “Think!”.

Finally, paragraphs that discuss potential modifications of the base layer or
extensions to it are marked with the pen symbol (like at the present paragraph).
The respective page numbers are collected in the index under “base layer
modification”.

Outside of quotations, italics are used to discriminate X from an utterance
regarding X. The later are what most concepts refer to and what will be typeset
in italics; see the discussion in Section 2.3.5.

Chapter 2
Overview of the base layer

2.1 What are the base concepts?

As mentioned previously in Section 1.6, the base concepts explain what pair
programmers say and do on the level of individual utterances and individual
activities. As explained in Section 1.4.3, the base concepts are intended as a
foundation for a variety of subsequent studies of pair programming. To do that,
the base concepts remain neutral: they are not geared towards any particular
research question and attempt to be as generic and flexible as possible.

The base concepts are designed to form a coherent whole: the base concept
set. Most of this book (Chapters 4 through 20) defines the base concept set by
explaining the base concepts grouped into topical blocks. We cannot provide a
complete and exact definition of any concept, because our concepts represent
complex, real-world phenomena. Rather, we will provide a multitude of
explanations that each aim at distinguishing some cases of instances from non-
instances of a concept. In particular, we sometimes provide what we call the
primary characterizing attributes of a concept. These are characteristics that are
by construction necessary to be able to identify all instances of a concept; see
for example the typology of strategy utterances in Section 9.1.

It is important to understand that the base concept set does not aim to be a
coding scheme. A coding scheme would attempt to define each code (concept)
in such a way that it can be identified as mechanically as possible in order to
maximize inter-rater agreement. The idea of a coding scheme is incompatible
with Grounded Theory Methodology. In contrast, the base concepts will be de-
fined in a manner that attempts to maximize the reader’s capability of thinking
flexibly about what it is that appears to be going on in the pair programming
session and what might be an appropriate manner of conceptualizing it. We
will frequently encourage you to modify a base concept if it does not appear to

35

36 Chapter 2. Overview of the base layer

be able to express the phenomena of interest to your research well.

2.1.1 Concepts and concept classes

The concepts (with very minor exceptions) have structured names consisting
of a verb and an object, such as propose_design, propose_step, agree_step. We call
the set of concepts that share a common object a concept class.

This structure makes it reasonably easy to remember and use correctly the
concepts although their overall number is not small: There are more than 70
of them. This idea (and the individual verbs and objects) will be explained in
more detail in Chapter 3.

2.1.2 HHI concepts vs. HCI/HEI concepts vs. supplementary
concepts

The structuring of the base concept set does not stop at concept classes. Above
them, there are larger groups of concepts we call concept categories. The
primary concept category, forming the heart of this book, is the HHI concepts,
for “human-human interaction concepts”. They conceptualize saying: the
verbal dialog between the pair members. The HHI concepts (part II of the
book) consist of 13 concept classes (explained in Chapters 4 to 17) and two
extra concepts (Chapter 18).

The secondary concept category are the HCI/HEI concepts, for “human-
computer interaction and human-environment interaction concepts”. They
conceptualize doing: interaction of a pair member with the computer or with
the rest of the environment (other than the partner and the computer). These
concepts are far less important for the base concept set and hence much less
detailed and refined. The strange two-part name HCI/HEI stems from the fact
that these concepts do not discriminate between e.g. reading off the screen
versus reading off paper or between pointing to the screen versus pointing to a
poster on the wall. The HCI/HEI concepts are explained in Chapter 19. There
is only one chapter because the notion of concept classes fully applies to the
HHI concepts only: All HCI/HEI concepts share the same pseudo-object sth
(for “something”) and some other concepts use that pseudo-object, too.

Beyond these two concept categories there are only a few “supplementary
concepts” explained in Chapter 20. Together with the HCI/HEI concepts, they
form the rather short part III of the book.

2.1.3 HHI concept class groupings

There is an intermediate level of grouping in between the concept classes and
the HHI category as follows:

2.2. What is the base layer? 37

1. Product-oriented concepts (2 concept classes) concern proposals (and
their discussion) regarding the content, structure, and placement of the
program artifacts, ranging from requirements and architectural design
down to individual identifiers and operators.

2. Process-oriented concepts (5 concept classes) concern proposals (and
their discussion) regarding the work process. Furthermore, we will call
the union of product-oriented and process-oriented concepts the “P&P”
concepts.

3. Universal concepts (6 concept classes) concern utterances that request,
transfer, or judge knowledge, state the level of available knowledge,
or formulate or judge an assumption or hypothesis. They are called
universal because they apply to the product context as well as the process
context. The “Facade concepts” (1 concept class) are a subset of the
universal concepts and provide a simplified view for (currently only one
type of) complex phenomena. They provide a context in which a complex
phenomenon can be split up and its parts be described by other concepts,
whether base concepts or higher ones. Currently, the only facade concepts
concern the verbalization or evaluation of HCI/HEI activities.

4. Miscellaneous concepts (2 concepts) mark utterances that are unintelli-
gible or have nothing to do with the pair programming task at hand.

2.2 What is the base layer?

The base layer is the union of the base concept set plus guidelines for its use.
These guidelines are spread throughout the book and then supplemented and
summarized in the final part IV of the book. Part IV consists of

• a summary (in Chapter 21) of the annotation procedure rules scattered
throughout parts II and III;

• guidelines for adapting the base concepts to the needs of a specific subse-
quent study (Chapter 22);

• preliminary guidelines for creating your own concept layers (Chapter 23).

2.3 Key decisions for the base layer

The base concepts would look very different had we not made the fundamental
decisions given below. For understanding the base concepts and for applying
them correctly, it is helpful to keep these decisions in mind.

38 Chapter 2. Overview of the base layer

2.3.1 Primarily rely on verbalization

One possible attitude when analyzing pair programming sessions via GTM
would be “Pair programmers do many different things. One of these things is
talking. But what counts is the code produced, so I am more interested in what
they type into the computer.”

However, we quickly found that the talking contains far more interesting
information than all of the other information channels and so decided to model
the talking in much greater detail than the rest. This is reflected in the HHI
part of the base concept set being far larger than the rest, both in terms of the
number of concepts and the level of detail in their description.

2.3.2 Model illocutionary acts

Our second insight was that one must not take the talking at face value but
rather probe for its actual semantics in the pair’s dialog. For instance, when
a speaker asks a question, this is often neither intended nor understood as a
request for information. Rather, it often is a proposal to do something specific –
and that is just how the partner will react: with various forms of agreement or
disagreement. To be useful, the base concepts should model such an utterance
as a proposal, not as a question.

To put it a little more formally: Most of the HHI concepts designate what
the speech act theory1 of Searle2 and Austin3 calls the illocutionary act of the
utterance. The illocutionary act is the action that is performed by making the
utterance. For ask this would be asking a question, for propose it would be making
a proposal even though the verbal and even the grammatical form may suggest
something different. For instance, some pair programmers may formulate most
of their proposals as questions.

The researcher needs to make an effort to identify the actual illocution of an
utterance rather than sticking too closely to the explicit formulation. Often
the intonation provides a good hint. If it does not, recognizing the illocution
is often difficult for an utterance in isolation, but is usually clear once one
considers other utterances from the session context before (and perhaps even
after) the given utterance. Do not worry: The many examples provided along
with the detailed discussion of the concepts below will make this process very
clear over time.

Assuming sane speakers, the illocutionary act basically is the speaker’s primary
intention. This raises two problems. First, is there always exactly one primary

1http://en.wikipedia.org/w/index.php?title=Speech_act&oldid=566894006
2http://en.wikipedia.org/w/index.php?title=John_R._Searle&oldid=567171344
3http://en.wikipedia.org/w/index.php?title=J._L._Austin&oldid=567339888

http://en.wikipedia.org/w/index.php?title=Speech_act&oldid=566894006
http://en.wikipedia.org/w/index.php?title=John_R._Searle&oldid=567171344
http://en.wikipedia.org/w/index.php?title=J._L._Austin&oldid=567339888
http://en.wikipedia.org/w/index.php?title=Speech_act&oldid=566894006
http://en.wikipedia.org/w/index.php?title=John_R._Searle&oldid=567171344
http://en.wikipedia.org/w/index.php?title=J._L._Austin&oldid=567339888

2.3. Key decisions for the base layer 39

intention? (And what does “primary” mean anyway?) Second, speech act the-
ory knows hundreds of different illocutionary acts. How can this be compatible
with our need for a modestly-sized base concept set?

Neither question has a short, neat answer and the detailed answers to both
problems cannot be given here; they are spread over the discussions of the
individual HHI concept classes in chapters 4 to 17. Chapter 21 will provide a
summary.

2.3.3 Let segmentation emerge

For some qualitative research methods that annotate raw data with concepts, it
is very important to segment the raw data in a canonical manner, and elaborate
rules are often needed to provide that manner. For our purposes, this is
unimportant: Early on, our work found that the utterance is usually (there are
occasional exceptions) the right level of granularity for defining and applying
HHI concepts; we do not even need to determine sharp boundaries for each and
every utterance. (For the segmentation of non-HHI activities, see Chapter 19.)

But what is an utterance? Our seemingly paradoxical answer is: An utterance
is that which is neither too small to be explained by one concept nor so large
that the application of one concept no longer suffices to explain it.

This circular definition works well in practice because the researcher brings
in sufficient common sense knowledge of communication and its units of
meaning. From this starting point, the HHI concepts can be developed from
utterances and the notion of utterance can be derived from the granularity of
the HHI concepts. Much like the notion of illocutionary act above, this idea
may look mysterious, but we assure you that you will find it perfectly natural
once you have finished working through this book.

This principle applies to our derivation of the base concepts as well as your use
of them. It may have to be changed when progressing towards studies using
qualitative data analysis for quantitative purposes, e.g. comparing settings
regarding the frequency of certain events.

2.3.4 Crave for behavioristic interpretation

Determining the illocution of an utterance invariably involves some interpre-
tation. Our fourth insight was that such interpretation can become a slippery
slope: There is constant danger of making assumptions that are unwarranted
and hence lose the grounding of the annotations made.

Behaviorism4 is a psychological school of thought that assumes the mechanisms
of behavior can be adequately modeled by referring to observable stimuli and

4http://en.wikipedia.org/w/index.php?title=Behaviorism&oldid=568442418

http://en.wikipedia.org/w/index.php?title=Behaviorism&oldid=568442418
http://en.wikipedia.org/w/index.php?title=Behaviorism&oldid=568442418

40 Chapter 2. Overview of the base layer

observable responses alone, without referring to internal processes (“thinking”).
Methodologically, behaviorism implies to abstain from the interpretation of
observations as much as possible. Behaviorism has helped psychology to focus
more on falsifiable statements and get on a proper scientific track.

To escape the slippery slope of losing grounding in pair programming research,
a behavioristic style of observation and description is a helpful ideal for the
researcher. The base concepts were created by applying that ideal to the extent
that appeared reasonable: Unfortunately, utterances are far too ambiguous
to determine their illocution in a purely behavioristic fashion without any
interpretation and assumption, but a behavioristic ideal creates a useful limit
to the kind of concepts one is still willing to introduce.

As a result, we think the base concepts, while usually requiring interpretation
when annotating (not rarely involving substantial uncertainty), almost always
create annotations that a large majority of researchers will be able to agree on
as acceptable. Note that “acceptable” is a far lower degree of agreement than
“objectively correct”, the latter being impossible in this domain. Behavioristic
interpretation (a contradiction in terms!) is an ideal, not a goal.

2.3.5 Model the discourse world, not the activity world

The exact meaning of a base concept can be confusing until you realize the
difference between a thing X and an utterance about X.

For instance the base concepts use the term step for referring to atomic units of
work (in a sense that will be explained in Chapter 6). But the step object that
forms base concepts such as propose_step or disagree_step does not refer to a step,
it always refers to an utterance about a step.

This was our fifth insight: In contrast to the HCI/HEI concepts, HHI base
concepts never5 refer to an element of the activity world (a deed), they always
refer to an element of the discourse world (an utterance). Corresponding
activities may exist (at that time or some other) or not exist.

The book uses non-italicized words (such as step) to refer to the activity world
and italicized ones (such as step) to refer to the discourse world. Some of the
explanations are only intelligible when paying attention to this difference.

2.3.6 Model dialog episodes

It would be helpful if an encoding using the base concepts provided value
beyond individual utterances and suggested a segmentation of the session into
episodes. The objects of the base concepts do exactly that. An object (for example
strategy) represents an individual topic (a particular strategy X) brought up

5Exception: The statement does not hold for the activity concepts.

2.3. Key decisions for the base layer 41

in the session. The various verbs represent the lifecycle of the topic: It starts
with an initiative verb (Section 3.5) such as propose (perhaps preceded by a
query: ask), goes through any number of evaluations (agree, disagree, decide)
and modifications (challenge, amend), and either ends with an evaluation, with
switching from talking to action, or is superseded by some other topic for
the time being – note that the same speaker may speak several times in a
row, perhaps with pauses, in this process. The annotations will hence directly
represent (some) relationships between the utterances.

This effect is convenient, but you should be aware of its limitations:

• The particular topic is not a fixed object (such as strategy X), but is
modified during the discussion (as in Example 9.3), sometimes beyond
recognition.

• These *_strategy annotations may be interspersed with others, in particu-
lar using universal concepts.

• Also, the HHI concepts, except for the activity concepts, do not indicate if
an utterance relates to the result of an HCI/HEI activity. For instance, an
utterance may relate to a stretch of code that has been highlighted using
the mouse. Relationships are less obvious in such cases.

• The episode marking is implicit and can hence be ambiguous. In particu-
lar, an utterance may relate to more than one topic and several episodes
may mix.

When annotating base concepts to data, making and keeping relationships
visible is one of the criteria for the concepts to choose. However, the highest
priority is always given to intersubjective validity: Your choices need to be
explainable and agreeable. Note that the above notion of episode is useful for
understanding and applying the base concepts, but once you start your own
pair programming research you will need to introduce a notion of episode that
is suitable for your particular research question.

2.3.7 Design the concepts to reflect relevant phenomena

The above decisions in no way make the choice of concepts canonical. There
are many possibilities left how to structure the domain: The base concept set is
not the inevitable result of natural science, it is a construction. In our decisions
how to construct it, we have followed our best judgment (and the preliminary
insights that arose during our analysis) in order to create concepts that reflect
interesting and relevant phenomena.

If and where the results do not fit your particular research topic, you can and
should modify them appropriately.

Part II

The HHI concepts:
Human/human interaction

. . . in which we define the concepts that aim at verbal interaction. You have
reached the heart of the book and are going to be pumped through its arteries
now; hold on.

43

Chapter 3
Objects and verbs
of the HHI concepts

3.1 The structure and meaning of concept names

As mentioned in Section 2.1.1, the base concept set uses structured concept
names. For the HHI concepts and the HCI/HEI concepts alike, each concept
name consists of a verb and an object, joined by an underscore. Examples of
HHI concept names would be explain_knowledge or propose_step. Some of the
objects are not words but phrases, as in explain_standard of knowledge.

As the same verbs and objects tend to occur in multiple concepts, this chapter
provides a simple explanation of each verb and each object as a first approxi-
mation of the HHI concepts. Be aware that many of the concepts and discrim-
inations between concepts are subtle (that is why we need a whole book to
explain them), so this approximation will be coarse.

Each object induces a concept class: the set of all concepts involving this object
(precisely: all concepts whose name contains the object. Still more precisely:
whose name contains the name of the object. However, while the difference
between a concept name and the actual concept is a major topic of this book,
we can and will afford to largely identify the name of an object with the object
itself, likewise for the verbs.). We will structure most of our discussion of the
concepts along these object-based concept classes (object classes).

We will sometimes (but not often) use the name of an object to refer to the object
itself and sometimes (and more commonly) to refer to the concept class induced
by the object. For example, knowledge may occasionally refer to a certain kind
of knowledge (which we will carefully define and delineate later in the book)
but will more frequently refer to the set of concepts explain_knowledge, agree_
knowledge, disagree_knowledge, challenge_knowledge, ask_knowledge. Remember,

45

46 Chapter 3. Objects and verbs of the HHI concepts

however, that concepts describe utterances (Section 2.3.5). The third use of
knowledge is therefore to explicitly or implicitly refer to knowledge utterances –
and thus to instances of a concept rather than a concept class. Likewise for all
other HHI concept classes.

This third use is because, by virtue of being a concept, each object is a class
itself: The class of all instances of that object. For example, when using the
concept propose_step to annotate a particular utterance found in a particular pair
programming session, step will refer to an utterance about one particular step
being proposed out of an infinite number of conceivable steps being proposed
or executed in any pair programming anywhere. When a concept is used in this
manner, we call it a code. In this book, most mentions of concept names refer to
the concept, not to a code. The primary exception are the illustrative examples;
all full-blown examples (pair programming episodes) are highlighted.

Each verb induces a verb concept class as well, but we will not make much use
of those.

If you are confused by these explanations, do not worry: if you pay attention to
the difference between the discourse world and the activity world as introduced
in Section 2.3.5, things will become clear over time.

3.2 The objects

Our analysis for HHI concepts found 16 objects:

activity: An HCI or HEI activity that is currently ongoing.

completion: The degree of completeness of working through a particular work
step. See also step and state.

design: A possibility or choice for the content of the artifact(s) being worked
on. May pertain to individual elements (such as the name of a method) or to
higher-level structure.

finding: An insight that was achieved shortly before (and then verbalized) by
one pair member. Indicates the extension of knowledge based on cognitive
processes. See also knowledge and standard of knowledge.

gap in knowledge: A lack of a particular piece of knowledge in both pair members.
See also standard of knowledge.

hypothesis: A hypothesis or conjecture, often regarding properties of the artifacts
being worked on.

knowledge: Explicit knowledge that is neither meta-knowledge of the gap in
knowledge or standard of knowledge types nor newly won knowledge of the finding
type, nor a hypothesis, nor is knowledge packaged as a suggestion regarding

3.3. The verbs 47

the work product or work process. Whether true or not, the speaker assumes it
to be true.

off topic: Anything that has nothing to do with the task or its solution.

requirement: A given or assumed requirement or constraint for the solution to
be produced.

something/sth: An unspecifiable object. For HHI concepts, this is used only
with the verb mumble.

standard of knowledge: How much one pair member knows with respect to a
certain topic, except where this is a gap of knowledge (of both participants).

state: The degree to which a strategy has been worked through. See also strategy
and completion.

step: A potential next step in the work process that the speaker considers to be
an atomic unit of tactical behavior. See also strategy.

strategy: A somewhat longer-term (explicit or implicit) work plan for solving a
(sub)problem that has not yet been fully worked through. Strategies typically
cover multiple steps. See also step.

todo: A subtask or step that is to be performed not now but rather at some
specified or unspecified later time during the same or a future programming
session.

All of these only refer to entities a pair member has verbalized, if perhaps
rather implicitly.

3.3 The verbs

Our analysis for HHI concepts found 13 verbs:

amend: Extending, complementing, or detailing either a previous utterance
(HHI, typically propose) or a currently performed activity (HCI/HEI). This
mostly expresses agreement, not disagreement.

ask: Asking a question; typically an open one, sometimes a closed one.

agree: Expressing consent with either a previous utterance (HHI, typically
propose) or with a currently or just previously performed activity (HCI/HEI).
agree does not include explanations; if explanations occur, they are covered by
an additional explain concept. See also decide.

challenge: Expressing dissent with either a previous utterance (HHI, typically
propose) or with a currently or just previously performed activity (HCI/HEI)
and (or by) making a counter-proposal. See also disagree.

48 Chapter 3. Objects and verbs of the HHI concepts

decide: Selecting one from among a number of possibilities (typically presented
by the partner in form of a propose). See also agree.

disagree: Expressing dissent with either a previous utterance (HHI, typically
propose) or with a currently or just previously performed activity (HCI/HEI)
without making a counter-proposal. See also challenge.

explain: Explaining something to the partner. Can occur as a reaction (to e.g. an
open or closed question from the partner, see also ask) or without an observable
trigger.

mumble: Making an utterance that is so fragmentary or phonetically so unclear
as to be uninterpretable. Will only be used with the object sth.

propose: Making a proposal that does not refer to a recent other proposal. The
proposal may consist of one possibility or several (as a choice). The partner can
react with agree (in case of one possibility), decide (in case of several possibilities),
challenge, disagree, or amend.

remember: Reminding oneself and the partner of something specific.

say: Saying something. Will only be used with the object off topic.

stop: Proposing to terminate a particular HCI/HEI activity.

think aloud: Verbalizing one’s own current activity or its related considerations.

3.4 The existing object/verb combinations

Overall, there are 60 HHI concepts, so by far not all of the 208 combinations of
13 verbs with 16 objects do occur. This has a number of reasons:

• Some combinations simply make no sense.

• Some combinations make sense and can occur in practice, but are suf-
ficiently rare that we never encountered them in our data. Since all of
the concepts explained in this book are fully grounded in data to make
sure they are valid, such unseen concepts are missing in our concept
set. As discussed in Section 22.4, you can and should introduce them as
soon as you encounter instances of them in your own data and need the
respective concept for your particular analysis.

• Some combinations make sense, but would overlap in meaning with
some other concept. To make coding canonical we have thus ruled out
one of them. For example, there is no explain_step concept, because the
base layer defines that all explicit knowledge transfer is to be represented
by means of the knowledge concept class.

3.5. Types of verbs 49

• There are two broad auxiliary concepts (mumble_sth (mumble something)
and say_off topic) of low importance for which it was defined that their
verbs must not be combined with anything else.

Most of the time most of the verbs designate the illocutionary act (Section 2.3.2).

Figures 3.1 and 3.2 summarize all HHI concepts, grouped into concept classes
and the larger concept class groupings. The subsequent chapters (pages 59
to 178) will work through the individual HHI concept classes object by object
in a roughly uniform structure.

3.5 Types of verbs

The HHI concepts have three different types of verbs:

Initiative verbs introduce a new aspect into the discourse. Usually, no direct
reference (whether explicit or implicit) is made to the content of previous
utterances. Initiative utterances do thus not have the character of a reply,
although they may still address a topic previously discussed. The base concepts
provide three initiative verbs: propose, remember, and stop.

Reactive verbs: Utterances that directly (whether explicitly or implicitly) refer to
one or more previous utterances.

The verbs agree, amend, challenge, decide, and disagree can be used as reactive
verbs (but also to comment on activities).

Bivalent verbs: The verbs explain, think aloud, and ask can be used in an initiative
fashion as well as a reactive fashion. For instance, a pair member may attempt
a knowledge transfer either based on a previous question of the partner or
on any other trigger (observable or not), but both cases are conceptualized as
explain.

The verbs mumble and say carry only little meaning and are not classified.

There is a second verb classification besides the above one:

Constructive verbs are those where the utterance constructively introduces addi-
tional aspects into the discourse: amend, challenge, explain, propose, and remember.

Unconstructive verbs are those where the utterance only requests new aspects or
information or judges such aspects or information. These are ask, agree, decide,
and disagree.

For this second classification, think aloud and stop are ambiguous and hence not
classified.

We call all concepts containing a constructive verb constructive concepts, etc.
This book will not make much use of these classifications but they may be

50 Chapter 3. Objects and verbs of the HHI concepts

process-oriented concepts

miscellaneous

product-oriented concepts

Ask for a concrete
proposal regarding the
next tactical work step.

ask_step

Ask for a concrete
proposal regarding the
structure and content of

the program.

ask_design

Select one from among
several alternative
proposals regarding the
next tactical work step.

decide_step

Extend a given proposal
regarding the next tactical
work step without
rejecting the proposal.

amend_step

Reject a given proposal
regarding the next tactical
work step without making

an alternative proposal.

disagree_step

Make one or several
alternative proposals
regarding the next tactical

work step.

propose_step

Signal agreement with a
given proposal regarding
the next tactical work

step.

agree_step

Reject a given proposal
regarding the next tactical
work step and make an
alternative proposal
instead.

challenge_step

Make one or several
alternative proposals
regarding the structure
and content of the

program.

propose_design

Signal agreement with a
given proposal regarding
the structure and content

of the program.

agree_design

Select one from among
several alternative
proposals regarding the
structure and content of

the program.

decide_design

Reject a given proposal
regarding the structure
and content of the
program and make an
alternative proposal

instead.

challenge_design

Reject a given proposal
regarding the structure
and content of the
program without making

an alternative proposal.

disagree_design

Signal agreement with a
statement regarding the
degree to which the
current strategy or work
plan has been worked
through.

agree_state

Make a statement
regarding the degree of
completion of the current

tactical work step.

explain_
completion

Signal agreement with a
given proposal regarding
the strategy or work plan.

agree_strategy

Propose one or several
alternative strategies or

work plans.

propose_strategy

Select one from among
several alternative
proposed strategies or

work plans.

decide_strategy

Ask for a concrete
proposal regarding the
strategy or work plan to
be chosen.

ask_strategy

Signal agreement with a
statement regarding the
degree of completion of
the current tactical work

step.

agree_completion

Remind the pair of a given
(pre-specified) functional
or non-functional require-

ment of the program.

remember_
requirement

Make an incomprehensible
utterance (highly
fragmentary or acustically
unclear).

mumble_sth

Extend a proposed
strategy or work plan

without rejecting it.

amend_strategy

Make a statement
regarding the degree to
which the current strategy
or work plan has been

worked through.

explain_state

Extend a given proposal
regarding the structure
and content of the
program without rejecting
the proposal.

amend_design

Reject a statement
regarding the degree of
completion of the current
tactical work step and
make an alternative

statement.

challenge_
completion

Make an utterance that
has nothing to do with
solving the programming
task.

say_off topic

Reject a given or
proposed requirement and
propose an alternative

one instead.

challenge_
requirement

Signal agreement with a
given or proposed

requirement.

agree_
requirement

Propose one or several
alternative program char-
acteristics that should be
considered to be a

requirement.

propose_
requirement

Suggest that a certain
work item will need to be
taken care of later in the
process.

propose_todo

Signal agreement with a
statement saying that a
certain work item will
need to be taken care of
later in the process.

agree_todo

Reject a given proposal
regarding the strategy or
work plan and make an
alternative proposal

instead.

challenge_strategy

Reject a statement
regarding the degree to
which the current strategy
or work plan has been
worked through and make

an alternative statement.

challenge_state

Reject a given proposal
regarding the strategy or
work plan without making

an alternative proposal.

disagree_strategy

Figure 3.1: The HHI concepts, part 1: P&P concepts (i.e., produce-oriented and
process-oriented concepts) and auxiliary concepts.

3.5. Types of verbs 51

universal concepts

Reject a given hypothesis
or conjecture.

disagree_
hypothesis

Formulate a hypothesis or
conjecture, e.g. regarding
a property of the
program, or the
environment.

propose_
hypothesis

Signal agreement with a
given hypothesis or
conjecture.

agree_hypothesis

Reject a given hypothesis
or conjecture and
formulate an alternative
one.

challenge_
hypothesis

Extend a given hypothesis
or conjecture without
rejecting it.

amend_hypothesis

Explain or recapitulate
one’s own level of
knowledge with respect to
a certain topic.

explain_standard
of knowledge

Ask the partner for his/her
level of knowledge with
respect to a certain topic.

ask_standard of
knowledge

Verbalize that certain
knowledge is not
possessed by either
member of the pair.

explain_gap in
knowledge

Transfer information to
the partner that is
assumed to be correct
declarative knowledge.

explain_knowledge

Signal agreement (i.e.
judge as correct)
knowledge stated by the
partner.

agree_knowledge

Declare transfered know-
ledge as fully, partially, or
potentially wrong by
opposing it with one's own
knowledge.

challenge_
knowledge

Ask the partner for
information of type
'declarative knowledge'.

ask_knowledge

Declare transfered know-
ledge as fully, partially, or
potentially wrong without
explaining why.

disagree_
knowledge

Declare transfered finding
as fully, partially, or
potentially wrong without
explaining why.

disagree_finding

Signal agreement with a
verbalized insight or
interpretation.

agree_finding

Extend a verbalized
insight or interpretation
without rejecting it.

amend_finding

Verbalize a new insight;
this includes interpreting
an observed event.

explain_finding

Reject the content of a
verbalized insight or
interpretation and suggest
an alternative one.

challenge_finding

Signal agreement with a
given gap in knowledge.

agree_gap in
knowledge

fa
c
a
d

e
 c

o
n

c
e
p

ts

Verbalize aspects of one’s
own current HCI or HEI
activity.

think aloud_
activity

Propose an extension to
the current HCI or HEI
activity.

amend_activity

Reject all or part of the
current HCI or HEI
activity.

disagree_activity

Reject all or part of the
current HCI or HEI activity
and suggest an alternative
activity.

challenge_activity

Signal agreement with all
or part of the current HCI
or HEI activity.

agree_activity

Suggest to stop or abort
the current HCI or HEI
activity.

stop_activity

Figure 3.2: The HHI concepts, part 2: universal concepts, including the facade
concepts.

52 Chapter 3. Objects and verbs of the HHI concepts

 c

o
n
c
e
p
ts

a
c
ti
v
it
y

 c
o
n
c
e
p
ts

 a
c
tiv

ity

 concepts activity

 concepts activity

knowledge co-verbalized in
proposals for shaping the program
or development process or in the

evaluation of such proposals

knowledge verbalized in other
utterances

e
x
is

ti
n
g
 k

n
o
w

le
d
g
e

n
e
w

 i
n
s
ig

h
ts

 c
re

a
te

d

d
u
ri
n
g
 a

 P
P
 s

e
s
s
io

n

finding
concepts

s
ta

n
d
a
rd

 o
f
k
n
o
w

le
d
g
e
 c

o
n
c
e
p
ts

g
a
p
 i
n
 k

n
o
w

le
d
g
e
 c

o
n
c
e
p
ts

h
y
p
o
th

e
s
is

 c
o
n
c
e
p
ts

d
e
si
g
n
,
re

q
u
ir
e
m

e
n
t,
 s

te
p
,
co

m
p
le

ti
o
n
,

st
ra

te
g
y
,
st

a
te

 a
n
d
 t
o
d
o
 c

o
n
ce

p
ts

knowledge
concepts

Figure 3.3: The landscape of knowledge-related utterances

helpful for use during higher-level analyses. You may then want to classify a
few cases differently; for instance, questions (ask) can sometimes be considered
constructive too.

3.6 The notion of “knowledge”

Most of this book is concerned with separating one concept from other similar
ones. A few of these separations are particularly important or particularly
difficult and we will therefore summarize some of this information upfront
in this and the following three subsections. This provides the first pieces of
understanding of base concepts that connect concept classes to one another.

Knowledge transfer is a key aspect of pair programming. In the base concepts,
it is represented via the concept classes knowledge, finding, and standard of
knowledge, but also as an aspect of several (in fact almost all) other concept
classes. The following discussion illuminates some aspects of how the base
concepts handle the various subtle problems that knowledge and knowledge
transfer create during the analysis of pair programming. Use Figure 3.3 for
guidance.

The notion of “knowledge” in the base concept set: Grounded Theory Method-
ology requires to ground all concepts and statements in data, that is, in concrete

3.6. The notion of “knowledge” 53

observations. We therefore quickly decided we need to follow a behavioris-
tic approach in our analysis: Rely only on what is directly observable and
avoid modeling internal cognitive processes as best you can. For the notion of
knowledge this means we can represent only that knowledge that its owner
communicates1 and where we observe this communication. In the following
please note the discrimination between “knowledge” in general and “knowledge”
in the narrower sense used in the base concepts. (Later on we will often more
loosely write knowledge where in fact we mean knowledge if precision is not
important.) These considerations lead to the following definition of knowledge:

• The knowledge concept covers only explicit knowledge (that its owner
can consciously access and use), not tacit knowledge, and it covers only
knowledge that is communicated, rather than only possessed.

• The communication of knowledge can be explicit or implicit. The explicit
communication of knowledge can be verbal, this is the typical case, or
wholly or partially nonverbal by sketches, gestures, etc. The implicit
communication of knowledge happens by doing something and can occur
unconsciously. knowledge is only explicitly communicated knowledge, not
implicitly communicated knowledge. This restriction makes the current
knowledge concept much more reliable, but may be too restrictive for some
future analyses and should perhaps be lifted then.

• Knowledge is something the owner considers to be true, but it does not
need to be actually true. This restriction is necessary because the re-
searcher is very often not able to verify the owner’s belief. This restricted
view of knowledge as belief also gets rid of many of the epistemological
problems that the notion of knowledge otherwise holds.

• These first three clauses define the necessary conditions for seeing an
instance of knowledge. The sufficient conditions are much more com-
plicated, mostly (but not only) because most of the non-knowledge HHI
concepts concern objects that fall under the above three-clause definition
of knowledge as well, but the base layer defines that in those cases the
knowledge concept should not also be used. For instance, when a pair
member explains a certain design pattern as such, this will be annotated
as explain_knowledge. If this explanation occurs as part of a suggestion
how to structure the program, it will be encoded as propose_design instead,
not mentioning the knowledge aspect separately at all. This business is
subtle: When the design pattern explanation is not part of the proposal,
but rather a justification for it, the total utterance will be split and the

1More precisely: the owner communicates (in some form of expression) information that aims
to represent the knowledge and that may or may not turn into knowledge again at the receiver’s
side. We ignore these transformations in the terminology of our book, which will be difficult
enough without this additional complication.

54 Chapter 3. Objects and verbs of the HHI concepts

parts annotated as propose_design and as explain_knowledge. Many more
such distinctions are required. It is due to such distinctions that we need
a whole book to explain the base layer and in most cases we will state the
reasons for making them.

• Various things need to be subtracted from the definition of knowledge thus
obtained. They will be discussed below.

The above definition of knowledge is almost synonymous to knowledge transfer,
so we will often use this more explicit latter term. Transfer here stands for
potential transfer, not necessarily successful or actual transfer, and in principle
it indicates only the fact of potential transfer, not necessarily the intention
of transfer. Furthermore, we will sometimes speak of information instead of
knowledge.

Separation of some forms of meta-knowledge: The base concepts discrimi-
nate between a certain form of knowledge about knowledge (meta-knowledge)
and other forms of explicit knowledge: The class standard of knowledge repre-
sents assessments one pair member makes about his or her own gradual level
of knowledge (or lack thereof) with respect to a certain fact or topic.

Partial separation of existing knowledge vs. new knowledge: Quite obvi-
ously, things the pair finds out during a session are of particular relevance
when analyzing the pair programming process. The base concepts hence dis-
criminate knowledge that has been possessed by one or both of the partners
for some time (existing knowledge) from knowledge that just a moment ago
sprang into existence (new knowledge: insights). The latter is represented by
the object class finding. Not all finding concepts represent verbalizations of
insights, though. For instance, an utterance annotated with amend_finding may
contain only existing knowledge, but it pertains to a finding.

All knowledge the partners presumably already possessed before the session is
considered existing knowledge, but findings become existing knowledge for
later parts of the session as well.

Partial separation of certain knowledge vs. uncertain knowledge: The classes
knowledge or finding are used if the speaker is subjectively certain of his or her
knowledge. If s/he reveals s/he is not, hypothesis is used instead, no matter
whether the knowledge is new or existing.

Separation of product or process proposals: Another aspect besides findings
that is obviously key to understanding the pair programming process is pro-
posals (pertaining to the composition of the artifacts being worked on or to the
steps and strategies of the development process itself) as well as the evaluations
of such proposals.

Most of the proposals and many of the evaluations contain and transmit knowl-
edge but this is not annotated separately. So even an obviously knowledgeful

3.6. The notion of “knowledge” 55

product-related proposal will only be annotated with propose_design and not
with an additional explain_knowledge. However, if the proposal is subsequently
justified, typically by explaining its rationale, that utterance will by annotated
separately and as explain_knowledge (or perhaps explain_finding):

Example 3.1: An episode from session BA1 (14:08:27–14:09:00) contain-
ing a design proposal complemented by a rationale based on a find-
ing. The pair is working on an if statement that will stop the script if
one of a number of conditions is met. The pair had previously marked
some of the conditions as needing change (“TODO”).

(1) B2.ask_knowledge

“What happens if this one is not set?”

The question refers to a script parameter.

(2) B1.explain_knowledge

“That makes the script continue at least as long as we (.), er, (.) do not
make the ’Change’ at each spot – write the Memcache. (...)”

The driver answers the question immediately. We have no indicators that
let us assume a finding, the answer comes from existing knowledge. After
his reply, he pauses for three seconds.

(3) B1.explain_finding

“Although if we don’t write it to the Memcache, he’ll return it anyway,
some time.”
The combination of pausing and “although” suggests this was not existing
knowledge.

(4) B1.propose_design

“We can leave that up there for now. (..)”

Based on his insight, the driver now makes a proposal: Let us not change
the marked conditions or at least not yet.

(5) B1.ask_standard of knowledge + B1.explain_finding

“Know_what_I_mean? If we now only change this script here (.) then it
would only (.) this would never become true. So we would never return
exit('NOCHANGE') and just continue here – and that would be just the
same functionality.”

After a short pause, B1 justifies his proposal by explaining his insight again
in different words. He points to various spots in the code while doing so.

56 Chapter 3. Objects and verbs of the HHI concepts

Such separate annotation is used likewise for process-related proposals such as
propose_step or propose_strategy, their status-evaluation cousins explain_comple-
tion/explain_state (where finding will be more typical than knowledge), and so
on.

3.7 propose vs. explain

The same idea of discriminating objects concerned with a few important spe-
cialized types of knowledge from more general ones recurs for the verbs. For
the objects, all proposals (and comments on such proposals) that concern the
content of artifacts or the shaping of the development process are encoded by
concepts from the design, requirement, step, strategy, or todo classes even if (as
they usually do) they include knowledge transfer, while “pure” knowledge
transfer (and comments about its content) is encoded primarily by knowledge
and finding concepts.

This discrimination is reflected in the use of the verbs propose versus explain.
For instance, there is a concept propose_design, but no concept explain_design.
Explanations around a design are either explanations of the design as such
(these are encoded as propose_design, no matter how detailed) or justifications,
explanations of the design’s rationale. The latter are considered “pure” knowl-
edge transfer and are thus encoded as explain_knowledge. Note that in practice
it is often quite difficult to separate a proposal from its justification, because
the proposals are often rather implicit; see Example 4.1.

Somewhat in between those two cases is the hypothesis class: It clearly belongs
into the “pure” knowledge transfer, but is still used with the verb propose (not
with explain), because in real sessions hypotheses are (at first) typically only
stated, not elaborated.

3.8 explain vs. think aloud

What is the difference between the seemingly similar verbs explain and think
aloud? The latter is used only in the rather peculiar concept think aloud_activity
which serves to bracket whole sequences of utterances describing the content,
meaning, or purpose of HCI/HEI activities of the speaker that occur at roughly
the same time.

In contrast to all other concepts, for which it is expected that only one concept
will usually be annotated to any one utterance (see Section 2.3.3 for a discussion
of segmenting speech into utterances), activity concepts are defined such that
any of their utterances can be annotated with additional concepts, including
explain_knowledge, as needed. If you find this confusing or extravagant: It will
be explained in Chapter 17.

3.9. disagree+propose vs. challenge 57

3.9 disagree+propose vs. challenge

A challenge is basically a disagree combined with a propose (for P&P concepts)
or with an explain (for universal concepts), so why do we introduce a whole
additional verb concept class for this case?

There are two reasons: First, the fact that disagreeing and proposing are com-
bined in a single step is important and would be lost when using separate
concepts. Second, propose has been classified as an initiative verb, but challenge
clearly is and must be reactive.

Chapter 4
Product-oriented concepts: design

4.1 Topic of design concepts

design concepts concern proposals (and their discussion) regarding the content,
structure, and placement of the program artifacts in the broadest sense, insofar
as they can be decided upon by the pair. These artifacts are typically execution-
related ones such as program code or configuration files (and our observations
covered only those), but could be other types as well. This definition includes
different aspects ranging from architectural design down to individual identi-
fiers and operators, and touches issues on various levels of granularity such as
the expression level, statement or variable declaration level, control construct
level, method level, class level, or package level.

Here are a number of examples:

Example 4.1: Separate examples of design phenomena from Sessions
ZB7, BA1, and CA2. The explanations show how utterances can often
be interpreted only using context information such as previous utter-
ances (Example (c)) or recent computer outputs (Example (e)).

(a) ZB7: Z20.propose_design

“A TopicConnection we need.”

Z20 is editing a newly created method clone. The original method sent
an object via a JMS Queue, the clone is to be changed such that it uses a
JMS Topic instead. Z20 is suggesting to change a declaration from type
QueueConnection to TopicConnection.

(b) BA1: B1.propose_design

“And how we call the thing? id?”

59

60 Chapter 4. Product-oriented concepts: design

B1 is driver and suggests a name for a variable. The initial question is not
annotated as ask_design, because B1 answers it himself immediately and also
starts typing right away.

(c) BA1: B2.agree_design

“Ummmmm.”
Agreement to a previous proposal (in fact the one right above).

(d) BA1: B2.propose_design

“What do we return? Shall we (!...!) (.) getFriendsLastChange. We
want a timestamp, right? Or true or false?”

Observer B2 makes alternative proposals for possible return values. He
frames the two choices as questions, but the initial question is rhetorical
only: An answer follows right away. It is therefore not separately anno-
tated as ask_design.

(e) CA2: C2.propose_design

“Yeah, that needs to go.”

C2 is driver and refers to a method call he intends to remove that is cur-
rently highlighted in the editor.

(f) CA2: C5.propose_design

“We need to use the FeatureProxy to retrieve the values.”

C5 is observer. He suggests an approach for accessing required data.

Excluded from the design concept class are decisions fixed (at least conceptually)
before the pair programming session; those are modeled by requirements con-
cepts as defined in Chapter 5. Also excluded is the detection of the unavoidable
need for corrections due to programming errors as discussed in Section 12.1.2.

4.2 design concepts and their properties

As shown in Figure 3.1, we have observed ask_design, propose_design, agree_
design, decide_design, disagree_design, amend_design, and challenge_design.

The following subsections explain how to recognize corresponding phenomena.
Example 4.2 provides a complete design discussion episode.

Example 4.2: A design discussion episode from Session CA2 (12:55:47–
12:56:49). The observer C5 suggests to refactor the constructor of class
DisplayNameFeatureProxyTableModel.

4.2. design concepts and their properties 61

(1) C5.propose_step

“I would (.), let us look at the TableModel, how that works, how that
fetches the values.”

Before C5 finishes this utterance, C2 has opened the source file in the edi-
tor.

(2) C5.propose_design

“Well (.) I (.) think (.) that TableModel shouldn’t know—mustn’t know—
that it’s using virtual columns or non-virtual columns.”

C5 says this after a pause of 5 seconds during which C2 has not changed
the view, which primarily shows the constructor. During this utterance, C2
starts scrolling downwards.

(3) C2.agree_design

“Okayyyyyy.”

C2 agrees half-heartedly.

(4) C2.explain_standard of knowledge

“That’s the abstraction I’d thought of before.”

The context shows that C2 had apparently thought about this problem
before the session. While speaking, he scrolls back to the constructor.

(5) C2.mumble_sth

“Have you ’n principle, haven’t you ’n principle (!...!)”

Fragment, unclear. May be a cut-off agreement.

(6) C5.amend_design

“That should (...), that should get itself a ValueProvider from the configu-
ration.”
C5 adds an implementation detail to the proposal, referring to the construc-
tor’s parameter attributeConfiguration.

(7) C2.agree_design

“You’re not wrong there, essentially.”

C2 more or less agrees.

(8) C2.explain_standard of knowledge

“Yes, that’s the abstraction I’d thought of before.”

62 Chapter 4. Product-oriented concepts: design

(see above)

(9) C2.mumble_sth

“That means (...) OK. (!...!)”

Fragment, unclear.

(10) C5.amend_design

“that you, that we extend the attribute configuration by such a
ValueProvider and that will give it the Feature (.), that will give it
the the the that that that FeatureProxy to fetch the values (.) and the rest
happens after that.”

After a two-second pause, C5 continues the sentence of C2 and substanti-
ates his design proposal.

4.2.1 Types and intentions of proposals

Most design discussion episodes start with a propose_design, just as it is shortly
described (for strategy) in Section 2.3.6. As you can see in Example 4.1, proposals
are not often explicit. More commonly, and as explained in Section 3.7, no
proposing verb is provided and only the content of the proposal is spelled out –
often as an assertion (see (a) in Example 4.1). Another popular form is that of a
question (see (b) in Example 4.1). Both forms can be combined by appending
the question to the statement (e.g. “OK?”).

Whether the speaker considers the utterance to be a proposal or rather a case of
courteously informing the partner of final decisions (if the speaker is observer
this means: giving instructions) can often be decided only by relying heavily
on the session context or not at all. When giving information or instructions,
the speaker would neither expect nor desire a verbal reaction. For instance,
driver-speakers often start typing right away (see (b) in Example 4.1) or even
during their utterance.

The base concepts ignore this difference in intentions and encode both cases
and all their variations as propose_design (and likewise for amend_design and
challenge_design), so that the concept addresses a broad variety of utterances
that can be summarized as follows.

Required and optional elements of propose_design utterances: A propose_
design can transport three types of information:

i. A design aspect

ii. The speaker’s positive evaluation of this aspect

iii. A request to the partner to evaluate the aspect

4.2. design concepts and their properties 63

Only the first of these is required, which leads to three plausible modes of
propose_design utterances:

• Mode OE (utterance provides i+ii+iii): Obtain evaluation. Example from
CA2: “Well, I would, overall I would make this so that the FeatureProxySet
(.) uses those TableModel properties (.) Yah.” This is a refactoring proposal.
At its end, the speaker turns to his partner and looks at him – only this
establishes the OE mode.

• Type PI (i+ii): Provide information. Example from CA2: “You must
overwrite it.” The observer instructs the driver C5 to overwrite a certain
inherited method. The driver, however, does not do that. Instead, he
suggests to have a look at the superclass first.

• Type LO (i+iii): Look for orientation. Example from BA1: “The question is:
Should we return anything at all?” See Example 4.3 for discussion.

We have seen all of these three modes in our data but not the unlikely fourth
in which the proposal would serve no purpose at all. The modes are often
difficult to tell apart; in particular, the evaluation request tends to be implicit
and gradual. They are nevertheless helpful as a mental model.

propose_design and indirect speech acts: The above three modes of speaker
intention cannot usually be determined based on the syntactical form of the
utterance of the terms used in it. For instance, an utterance in the form of a
question may well be a proposal and can even be a PI-mode proposal. Searle
speaks of indirect speech acts1: An illocutionary act of asking a question is
involved, but it is only the secondary illocution. The actual primary illocution
is making a proposal and the utterance is hence called an indirect speech act.
The base concepts ignore the secondary act in such cases and represent the
primary one only.

As mentioned above, all of these considerations also apply accordingly for
amend_design and challenge_design. Very similar ones apply to other concept
classes involving proposals, most notably step and strategy (propose_step, amend_
step, challenge_step, propose_strategy, amend_strategy, challenge_strategy).

4.2.2 Referring to editing steps

We said above that propose_design always transports a design aspect (informa-
tion type i). Note that this transport needs not happen verbally.

Here are two non-verbal examples:

1http://en.wikipedia.org/w/index.php?title=Speech_act&oldid=566894006#

Indirect_speech_acts

http://en.wikipedia.org/w/index.php?title=Speech_act&oldid=566894006#Indirect_speech_acts
http://en.wikipedia.org/w/index.php?title=Speech_act&oldid=566894006#Indirect_speech_acts
http://en.wikipedia.org/w/index.php?title=Speech_act&oldid=566894006#Indirect_speech_acts

64 Chapter 4. Product-oriented concepts: design

• In Session CA2, C2 modifies a method and during that process utters “It
ought to have been implemented like this.”. This constitutes a propose_design
in mode PI.

• In Session CA2, C5 executes an IDE wizard for creating a new Java
package, enters the package name, and before clicking “Finish” asks
“Correct?”. This constitutes a propose_design in mode OE.

4.2.3 Proposals with rationale

A propose_design is often accompanied by a justification: an explanation of
the proposal’s rationale. Such explanations should be annotated separately
as explain_knowledge or explain_finding. The same holds for justifications that
accompany instances of challenge_design, amend_design, or disagree_design.

For instance, the observer in BA1 refuses a design proposal by saying “But
that’s horrible. Then we have two loops; that’s crap.” The first sentence should be
annotated as disagree_design, the second as explain_knowledge. We will revisit
this rule in Section 16.1 about the knowledge concepts.

4.2.4 decide vs. agree

Using decide_design requires that at least two different design options have
been proposed previously. Then, decide_design is an explicit choice of one as
opposed to the other(s) – in contrast to a mere agree_design with respect to
the last-mentioned variant. decide_design works much like propose_design: If
the partner subsequently prefers a different choice, this will be annotated as
challenge_design, not as another decide_design.

We will see such an episode (regarding strategy) in Example 9.3.

4.2.5 amend vs. a new propose

We use amend_design if the speaker makes a previous proposal more concrete by
adding detail or an extension. It is often difficult for the researcher to discrimi-
nate such amendments from entirely new proposals, because the reference to
the original proposal is almost always purely implicit.

4.2.6 amend or challenge one’s own proposal

It is quite common to find amend_design (see Example 4.2) or challenge_design
utterances not only with respect to proposals coming from the partner, but also
as self-corrections of the speaker’s own previous proposals. This statement
may be true for all types of amend and challenge concepts in the base concept
set, although we have not actually observed it in all concept classes. We will
revisit this in Section 21.6.5.

4.2. design concepts and their properties 65

4.2.7 Indicating agreement vs. indicating attentiveness

Many of the utterances that could be affirmative are quite short: “OK.”, “Right.”,
“Yea.”, “Yes.”, “Hmm.”, and so on. This makes it often hard for the researcher to
decide whether this is affirmation of content (and hence agree_design) or rather
what linguists call backchannel2 communication: A mere indication of atten-
tiveness and interest, without content-related meaning. That same ambiguity
exists for the listening partner, and the speaker is expected to know this, so the
base layer considers all potentially affirmative backchannel utterances to mean
agree. This holds accordingly for all agree verb classes in the base layer.

4.2.8 Short negations

Likewise, short utterances that could be either rejection or backchannel (mostly
a variety of grunting sounds) should be annotated as disagree. A particularly
problematic example would be an appropriately pronounced “Hmm.”, because
the intonation might be right in the middle between affirmation and rejection.
This, too, holds accordingly for all agree verb classes in the base layer.

4.2.9 Proposal-less questions

We use ask_design when the speaker asks for how something ought to be
designed without indicating any design idea of his or her own. This is in
contrast to design proposals that are merely formulated as a question.

Example 4.3: Partial episode from Session BA1 (14:10:51–14:10:59) that
starts with ask_design. The question starts a 1-minute episode during
all of which the pair discusses the return value of a PHP script that is
to be called by an external service provider for retrieving information
from the system being developed here. The discussion is on the fringe
between design discussion and requirements discussion (see Chapter 5),
but is classified as design because one can see (just not in the example
part here) that the external provider has no voice in deciding the in-
terface. In the part shown, B1’s question does not achieve its goal: B2
does not make a proposal – so B1 cautiously formulates one himself.

(1) B1.ask_design

“What should be pass on to them really?”

(see caption) The question addresses only the return value for one particu-
lar if case.

(2) B1.explain_finding

2http://en.wikipedia.org/w/index.php?title=Backchannel_(linguistics)&oldid=

565247022

http://en.wikipedia.org/w/index.php?title=Backchannel_(linguistics)&oldid=565247022
http://en.wikipedia.org/w/index.php?title=Backchannel_(linguistics)&oldid=565247022
http://en.wikipedia.org/w/index.php?title=Backchannel_(linguistics)&oldid=565247022

66 Chapter 4. Product-oriented concepts: design

“NOCHANGE is surplus data here.”

B1 continues right away; B2 does not say anything. The script returns the
NOCHANGE string, but as it is called frequently, this may be inefficient. This
finding justifies the previous question.

(3) B1.propose_design

“The question is: Should we return anything at all?”

Three seconds later, during which nothing happened, B1 suggests to maybe
not return anything. This transforms his original question into an LO-mode
proposal.

4.2.10 Restricted disagreement

Rejections of proposals may be formulated such that the speaker sounds fully
certain, perhaps uncertain, likely uncertain, or explicitly uncertain. For instance,
in Session CA2 after the statement “This we could pull out there.” C2 reacts by
saying “(Hmm, yes.) (..) I’m not sure whether I (.) would pull it out there.” The
example shows that even verbal agreement and disagreement can be hard
to discriminate: The first part is grammatically affirmative, but the speaker
utters it rather quietly. The second part explicitly expresses uncertainty but
has more rejecting character than affirming character and is uttered after some
consideration, so we annotate the whole as disagree_design – but clearly the
disagreement is far weaker than 100 percent. We will revisit this issue in
Section 21.6.4.

4.3 Discrimination from similar concepts

4.3.1 propose_design vs. ask_knowledge

As discussed above, questions that ask for comments on a fresh(!) design
possibility are always annotated as propose_design, never as ask_knowledge: First,
design aspects have been excluded from knowledge, so knowledge can never
apply. Second, we treat the question as an indirect speech act, that is, we
ignore the secondary illocution of asking and annotate the primary illocution
of proposing.

4.3.2 *_design vs. explain_knowledge/explain_finding

The general rule for design proposals and their discussion is: design takes
annotation precedence over both knowledge and finding. Only justifications
(if present) are annotated separately and then use either explain_knowledge
or explain_finding. (This holds likewise for justifications of other proposals,

4.3. Discrimination from similar concepts 67

most importantly step and strategy). However, the following corner cases need
separate discussion:

Packaged design proposals: Design proposals might be enclosed in a knowl-
edge utterance, that is, formulated such that the knowledge transfer aspect
appears to be the primary one. A double annotation using both the knowledge
and the design concept should then be used, because either of the two alone
would lose an important (rather than just a secondary) aspect of the utterance.
See Example 17.2 in the discussion of the activity concepts.

Packaged agree/disagree for a design proposal: Likewise, agreements and
refusals can also be enclosed in a knowledge utterance and again a double
annotation is appropriate in order not to misrepresent the utterance. See
Example 16.2 (for a step proposal).

ask_design vs. ask_knowledge: Queries for obtaining a design proposal are
not design proposals, but are still covered by the precedence rule: Annotate
them specifically (as ask_design) not generically (as ask_knowledge).

There will be deeper discussion of these rules in the knowledge Chapter 16.

4.3.3 propose_design vs. propose_step/propose_todo

As we see, the discrimination of design concepts from explain_knowledge is
normally straightforward. The same is not true (sometimes) for discriminating
propose_design from propose_step and from propose_todo. To understand those
differences, however, a detailed understanding of the latter’s concept classes
is required, so we postpone the discussion until the respective Chapter 6 (for
step) and Chapter 8 (for todo).

Chapter 5
Product-oriented concepts:
requirement

5.1 Topic of requirement concepts

The requirement concepts talk about requirements imposed on the pair’s work
results from outside the session. Such requirements can be functional (includ-
ing API requirements), non-functional (including constraints of any kind) and
their key characteristic is that the pair cannot change them. In particular, design
discussion must be annotated as requirement, if and insofar a certain design has
been imposed on the pair from outside.

However, requirements are not necessarily known and clear. There are four
major cases:

• Requirements known since before the session.

• Requirements recognized during the session, including those merely
assumed by the pair, often temporarily, during the session.

• Requirements recognized during the session to be missing.

As all our concepts, the notion of requirement was not predefined or taken from
an external source, it was developed from phenomena in our data and is fully
grounded in them; see the examples below and subsequently.

Example 5.1: Some requirement utterances.

(a) BA1: B1.propose_requirement

“OK, let’s assume they have one hour difference.”

69

70 Chapter 5. Product-oriented concepts: requirement

A computation depends on time of day, but the pair does not know
whether the clocks of the two servers in question will be properly syn-
chronized. The utterance proposes a constraint that may help understand
and tackle the problem.

(b) CA2: C5.remember_requirement

“And the other thing I had understood that we try (.) to make this invisible
for the other things by the Facade.”

Driver C5 refers to an agreement from (apparently) before the session.
This agreement imposes the structural requirement that the module be-
ing worked on here shall have a Facade structure. For the overall product,
this is a design aspect; for this particular session, it is fixed a-priori and is
hence a requirement.

(c) CA2: C5.remember_requirement

“The thing is, <**Developer**> and I yesterday discussed that we change
the FeatureProxySet. It shall have a getTableModel.”

C5 refers to an agreement how to change the present class. He intends to
apply this agreement in many of the subsequent steps.

5.2 requirement concepts and their properties

As shown in Figure 3.1, we have observed remember_requirement, propose_
requirement, agree_requirement, and challenge_requirement.

The following subsections explain how to recognize corresponding phenomena.
Example 5.2 provides a short requirement discussion episode.

Example 5.2: Discussion of a missing constraint requirement from Ses-
sion BA1 (16:25:18–16:25:34). Starting point is the pair’s new finding
that the script they are developing will only be able to return the cor-
rect results if the clock on the caller’s system (outside the pair’s control)
is synchronized with the clock on the local system.

(1) B1.propose_requirement

“Ideally, they could simply send a timestamp of now. (...)”

To solve the problem, B1 suggests a requirement that should be imposed on
the caller.

(2) B1.challenge_requirement

5.2. requirement concepts and their properties 71

“But they cannot send a timestamp each time so we can look ’hey is your
clock off?’. They could send every minute or every ten (!!...!!)”

After three seconds of actionless pause, B1 changes his own proposal. He
stops in mid-sentence because B2 starts speaking.

(3) B2.challenge_requirement

“They could send a keepalive.”

B2 makes a counter-proposal, to which B1 reacts without any delay:

(4) B1.agree_requirement

“That’s an idea.”
B1 agrees to that third proposal.

5.2.1 remember_requirement

The speaker recapitulates a requirement, typically because he or she has just
become aware (or aware again) that it exists or that it is relevant, sometimes
to remind the partner of it or consciously bring up the topic. This is the only
concept that uses the verb remember, because this case of what could otherwise
have been covered by explain_knowledge is special in that the knowledge repre-
sents a condition that has arbitrarily been imposed on the pair and overlooking
it will unavoidably produce problems (whereas other knowledge can often be
substituted).

5.2.2 propose_requirement

What superficially looks like remember_requirement may in fact talk about re-
quirements that nobody has yet imposed but that the pair finds necessary in
order to proceed. The subsequent discussion of a propose_requirement is more
similar to propose_design than it is to remember_requirement, because the pair has
freedom to make their own (suitable) decision rather than merely interpret and
handle something given; see Example 5.2.

Sometimes, these “requirements” are temporary assumptions that serve to
reduce complexity and aid thinking; see (a) in Example 5.1. As such, they are
provisional and may later be fixed, changed, or may disappear entirely.

5.2.3 agree_requirement and challenge_requirement

These two concepts can occur in the context of a propose_requirement as well as
of a remember_requirement, but their character is different in either case. In the

72 Chapter 5. Product-oriented concepts: requirement

propose case, they talk about how to use a degree of freedom, in the remember
case, they talk about the truth of facts.

disagree_requirement and amend_requirement could naturally occur as well, but
we have not seen them in our data.

5.3 Discrimination from similar concepts

All relevant considerations have already been explained:

• Use remember_requirement where externally imposed constraints are con-
cerned and propose_design where the pair’s leeway in decision-making
is concerned. This could have been (even should have been) externally
imposed, but was not; so the pair makes up its mind itself.

• Conceptually, remember_requirement is a specialization of explain_knowl-
edge. Where the former applies, use it, but do not use the latter. See
Chapter 16 for details.

• Conceptually, propose_requirement is a specialization of explain_finding.
Where the former applies, use it, but do not use the latter. See Chapter 12
for details.

Chapter 6
Process-oriented concepts: step

In contrast to the product-oriented concept classes design and requirement dis-
cussed in the previous chapters, the process-oriented concepts talk about how
the pair steers its development process (mainly within this particular pair
programming session). There are five concept classes that cover three topic
areas:

• Utterances regarding tactical behavior, i.e., regarding short-term acts per-
formed currently or in the immediate past or future. These are addressed
by the step and completion concept classes that will be discussed in the
present chapter and in Chapter 7, respectively.

• Utterances regarding somewhat longer-term, strategic behavior. These
are addressed by the strategy and state concept classes that will be dis-
cussed in Chapter 9 and Chapter 10, respectively.

• Utterances regarding deferring work steps or subtasks in order to perform
them at some later time. These are addressed by the todo concept class
that will be discussed in Chapter 8.

The terms tactical, strategic, short-term and longer-term are vague; lengthy
explanations will be required to make them well-defined. The key to telling
them apart will be the notion of strategy. The explanation, however, works
better if we start with step.

6.1 Topic of step concepts

When analyzing pair programming sessions, it quickly becomes obvious that
a large fraction of the utterances has to do with deciding the next work step.

73

74 Chapter 6. Process-oriented concepts: step

This is what the step concept class talks about. By next work step we refer
to activities that can be started right away rather than needing substantial
preparation. By work step we only refer to process issues, because product
issues are already covered by the design (or possibly requirement) concept class.
(And as for design, the concepts only address the work step proposal itself;
justifications for it will be annotated as explain_knowledge or explain_finding.)

By work step (as opposed to some larger unit) we refer to atomic units of work.
But what is atomic? Is, for instance, closing a window atomic? Or do you need
to go down to the electron-level events in the nervous system that result in
contracting a muscle which results in clicking a mouse button which results in
closing the window? We found that neither of these is sufficiently relevant to
become a base concept – nor is the outcome of any other “objective” definition
of atomicness.

It turns out the only useful definition is: A step is atomic if a pair member
considers it atomic. More precisely: If s/he talks about it in a way that represents
the step as atomic (behavioristic perspective) – so that the researcher concludes
that s/he considers it atomic1. In this subjective view of atomicness, the
defining characteristic is not that the work step cannot be divided at all, but
rather the speaker currently views it such that it needs not be divided in order
to be decided and begun. Once the actual execution of the step has started, the
step may turn into something non-atomic that requires further discussion of its
innards.

But outside its execution, a step in this sense is a single means to a particular
end and a step utterance does not place it in the context of further actions. The
end may be mentioned or (more often) not.

In practice, step utterances can refer to simple activities such as executing a
certain well-understood command on the computer (“Do a ’save’.”) or to more
complex ones such as performing a manual test (“We could make an a first test
now.”), discussing an interface to be created, understanding some existing code
(“I would (..) let us have a look at TableModel how that works how it fetches the
values.”), or implementing a particular method.

Note that work steps to be performed later rather than now are represented by
todo rather than step, and work stretches considered non-atomic during their
discussion are represented by strategy rather than step.

Example 6.1: Utterances annotated with step concepts and referring to
simple actions (such as (d)) or complex activities (such as (b)). Exam-
ples (c) and perhaps (a) show cases where a reply is not expected, the
utterance has purely informational character.

1This conclusion could be wrong if the talking misrepresented the thinking for some reason
but we have never found any evidence that this was happening in our sessions.

6.2. step concepts and their properties 75

(a) BA1: B1.explain_finding + B1.amend_step

“Errrr, (.) yes, complete nonsense of course; we can search in our Working
Set.”
The pair is searching for calls of a particular function. B1 had started a
search of the whole workspace and now finds it will take long. He pro-
poses a more restricted search and starts it.

(b) CA2: C5.propose_step

“Then (.) (it is so) I’ll first show you what I’ve done.”

The pair will have to work on code sections worked on by C5 before the
session. C5 suggests to bring C2 up-to-date.

(c) CA2: C5.propose_step

“(OK. Refactor.)”

C5 has proposed to move a class to a different package. He now scrolls
through the Eclipse IDE’s package explorer, finds the class, opens the con-
text menu on it, and makes the utterance. Less than a second later he starts
the refactoring from the context menu.

(d) CA2: C5.propose_step

“Properties.”

The pair is testing the application. The driver hesitates and the observer
steps in with a proposal where to click next.

(e) CA2: C5.propose_step

“Also change the TODOs above into NOWs.”

The driver is just tagging a new, empty method as TODO_NOW. The ob-
server suggests to do the same for the class’ other empty methods, cur-
rently tagged TODO.

6.2 step concepts and their properties

As shown in Figure 3.1, we have observed propose_step, agree_step, decide_step,
disagree_step, challenge_step, amend_step, and ask_step.

6.2.1 propose_step with rationale

A proposal can be complemented by a justification giving its rationale. Just like
for propose_design, such explanations should be annotated separately, either

76 Chapter 6. Process-oriented concepts: step

with explain_knowledge or explain_finding as appropriate.

For instance, after the amend_step utterance from Example 6.1, the speaker
added

I thought I had anyway checked out the <*Working Set*> only, but (!...!).

This justifies why he changes his former proposal: His previous assumption
that workspace and working set are the same was wrong (explain_finding).

In principle, all other step utterances could also come with a rationale, but we
have seen only few instances of that. We will revisit the discrimination between
explain_knowledge and propose_step in Section 16.3.1.

6.2.2 Purpose of making propose_step utterances

By far not all propose_step utterances appear to constitute requests for com-
ments. In particular when made by the driver during HCI activities, propose_
step is often merely information about what the speaker intends to do next;
Example 6.1 (c) is a good illustration of this type.

Some propose_step utterances quite explicitly call for a reaction from the partner,
for instance “Perhaps you could quickly have a look at it?” or “We can close it, right?”,
but in (for example) Session CA2 only 12% of the propose_step utterances clearly
had such character.

Overall, the same proposal types apply to step than we had explained for design
in Section 4.2.1. Example 6.2 contains a step utterance in LO mode.

Example 6.2: An LO-mode propose_step utterance from Session CA2
(12:58:08–12:58:16). The driver had previously made a design proposal
that amounted to doing a refactoring and apparently the pair had no
doubts that this was appropriate at least in principle. Whether to actu-
ally do it (or what else if not), still needed to be decided, however.

(1) C2.propose_step

“The question is whether I dare do it now, whether we dare do it now.”

The observer asks whether the pair should perform a proposed refactoring
or not in so open a manner that he clearly wants a comment from the
partner and states no preference of his own. (The utterance is actually a
borderline case in between step and strategy; see Section 9.3.3. The context
provides too little evidence of strategy-ness, however.)

(2) C5.agree_step

“I would like to dare do it now.”

6.2. step concepts and their properties 77

The driver interprets the question as a proposal and agrees.

(3) C2.agree_step

“OK.”
The observer agrees as well, effectively adding late a judgment of his for-
mer proposal.

Just like for propose_design, if a proposal is phrased as a question, only the
primary illocutionary act will be considered in the annotation; see the discus-
sion in Section 4.2.1. A proposal can also be made to contradict a finding as in
Example 12.6 (2).

6.2.3 Reserving time

Sometimes the speaker does not actually mention the intended step, but only
asks for the time needed to do it. A typical example is “Wait a second.” from
Session CA2. The step itself (such as reading or thinking) will then often be
done alone.

6.2.4 Imprecise proposals

Proposals can be incomplete, vague, or ambiguous. Even if the observer makes
a request or gives an order, the proposal may leave the driver a lot of leeway;
see Example 6.3.

Example 6.3: An amend_step episode from Session CA2 (12:18:25–
12:18:31). Observer C2 makes a vague proposal more specific when he
recognizes that his partner does not act as he had intended. The driver
had previously clicked the first ’error’ entry in the Eclipse IDE’s Prob-
lems View. This had sent the pair to an editor view that showed several
lines as containing defects. After a short pause, the observer makes
the proposal shown. The episode shows that we cannot always decide
whether an utterance is indeed an amend_step: We may either assume
the second utterance simply delivers additional precision and annotate
it as amend_step, or assume the “maybe better” means the observer has
indeed changed his mind and annotate as challenge_step. We chose the
former, but not without writing a coding memo to make a note of the
problem.

(1) C2.propose_step

“Point the, point the mouse, please.”

78 Chapter 6. Process-oriented concepts: step

The observer asks the driver to hover the mouse over one of the defects
shown in the editor in order to display the tool tip that will contain the
error message. He does not say which defect, though. The driver chooses
the last defect shown and its message opens.

(2) C2.amend_step

“No, there; maybe better hover that one.”

After the pair has looked at the message for about a second, the observer
points his finger to a different error icon and makes his former proposal
more specific.

6.2.5 decide_step vs. agree_step

See the discussion in Section 4.2.4. We have seen decide_step only once.

6.2.6 amend, challenge, or disagree one’s own proposal

As described for design in Section 4.2.6, it is not at all unusual if a speaker
supplements his or her own proposal with further detail. This can even happen
if the partner has not said anything in between to make sure the partner acts or
understands as intended or to supply new thoughts formed in the meantime.

Continued thinking may also lead to challenging or even sometimes revoking
(disagree_step, see Example 6.4) one’s own proposal. As Example 6.3 shows
for amend vs. challenge, it is not always easy to tell these cases apart. Similar
phenomena should be expected in most other HHI concept classes as well.

Example 6.4: Episode from Session BA1 in which B2 takes back his own
step proposal after he recognized that the step would not lead to the
desired result: The output is basically timestamps of certain database
entries, but there is no reason yet why they would change. The episode
illustrates two things: First, findings need not be triggered by external
stimuli. Second, spontaneously changing one’s mind is often evidence
of a finding.

(1) B2.propose_step

“Let’s do a refresh again.”

The observer suggests to refresh the browser view, which would call the
PHP script again that the pair is currently editing.

(2) B2.disagree_step + B2.explain_finding

“Ah, no, we haven’t done Set yet.”

6.3. Discrimination from similar concepts 79

After about one second, the observer takes back the suggestion and ex-
plains why.

6.2.7 Indicating agreement vs. indicating attentiveness

See Section 4.2.7.

6.2.8 ask_step

Questions that ask for the next work step without proposing one are annotated
as ask_step. Such questions can be general or pertain to a particular context, and
they can be new or request recapitulation of something previously discussed.
The question “What did we want to open?” from Session ZB7 that talks about the
next file to be analyzed is of the context-and-recapitulation type.

6.3 Discrimination from similar concepts

We will talk about discrimination of step concepts from knowledge concepts
and from design concepts only. Discrimination from todo concepts and strategy
concepts is postponed until those classes have been explained.

6.3.1 *_step vs. explain_knowledge/explain_finding

Proposals for the next work step can be interpreted as knowledge. The general
rule for step proposals and their discussion is: step takes annotation precedence
over both knowledge and finding. Only justifications (if present) are annotated
separately and then use either explain_knowledge or explain_finding. (This holds
likewise for justifications of other proposals, most importantly design and
strategy). For additional discussion see Section 12.3.3.

6.3.2 propose_step vs. propose_design

Quite obviously, realizing any proposed design aspect requires certain work
steps at some point. Therefore, design proposals often go hand in hand with
work step proposals. Since in such contexts the design concept class is the more
specific one and double annotations are generally frowned upon in the base
layer, propose_design takes precedence and propose_step should then be avoided
as illustrated by Example 6.5. Note that design proposals are often formulated
in procedural wording and will then superficially look like step proposals; see
Example 6.6.

80 Chapter 6. Process-oriented concepts: step

Example 6.5: Episode from Session BA1 (14:51:32–14:51:43) that
illustrates both the difference and the interplay between pro-
pose_design and propose_step. The pair wants to insert calls to
updateFriendsLastChangeTime in all relevant places in the code. They
neither yet know where these places are nor whether they should previ-
ously refactor.

(1) B2.propose_design

“And then also the region when we delete again.”

The driver has just completed calling updateFriendsLastChangeTime in
method setFriendship. Now the observer suggests adding the same call
into several delete operations.

(2) B1.amend_design

“OK, then we can either attach ourselves to this Hook, (!!...!!)”

The driver makes the idea more concrete. While speaking, he scrolls to
method deleteFriendsIDsFromMemcache which he deems one of those oper-
ations.

(3) B2.propose_step

“Let’s see how that looks where the User is deleted.”
The observer interrupts the driver’s utterance and suggests looking at the
method responsible for deleting a User. Whether this pertains to B1’s utter-
ance at all or not we do not know.

(4) B1.challenge_step

“We could also first look for all the places this is used.”

B1 immediately dissents by making yet another proposal. While speaking,
he points the cursor to method deleteFriendsIDsFromMemcache.

Steps 1 and 2 show how design proposals imply work steps. Step 3 shows how
propose_step may imply the refusal of a previous proposal (disagree), but since
such refusal can rarely be recognized unambiguously, the base layer suggests
not to annotate it.

Example 6.6: A design proposal that directly leads to action from Ses-
sion BA1 (13:53:56–13:54:08). No propose_step is used in such cases.

(1) B2.propose_design

“We could simply, er, convert that thing in a, in a normal id, I mean,
code_to_id and then id_to_code again.”

6.3. Discrimination from similar concepts 81

The observer suggests how to modify a certain if-condition that tests prop-
erties of an external call argument.

(2) B1.agree_design

“OK.”
The driver agrees and immediately starts executing the proposal.

6.3.3 propose_step vs. ask_knowledge

Questions of type “Should we do X next?” or “Should we next do X or rather Y?”
mention possible steps. They are therefore annotated with the more specialized
propose_step rather than the more general ask_knowledge (and with the closed-
question verb propose rather than the open-question verb ask).

Although this sounds like a hard and fast rule, there are difficult cases:

Implicated action announcements: The question

“Do you know how the (.) how I access the function for changing a
method?”

(from Example 16.2) superficially asks for how to access a certain IDE function-
ality and should be annotated with ask_knowledge. However, the question also
implies what the speaker intends to do next, which warrants a propose_step.
Indeed the partner hears both of these aspects and answers “That doesn’t get you
anywhere.” The base layer suggests to double-annotate such cases with both
ask_knowledge and propose_step. More generally, questions for knowledge, in
particular procedural knowledge, may imply subsequent steps. Section 21.6.1
will specify that such implications should be made explicit whenever they are
recognized.

Remind of a proposal by asking: Sometimes a formerly proposed (and per-
haps discussed) step that was not executed is proposed again later. For various
reasons, this may take question form, for instance because the speaker is not
sure of the exact proposal anymore:

“OK, we said delete and, umm, what else?”

Again, both aspects are strong enough here and so the base layer suggests to
annotate such cases with both ask_knowledge and propose_step; see Section 21.6.3
for details on handling repetitions.

82 Chapter 6. Process-oriented concepts: step

6.3.4 ask_step vs. ask_knowledge

Any open question specifically for a step will be annotated specifically with
ask_step, not generically with ask_knowledge.

6.3.5 ask_step vs. ask_design

For a question such as

“OK, what did we want to do?”

it will often be unclear (even when consulting the context) whether it aims at
step or at design. ask_step as the more general concept may then be more ap-
propriate. Annotating both concepts may be appropriate to express ambiguity
that appears intended by the speaker.

6.3.6 disagree_step vs. explain_knowledge/explain_finding

The rejection of a proposed step needs not be explicit, it can be wrapped in a
knowledge transfer as in the “That doesn’t get you anywhere” in Section 6.3.3
above. Both aspects of this indirect speech act are relevant in the base layer
perspective, so we annotate both the primary and the secondary illocutionary
act, although which one is primary may be different from case to case: the
knowledge transfer (explain_knowledge or explain_finding) or the rejection of
the proposal (disagree_step). The same consideration sometimes applies to
challenge_step as well.

6.3.7 amend_step vs. explain_knowledge/explain_finding

Just like for propose_step, we annotate a justification or rationale separately for
amend_step if one is supplied and use either explain_knowledge or explain_finding
as appropriate.

Chapter 7
Process-oriented concepts:
completion

Where the step concepts talk about an individual work step, the completion
concepts talk about whether (or to what degree) the step has been fully and
adequately performed and completed or not.

The strategy and state concept classes form a corresponding pair for compound
work.

7.1 Topic of completion concepts

A completion utterance refers (explicitly or implicitly) to a work step. It talks
about the evaluation of the degree or quality of fulfillment of the step’s execu-
tion or of some intermediate stage of the step’s execution.

The step may have been addressed by a previous step dialog episode or (fre-
quently) not.

Example 7.1: Utterances annotated with completion concepts, all from
various stages of Session BA1

(a) B1.explain_completion

“I still do not like this very much.”

83

84 Chapter 7. Process-oriented concepts: completion

The driver says this after 15 minutes of work that started with an amend_
design about adding functionality to a certain method. To avoid side ef-
fects, the pair had decided to check where and how that method was being
called, which had led to analyzing many spots in the code neither of the
two were familiar with. The pair had suggested a number of modifications
but performed only few of them. The explain_completion utterance evaluates
the success with respect to a step that was never formulated explicitly.

(b) B1.explain_completion

“I’d say we now have the problem conceptually (.) narrowed down and
solved.”
Uttered after a three-minute-long discussion that had never been proposed
but had started spontaneously after a propose_design.

(c) B1.explain_completion

“Well, that wasn’t so bad really.”

After modifying a number of phpDocumentor comments, the driver leans
back in his chair and makes this utterance. The lean-back gesture under-
lines the interpretation that the speaker considers the current work step,
which had never been verbalized, done.

(d) B2.challenge_completion

“But we haven’t done anything yet!”

Answer to (c). The observer points out that the actual editing steps still
have to be made. This is not disagree_completion because the speaker offers
his own, alternative evaluation.

7.2 completion concepts and their properties

As shown in Figure 3.1, we have observed only explain_completion, agree_
completion, and challenge_completion, but of course a researcher may add the
remaining ones as soon as they are encountered.

Most of the discussion about these three verbs from the previous concept
classes applies. We offer only three additional remarks.

7.2.1 Short evaluations

In contrast to the cases shown in Example 7.1, most explain_completion utter-
ances we have seen were short and simple (often just “OK.”) in particular from
the driver to announce the end of editing steps.

7.3. Discrimination from similar concepts 85

7.2.2 Indirect evaluations

An explain_completion can be indirect by stating that something needs not be
done.

An example is the “Well, no need to go up here any more” after four minutes of
work in Session BA1.

7.2.3 Evaluation of quality

The base layer does not discriminate evaluations of the quality of a work result
from less differentiated statements; both are annotated simply with explain_
completion. Separate elaboration may be annotated with explain_finding (or
perhaps explain_knowledge), but higher concept layers may need to add much
more differentiation.

7.3 Discrimination from similar concepts

completion applies to step in the same way that state applies to strategy. Their
discrimination is easy if the work type has previously been discussed, because
then the decision in favor of either step or strategy has already been made. For
completion or state utterances of implicit steps and strategies, however, it can be
subtle.

The distinction of a proposed evaluation (explain_completion) and its justifi-
cation (which should then be annotated with explain_finding) is harder than
for design or step because a completion proposal itself may have so little body
that it becomes mostly implicit (as in Example 7.1 (c)); see the discussion in
Chapter 12.

Chapter 8
Process-oriented concepts: todo

8.1 Topic of todo concepts

Like step, the concept class todo talks about individual work steps. While step
talks about the current or next step, todo utterances serve to make note of steps
that at least one pair member intends to delay until either some indefinite time
or some time beyond the end of the current session.

Example 8.1: todo episode from Session CA2. No particular time for
execution nor a particular ordering of steps is scheduled.

(1) C5.explain_knowledge

“There’s a test for it.”

After the pair discussed changes to a class, C5 remarks that a correspond-
ing test class exists; he opens the test package in the IDE’s package explorer
to validate or illustrate this.

(2) C5.propose_todo

“We must remember, uh?”

Without break, he adds that the pair should not forget to adapt the test
class at some appropriate later time.

Example 8.2: Episode from Session CA2 (12:20:27–12:20:46) in which the
pair agrees on a todo in the midst of a strategy discussion. Deferring the
step helps avoiding discussion complexity excess.

(1) C2.amend_strategy

87

88 Chapter 8. Process-oriented concepts: todo

“That means, I guess we should do that now, perhaps we should check in
first?”

C2 has just taken the driver role and extends the two-part strategy (see Sec-
tion 9.1) he had just proposed by another step, to be done first: checking in
the code. While he speaks, he turns towards his partner.

(2) C5.explain_knowledge + C5.amend_strategy/C5.disagree_step

“Um, I would rather(!...!). There are few tests there and I would rather not
check in (!!...!!).”

After a two-second pause, C5 points out there are few unit tests for the
code. His primary intention appears to be to refuse the check-in step, but
since he had agreed to the overall strategy beforehand, disagree_strategy
would not be an appropriate interpretation; see Section 21.6.2.

(3) C2.propose_todo

“Then let’s write some tests.”
C2 interrupts and proposes to write tests without saying when. The subse-
quent events show that C2 does not mean this to be a step proposal.

(4) C5.agree_todo

“Yes, we should certainly do that too.”

C5 agrees but still specifies no time. The “too” sounds like “but not now”.

(5) C5.amend_strategy

“Er, rather not check in before I’ve tried the GUI.”

After his agreement, C5 completes his formerly interrupted statement. Only
now we can see his original intention to do an amend_strategy by adding
one step.

(6) C2.agree_strategy

“OK, then let’s try the GUI.”

C2 agrees and the pair next tests the GUI.

8.2 todo concepts and their properties

We have observed relatively few todo utterances. As shown in Figure 3.1, only
the types propose_todo and agree_todo occurred, but of course a researcher may
add the remaining ones as soon as they are encountered.

How we define todo phenomena so far is:

8.3. Discrimination from similar concepts 89

• The proposals were not very concrete and never specified a time.

• Some, however, may specify the conditions under which the step would
be needed; it would not be needed if those conditions never hold. A
straightforward case is Example 8.3. Although these utterances have a
strong component of explain_knowledge or explain_finding, we interpret
them as propose_todo: “I propose we perform step X in case condition C
materializes.”

• Our todo phenomena all had the form of declarative sentences, such as
“Need to mind that, too.”.

Example 8.3: Episode from Session CA2 (12:43:03–12:43:08) involving a
conditional todo that points out the consequences of a pending decision.

(1) C2.decide_design

“I guess it mustn’t go into Abstract.”

Currently, class FeatureAttributeConfigurationProxy is a subclass of
AbstractFeatureConfiguration (which the speaker calls Abstract). The
pair discusses whether this should remain true and agrees the inheritance
would be appropriate only if the superclass had less functionality. C2 de-
cides to go that way: remove some functionality from the superclass.

(2) C5.amend_design/propose_todo

“Well, OK, then we have to implement this in very many places.”

C5 agrees but points out laborious consequences: the functionality removed
from the superclass will eventually have to be inserted into many existing
subclasses.

8.3 Discrimination from similar concepts

The discrimination of design, step, and strategy on the one hand (current plan-
ning) versus todo on the other (markings for future planning) is likely important
for the control of a pair programming session, so we should discriminate them
carefully. Since strategy is complex and has not yet been introduced, we post-
pone its discussion until Chapter 9 and only discuss discrimination from design
and step here.

8.3.1 propose_todo vs. propose_step

As said before, step talks about the next work step, todo talks about a work
step at some later time. However, pair programming dialog utterances convey

90 Chapter 8. Process-oriented concepts: todo

much of their information implicitly and so actual step and todo utterances may
look rather similar if they are purely claims of necessity.

These properties suggest a propose_step utterance:

• The utterance invites to action (“Let’s. . . ”) without specifiying a time.

• It uses terms such as “now” or otherwise indicates immediacy.

• It followed by the execution of a corresponding step.

These properties suggest a propose_todo utterance:

• The utterance uses future tense.

• It uses terms such as “later” or “eventually” or otherwise indicates deferral.

• It states a particular later time or condition when to perform the step.
Statements of time are rare, because the speaker will rarely make the
effort of deciding a suitable time unless s/he is formulating a strategy. So
if a time is specified, always check whether you are seeing e.g. a propose_
strategy (etc.) rather than a propose_todo.

• The purpose of the utterance appears to be to get rid of an objection
quickly, as in item 3 of Example 8.2 that appears to “protect” the speaker’s
original suggestion to check-in the code by calming down the partner,
even though that requires interrupting the partner in mid-sentence.

Even if these symptoms are missing or ambiguous, reliance on context infor-
mation will normally allow to discriminate todo utterances reliably. Note the
remark on double annotations with todo and design concepts below.

8.3.2 propose_todo vs. explain_knowledge/explain_finding

As discussed before in the context of design, step, and strategy, todo utterances
have the character of explain_knowledge (or explain_finding) but take precedence
when annotating, because todo, being more specialized, is more informative.
The class exists because of its plausibly important role for how pair program-
ming sessions usually work.

8.3.3 propose_todo vs. amend_design/propose_design

An amendment for a design proposal can be accompanied by, or even entirely
consist of, a statement of future work the proposal entails. In both of these
cases you should annotate both concepts, propose_todo as well as amend_design,
because both aspects are separately important for the session; see Example 8.3.

8.3. Discrimination from similar concepts 91

This idea will occasionally apply to other design concepts as well, in particular
to propose_design.

Chapter 9
Process-oriented concepts: strategy

Where the step concepts talk about an atomic work step, the strategy concepts
talk about planful compound work.

9.1 Topic and typology of strategy concepts

The strategy concepts address those parts of a dialog (or monolog) in which the
pair attempts to plan, decide, or coordinate complex stretches of work with
respect to some higher-level goal (see Section 9.3.3). A strategy in this sense is
an idea or approach for longer-term, planful action.

As all other concepts in the base layer, this notion of strategy (which we will
explain in a lot more detail below) was not taken from the extensive existing
literature on that term but rather fully extracted from our observations in pair
programming sessions only. This extraction was a lengthy process during
most of which ’strategy’ appeared to be a confusing and untidy concept. The
process became satisfactory only after we started to discriminate three types of
strategies: OWP, DPR, and EXS.

9.1.1 OWP: Organizing Work Packages

The current task (or a part thereof) is divided into specific (and typically non-
atomic) pieces, which we call subtasks. An OWP-type strategy usually specifies
or implies a certain work-sequence order of the subtasks.

9.1.2 DPR: Determining Procedure Rules

Rather than decomposing the task explicitly into an ordered set of more-or-
less explicit subtasks, the pair speaks about rules or guidelines intended to
help devise or execute subsequent work continually. These rules often aim at

93

94 Chapter 9. Process-oriented concepts: strategy

simplification, for instance by excluding certain types of work step (such as
writing tests) or by deciding to provisionally ignore particular complications
from design consideration.

9.1.3 EXS: Expanding a step into a strategy

What was originally a step or design may be expanded, by the same speaker
or the partner, into a strategy by adding an additional step to be performed
and viewing both together in light of a higher-level goal. Often this takes the
form of remarking that after the previous proposed action, only the additional
activity X will be needed to reach the desirable state Y.

These types help a lot in identifying and understanding strategy utterances,
but despite the coarseness of this classification it can be difficult to apply. We
therefore add two additional properties of strategy utterances: The type of
representation and range.

9.1.4 Extensional vs. intensional representation

A strategy can be verbalized in extensional manner, by mentioning actions
separately and explicitly, or in intensional manner, by subsuming actions under
a single abstraction that represents an action superconcept or a criterion.

Most commonly, OWP strategies and EXS strategies are extensional while
DPR strategies are intensional, but neither is mandatory. For instance, the
following utterance from Session ZB7 could be considered an intensionally
expressed OWP strategy proposal: “Um, should we here, um, these instructions on
executing, um, XPetstore, look it through and follow it?” Superficially, this looks like
two steps: looking through instructions; following instructions. Semantically,
however, the utterance suggests a longer sequence of steps (those given in
the instructions) without explicating them. The above example could also be
considered a DPR strategy utterance and this holds for all intensional OWP
proposals we have seen so far.

9.1.5 Range

A strategy can have a mid-term or long-term planning horizon. A long-term
strategy pertains to all of the rest of the current session or beyond. A mid-term
strategy pertains only to some shorter stretch of intended work. There is no such
thing as a short-term strategy. This would either be a step (that is, considered
atomic) or we would call it mid-term – even though its actual execution might
take less time than a lengthy step. It is often hard to tell the range of DPR
strategies.

9.1. Topic and typology of strategy concepts 95

9.1.6 Mixed types

Note that these properties do not allow classification in all cases. A single
strategy utterance may have extensional as well as intensional parts, there are
ambiguities between intensional OWP and DPR utterances, and the range may
be hard to determine, in particular for DPR utterances.

For the base layer, this is not a problem because the properties serve only to
understand the nature of possible strategy utterances better. They are primary
characterizing attributes. Future research, however, may want to address these
topics. In that case, our considerations here may serve as a starting point or be
ignored. Here are some (mostly isolated) examples of strategy utterances.

Example 9.1: Examples of strategy utterances from all three sessions.

(a) ZB7: Z19.ask_strategy

“How do we start?”
At the start of the session, Z19 asks this very open question, which sounds
more like propose_step than propose_strategy. But since the partner answers
with a strategy proposal, the utterance effectively turns into one of this
class.

(b) ZB7: Z20.propose_strategy (OWP, long-term)

“I would ignore the EmailSpy for now. And modify the the XPetstore
only.”

Reply to (a). Z20 proposes two steps and their order, which covers the
whole of the session.

(c) ZB7: Z20.propose_strategy (DPR, mid-term)

“Know what we do? We use our existing EmailSpy for debugging.”

The driver proposes a testing approach that involves using a class the pair
had developed in a previous session for a different purpose but that will be
helpful for detecting possible failures.

(d) CA2: C5.propose_strategy (DPR, mid-term)

“And I won’t much adapt any old tests from any old people.”

The driver formulates a radical avoidance strategy for coping with multiple
subtasks he deems too difficult and/or too large, namely to not solve any
of them at all.

(e) BA1: B1.propose_strategy (EXS, mid-term)

96 Chapter 9. Process-oriented concepts: strategy

“And then we only need to insert this thing in all spots where (friends
change).”

B1 extends a step proposed by his partner by another step and implies the
two together will reach a substantial goal, which makes it a propose_strategy.

9.2 strategy concepts and their properties

As shown in Figure 3.1, we have observed propose_strategy, agree_strategy,
decide_strategy, disagree_strategy, challenge_strategy, amend_strategy, and ask_
strategy.

9.2.1 Proposal mode

Besides the properties explained in the previous section, the proposal modes
introduced for step in Section 4.2.1 apply to strategy as well and awareness
of the modes may help identify strategy utterances correctly. For instance,
proposals (b) to (e) from Example 9.1 all have mode PI. Keep in mind that the
actual formulations may be rather indirect. We have not yet observed a propose_
strategy in mode OE.

9.2.2 Proposals with alternatives

As all propose phenomena, strategy proposals may specify several alternatives.
Take this example from Session CA2: “Then we should do that before or after. But
not at the same time.” This talks about when to perform certain restructurings in
the code. It formulates two alternative possibilities and excludes a third; see
Example 9.3 for its context.

9.2.3 decide_strategy vs. agree_strategy

The same discussion applies as in Section 4.2.4.

9.2.4 Secondary issues

A propose_strategy may include aspects not directly related to solving the task
at hand, e.g. related to session breaks (for whatever reason).

Example 9.2: Episode from Session CA2 (12:58:55–12:59:38) in which a
strategy is discussed for a number of dialog steps.

(1) C5.explain_knowledge + C5.propose_strategy

“But our (.) stand-up starts in two minutes anyway. And when we go to
lunch then. That means we have time to think it (~~).”

9.2. strategy concepts and their properties 97

C5 remarks on a constraint and then rudimentarily formulates a strategy.
“it” is the content of the pair’s previous discussion.

(2) C2.explain_standard of knowledge

“You want to have lunch right after the stand-up and stop this, stop this
now?”
C2 interrupts C5 to validate his understanding.

(3) C5.propose_strategy

“I want to have lunch right after the stand-up.”

C5 interrupts C2 (and finishes before him!) to repeat and clarify a part of
his previous proposal. Section 9.3.2 will explain why this is not a propose_
todo. Section 21.6.3 will explain how to handle repetitions.

(4) C5.amend_strategy

“No, I want to continue after lunch (~would) with this work task.”

Right after C2 finishes, C5 details his proposal. (The pair then discusses a
minor matter we skip here.)

(5) C2.agree_strategy

“OK, I would have liked I guess (.) to continue a bit. But OK.”

C2 reluctantly acquiesces to the proposal.

(6) C5.explain_state

“As for checking in and so on, I think we are at a point where we can take a
break.”
C5 explains where he sees the work with respect to the goal. This is more
an assessment than a proposal.

(7) C5.agree_state

“Of course, that’s true.”

This utterance agrees to the proposal as much as to the assessment.

9.2.5 Forms of amend_strategy

An amend_strategy utterance adds detail to an existing proposal either by adding
one or more steps to a proposal (typically of type OWP, such as in Example 8.2
(1)) or by making existing steps (for types OWS and EXS) or rules (for type
DPR) more concrete or more detailed.

98 Chapter 9. Process-oriented concepts: strategy

An example for the latter occurred shortly after the episode of Example 9.2. C5
elaborates his lunch proposal by saying

“To go on here (.) I think it’s good to reflect for half an hour in your head
how really (..) to go the way. Or should we better take your cautious
approach?”

9.2.6 Distinguishing proposals: amend, challenge, propose

Utterances in discussions of extensional OWP strategies often refer to individ-
ual pieces of the strategy only, rather than the whole. This makes it hard to
discriminate amend from challenge from propose. The following heuristics may
help:

• If the speaker signals to basically agree with the strategy and only adds
or details individual pieces or aspects, use amend_strategy.

• If the speaker refuses important pieces of the strategy and replaces these
constructively, use challenge_strategy. Without replacement, this amounts
to refusing the strategy overall and one should annotate disagree_strategy.

• If the speaker singles out one piece and elaborates it (often by turning it
into multiple smaller pieces) while ignoring the remaining pieces, there
are two possibilities: If the elaborated piece appears to replace all of the
previous strategy, this is challenge_strategy. If the remaining pieces appear
to keep their previous role, it is amend_strategy.

In practice, however, it may be hard to decide whether pieces are really ignored
or merely not mentioned, and there may be neither symptoms of agreement
nor symptoms of disagreement.

An instance of this problem is Example 8.2 which is preceded by a two-step
OWP proposal: 1. add method, 2. review dialog. C2 suggests another step to
be done first (check in) and the remainder discusses whether yet another step
(try GUI) should be added still before that. In the end, however, it is unclear
whether the original steps are still part of what would by now be a four-piece
plan (1. try GUI, 2. check in, 3. add method, 4. review dialog) or only the new
steps remain (1. try GUI, 2. check in). If the first strategy is fully executed, it
can be considered intact, but it may never come to that, for many reasons.

The base layer cannot solve this problem, but its concepts help to notice such
phenomena and provide a starting point for researching their meaning and
relevance.

9.3. Discrimination from similar concepts 99

9.2.7 ask_strategy

If (and only if) a query for a strategy does not imply a proposal, we should
annotate ask_strategy. As the term “strategy” is hardly ever used in such ques-
tions (and in strategy discussion in general), it will often be unclear whether
the question aims at a strategy or rather at a step; see again Example 9.1 (a). We
will discuss this discrimination further in Section 9.3.7.

9.2.8 agree_strategy

The agree_strategy utterances we have seen were unambiguous; Example 9.2 (5)
was the closest we saw to an ambiguous one. They tended to be quite short
(e.g. “OK”) rather than longer, although longer ones occur as well, e.g. “OK.
Good. Let’s do that.”.

9.2.9 disagree_strategy

We have seen only one instance of disagree_strategy: In Session CA2, at one point
C2 proposes “In principle, we could for now only change TableModel and leave
FeatureProxy as it is. We could.” (DPR: a rule to avoid touching FeatureProxy

for some time) and the partner remarks

“I don’t think we need to change the FeatureProxy.”

If this is correct, the strategy looses its basis, so the utterance should be con-
sidered a disagree_strategy. If we assume the speaker is not quite sure whether
FeatureProxy needs change or not, we should annotate propose_hypothesis as
well; see Chapter 13, in particular Section 13.2.2.

9.3 Discrimination from similar concepts

9.3.1 *_strategy vs. explain_knowledge/explain_finding

Strategy proposals contain and represent knowledge. As a general rule in the
base layer for strategy proposals and their discussion (agree_strategy, challenge_
strategy, amend_strategy, disagree_strategy, decide_strategy), strategy takes annota-
tion precedence over both knowledge and finding. Justifications (if present) are
annotated separately (that is, in addition to the strategy concept) and then use
either explain_knowledge or explain_finding. (This holds likewise for justifications
of other proposals or evaluations, most importantly for design and step).

9.3.2 propose_strategy vs. propose_todo

A propose_todo utterance remarks that one step needs to be done at some (usually
undetermined) later time. In contrast, a propose_strategy of type OWP or EXS

100 Chapter 9. Process-oriented concepts: strategy

embeds at least two steps in a definite ordering and usually also suggests to
start that work now.

9.3.3 propose_strategy vs. propose_step

In Section 9.1 we have defined strategy as an idea for planful action. This idea
is formed in a creative act that combines prior knowledge, assumptions, and
recent insights with an understanding of the goal hierarchy, the pair’s capa-
bilities and limitations, and the current situation. The idea aims at producing
advantage: a solution for how to achieve a higher-level goal at all or achieve it
more easily than previous ideas. Reaching a higher-level goal is beyond a step-
sized goal insofar it is an emergent property arising from multiple successful
steps in combination.

In contrast, a step is considered (by the speaker) something simple: it has no
interesting structure and appears given rather than inventive. So it might seem
as if the discrimination of step and strategy ought to be easy – and it often is,
except when the following complications intervene.

9.3.3.1 Recycled strategies

The creative act required for inventing a strategy needs not have happened
right before: The strategy’s idea may be a reused one, previously invented
by the speaker or even a third party (think of practices such as test-driven
development). This is a potentially important difference, but as the creative act
as such is not often observable, the base layer prescribes to encode proposals
of recycled strategies just like fresh ones: as propose_strategy.

9.3.3.2 step with forward reference

Some proposals of work steps appear to imply that choosing this step will
make subsequent work easier. If that subsequent work and its connection to
the step are explained, such utterances are propose_strategy.

If, however, the reference is vague (e.g. a mere “Let’s first. . . ”), we call this a
step with strategic character and annotate propose_step. Beware of hasty judg-
ment: Utterances such as “Shall we tackle the simple cases first?” will often have
implications that reach much farther, because they formulate a rule and are
therefore in fact DPR-type propose_strategy.

9.3.3.3 steps aiming at advantage

If the benefit intended by a proposal is evident, that does not mean it must
be a strategy, because the benefit may not be advantage in the above sense
of reaching a higher-level goal. Most steps with strategic character will have

9.3. Discrimination from similar concepts 101

evident benefit as well, but they are still atomic and hence still steps; see
Example 6.1 (b).

9.3.3.4 Multi-part proposals not forming a strategy

An utterance such as “Let’s start the program so we can test.” may look like pro-
pose_strategy at first: One might think there are two steps (run, test) mentioned
here and they are integrated into a whole, so this could be a strategy? However,
there is no inventive act here, no advantage needed to be devised, so this is
simply propose_step. Furthermore, the illocution of the utterance (the speaker
knows he is talking to a professional programmer!) is only “Let’s test” so there
really is no pair of steps at all.

9.3.3.5 The creative act is invisible

The inventive act is a nice theoretical criterion for a strategy, but is not oper-
ationalizable: First, you cannot observe the actual creative act at all and only
sometimes will get to see symptoms of it. Second, the inventive act may not
even have happened in the present session; see Section 9.3.3.1 above.

9.3.3.6 Lowly creative acts

The creative act may be quite simple, relying far more on simply paying atten-
tion to constraints rather than on producing a new idea (as in Example 9.2 (1)).

This creates borderline cases in which step and strategy become a matter of taste.
Researchers may develop additional heuristics suitable for the data or their
research question in this respect, but should spend most of their energy on
discriminations that are important for their work.

9.3.4 propose_strategy vs. propose_design

In Section 4.3.3 we have discussed that design proposals often imply (or come
along with or take the form of) step proposals. The inverse happens for strat-
egy: Some pieces of a (typically OWP) propose_strategy may in fact be design
proposals. In such cases, the respective sub-utterances should additionally be
annotated with propose_design or amend_design. The same rule may then also
apply during the subsequent discussion of the strategy proposal.

Worse, the discussion may turn from a strategy discussion entirely into pure
design discussion, which is important for the session and so should be reflected
in the annotations by stopping to use strategy concepts and using only design
concepts. We have not seen such a case so far.

102 Chapter 9. Process-oriented concepts: strategy

9.3.5 agree_strategy vs. agree_knowledge

If P1 makes a strategy proposal and provides justification and then P2 agrees
monosyllabically, it is unclear whether the agreement pertains to the proposal,
only parts of the proposal, the justification, or several of these. You should
normally just annotate agree_strategy, except

• if the next few dialog steps show it was in fact an agree_knowledge for the
justification only or

• if knowledge transfer is a focus of your investigation.

In the latter case, a double annotation may be the safest route. See Example 9.3
for a complicated case in which the proposal was actually a challenge_strategy
and the justification comes separately.

Example 9.3: Episode from Session CA2 (12:58:29–12:58:52) contain-
ing an ambiguous affirmation: Utterance 8 may pertain to utterance
5 (unlikely) or 7 or both. C5 leans forward towards the display and
sometimes turns toward C2; C2 leans back in his chair.

(1) C2.propose_strategy

“Then we should do that before or after. But not at the same time.”

Two alternatives are now on the table, plus a third marked as bad.

(2) C2.propose_hypothesis + C2.explain_knowledge

“Cause I fear that for this work task that we will exceed the time anyway,
(.) because it will be fairly complicated.”

After four seconds of silence, C2 makes a prediction of how fast the further
process will go and provides a justification.

(3) C2.decide_strategy

“Maybe one does it after?”

After another four seconds of silence, C2 suggests (in mode LO) a decision
himself.

(4) C2.explain_standard of knowledge

“But I’m not sure myself either.”

Another two seconds later he emphasizes he does not trust his own judg-
ment in this matter; see Chapter 14.

(5) C5.challenge_strategy

9.3. Discrimination from similar concepts 103

“I would do it (before).”

C5 prefers the other alternative.

(6) C2.agree_strategy

“Hmm, yea, I (!...!)”

C2 half-heartedly changes his mind.

(7) C5.explain_knowledge

“Because if we plan it for later, than, then, er (.), then it won’t happen.”

C5 justifies his preference with experience.

(8) C2.agree_knowledge/C2.agree_strategy

“OK?”
The intonation clearly shows doubt. We cannot decide whether this just
repeats the previous affirmation or expresses (half-)agreement with the most
recent explanation.

9.3.6 ask_strategy vs. ask_knowledge

Any open question specifically for a strategy will be annotated specifically with
ask_strategy, not generically with ask_knowledge.

9.3.7 ask_strategy vs. ask_step

We have now claimed several times that we can often decide between ask_
strategy and ask_step only by considering the answer, not by looking at only
the question itself. Unfortunately, this is still oversimplifying the matter, be-
cause the respondent may have misunderstood the question or may even
have intentionally misinterpreted it. Further context both before and after the
utterance can often disambiguate such cases, but if the asker sits through a
misunderstanding quietly, we may never know it.

Chapter 10
Process-oriented concepts: state

10.1 Topic of state concepts

The state concepts represent utterances regarding the status or degree of com-
pletion of working through the steps formulated or implied by a strategy. The
relationship between strategy and state is equivalent to the relation between
step and completion (Chapter 7). Like with the step referred to by a completion
utterance, the strategy referred to by a state utterance needs not have been
discussed or mentioned before, because the pair may be jointly following an
“obvious”, tacit strategy, the driver may have had one in mind for a while
without mentioning it (for whatever reason), or a sequence of steps may be
recognized as a strategy only after executing some of them. Therefore, state
utterances pertain to any evaluation of process progress above the step level.

Example 10.1: Some state utterances.

(a) ZB7: Z20.explain_state + Z20.disagree_step

“OK. (.) Now we have (!...!) This part is finished. This is (!!...!!) (.)
Yesyes. No, no. We have changed the Topic. We did that earlier. Now we
have finished the Spy. This here still works as it did. Nothing has changed
for it.”

(interleaved with (b)). After a successful test of the previous changes,
driver Z20 checks the progress in the requirements document and explains
it, pointing (Z19 has joined looking). Z19 interrupts him (as shown in (b)),
but Z20 quickly disagrees and proceeds explaining before Z19 even starts
his second sentence. Both of them shortly speak in parallel and eventually
Z20 disagrees with the proposed step as well.

(b) ZB7: Z19.challenge_state + Z19.propose_step

105

106 Chapter 10. Process-oriented concepts: state

“No, no, wait. Not quite. We still need to transfer this part.”

(interleaved with (a)). Z19 interrupts the driver, pointing to an item in the
document. The overall logical dialog sequence of this complicated example
is Z20.explain_state, Z19.challenge_state, Z19.propose_step, Z20.disagree_step,
Z20.explain_state (continued).

(c) BA1: B1.explain_state

“Yes, now we are (guess) finished, huh?”

After a set of important related changes (taking 30 minutes; Example 6.5 is
an outtake) and their discussion, the driver states completion. The set of
changes had not been formulated as a strategy beforehand, they appeared
to follow one from the other in an ad-hoc manner.

(d) CA2: C5.explain_state

“As for checking in and so on, I think we are at a point where we can take a
break.”
see Example 9.2 (6)

(e) CA2: C5.agree_state

“Of course, that’s true.”

answer to (d), see Example 9.2 (7).

10.2 state concepts and their properties

As shown in Figure 3.1, we have so far observed explain_state, agree_state, and
challenge_state.

10.2.1 Short agree utterances

Like other types of agreement utterances, agree_state statements tend to be short
(“Yes.”).

10.2.2 Lack of reference to a strategy

As mentioned above, a state utterance does not necessarily relate to a previous
strategy utterance, let alone explicitly relate to it. Rather, it can relate to any
coherent sequence of work steps that as a whole would be considered non-
atomic, whether explicitly annotated as a strategy or not. So far, no single
explain_state utterance we have seen ever referred to a strategy explicitly.

10.3. Discrimination from similar concepts 107

10.2.3 Partial disagreement

A challenge_state will often challenge the “is completed” assessment of one
subtask (of several) only and may then come along with a propose_step (or
perhaps propose_todo). Both are relevant, so a double annotation of challenge
and propose should be used in such cases.

10.3 Discrimination from similar concepts

10.3.1 explain_state vs. explain_completion

The discrimination between explain_state and explain_completion rests on the
discrimination between strategy (or unspoken strategies) and step (or unspoken
steps).

10.3.2 explain_state vs. explain_finding

This discrimination will be explained in Chapter 12.

Chapter 11
Universal concepts: What is
“knowledge”?

We have already used the term knowledge many times, but so far have been
vague about what it actually means in the base layer. We will explain this more
concretely now.

11.1 On knowledge

Classic epistemology1 (going back to Plato2), considers whether knowledge
could be viewed to be the same as “justified true belief3”. This would mean
knowledge to be related to a person and the statement “I know X” considered
to be correct if the following three conditions all hold4:

• X is true

• I am convinced that X is true (belief)

• I have good reasons to believe that X is true (justified)

For instance if I am about to toss a coin and state “I know that this coin will show
head” I may believe what I say and it may later turn out to be true, but the belief
is not justified and so it was not knowledge.

1http://en.wikipedia.org/w/index.php?title=Epistemology&oldid=565995152
2http://en.wikipedia.org/w/index.php?title=Plato&oldid=566836861
3http://en.wikipedia.org/w/index.php?title=Justified_true_belief&oldid=

559691602
4The definition has many known limitations, but they have little relevance for our discussion

here. For our purposes, the justified true belief notion is a useful starting point.

109

http://en.wikipedia.org/w/index.php?title=Epistemology&oldid=565995152
http://en.wikipedia.org/w/index.php?title=Plato&oldid=566836861
http://en.wikipedia.org/w/index.php?title=Justified_true_belief&oldid=559691602
http://en.wikipedia.org/w/index.php?title=Epistemology&oldid=565995152
http://en.wikipedia.org/w/index.php?title=Plato&oldid=566836861
http://en.wikipedia.org/w/index.php?title=Justified_true_belief&oldid=559691602
http://en.wikipedia.org/w/index.php?title=Justified_true_belief&oldid=559691602

110 Chapter 11. Universal concepts: What is “knowledge”?

For our purposes, however, this definition of knowledge does not work well,
because each of the above conditions is problematic:

• The exact belief is usually not stated (only a rough approximation).

• The researcher can often not decide if a belief is true or not.

• The justification is often left unsaid and none may exist.

11.2 The base concepts’ notion of knowledge

As a way out we draw the following consequences for the base concepts: First,
base-concept-“knowledge” requires belief, but it may be incorrect or unjustified
or both. We still call it knowledge, because most of the time more information
is simply not available to the researcher. Even assumptions and hypotheses are
beliefs in this sense: we think of them as having a prepended clause “I am not
sure but I think that. . . ”.

Second, although all of the utterances addressed by the P&P concepts are based
on something the speaker believes, this something is not considered knowledge
by the base concept set: We have decided to make separate concepts of the P&P
phenomena because we believe they are particularly important for the course of
a pair programming session and we have decided not to additionally annotate
the knowledge embedded in such utterances because we want to keep the
annotation process lean and simple; see Section 21.4.

Third, any pair programmer has many many beliefs that are not covered by
P&P concepts and will also not be considered knowledge in the sense of the
base concept set: For the reasons discussed in Section 2.3, only verbalized
beliefs count as knowledge.

This notion of knowledge will in fact be split up into several concept classes
for representing utterances stating different types of belief that can be expected
to have specific interesting roles in the pair programming process:

• finding about recent insights (Chapter 12),

• hypothesis about partial beliefs (Chapter 13),

• standard of knowledge about what or how much the speaker knows or does
not know (Chapter 14),

• gap in knowledge about something relevant that both pair members do not
know (Chapter 15), and

11.3. Priority rules for assigning knowledge concepts 111

• knowledge about everything else not covered so far (Chapter 16). Think of
knowledge as the final else clause in a long if-else-if chain. This definition
implies we have now as many as four different notions of knowledge
that appear in this book

1. The vague, common-sense notion of knowledge.

2. The more specific term knowledge as explained in the present sec-
tion.

3. The still more specific term knowledge as the thing underlying an
utterance belonging to the knowledge concept class (in contrast to
finding, etc.).

4. The concept class knowledge for the respective utterances.

When you find the word knowledge, it will refer to meaning 4; when you
find the word knowledge, the context will make it clear which of the
other meanings is the intended one, typically either 2 or 3.

The concepts from these concept classes are called universal concepts because
they can be applied in discussion of product and process, not just one of these.
Remember that the HHI base concepts only conceptualize verbalizations, so
they do not speak of knowledge that is not talked about. The rather peculiar
activity concept class (Chapter 17) is also universal.

To keep the number of concept classes low, the potentially very important
discrimination between fresh knowledge (finding) and previously existing
knowledge (knowledge) is currently not made for the hypothesis, standard of
knowledge, and gap in knowledge concepts. Future research may need to change
this, in particular with respect to hypothesis.

11.3 Priority rules for assigning knowledge concepts

Whenever an initiative (as opposed to reactive) utterance is such that we
could annotate it as explain_knowledge, we will do so only as a last resort. The
researcher will ideally be familiar enough with the various knowledge-related
concepts and the corresponding phenomena to recognize them directly. If
that does not work out in a particular case, one can walk down the following
priority chain and use the the first concept class that applies:

1. propose_design/requirement/step/strategy/todo, explain_completion/state, re-
member_requirement. The speaker believes the embedded knowledge to
be true or potentially true (that is, good enough to be worth a discussion).

2. propose_hypothesis. The speaker believes the knowledge to be likely-but-
not-certainly true.

112 Chapter 11. Universal concepts: What is “knowledge”?

3. explain_gap in knowledge. The speaker believes the knowledge to be true.
The same holds for all concepts further down the chain.

4. explain_standard of knowledge.

5. explain_finding.

6. explain_knowledge.

This priority list is simplified insofar as (a) ask concepts are not included
and (b) annotating more than one concept is sometimes appropriate (double
annotation).

Chapter 12
Universal concepts: finding

12.1 Topic and typology of finding concepts

As explained in Chapters 4 to 10, an insight that is verbalized only as a proposal
for the structure of product or process or as an assessment of work state (or
their discussion) will not be annotated as finding at all. This is because the base
layer considers the proposal as such as more interesting than its origin from an
insight (a point of view your subsequent research may wish to change).

Of the remaining insights, as discussed in Section 11.3, any insight that falls into
one of the concept classes hypothesis, gap in knowledge, or standard of knowledge
will also not normally be annotated as finding. Utterances that rely on an insight
for justifying a proposal are one possible type of finding. Overall, the finding
class sits just before the final catch-all class knowledge as the next-to-last, quite
general concept class.

But what is a finding anyway? And how can we reliably recognize one, internal
as it is, if only observations of actual behavior must be taken into account?

A finding is any result of a thought process that was found at least to a relevant
part as a recent insight or consequence of an insight. “Recent” means recent
during the current pair programming session and will typically lie within the
past minute. “Insight” is opposed to remembering.

• For an insight be annotated as a finding, it has to be verbalized as if it was
an undoubted truth.

• Replies of the type “Ah, now I understand” that merely signal the speaker
has understood the partner’s explanation of something do not count as
finding (rather as explain_standard of knowledge).

113

114 Chapter 12. Universal concepts: finding

• An insight that is verbalized once when it is fresh and again during later
episodes of the session will be considered a finding the first time and
knowledge later on.

• Spontaneous verbalizations of prior knowledge (explain_knowledge utter-
ances that neither have a preceding ask nor a proposal context) presum-
ably occur when the speaker had the insight that such explanation is
likely useful. Such insights are not annotated as finding, only the explain_
knowledge is annotated; see Chapter 16.

There is no complete, algorithmic method for recognizing verbalizations of
findings. Rather, we present several finding verbalization types (which we will
imprecisely call finding types); each defines a set of characteristics from which
an utterance should be classified as finding:

1. P: perceived event

2. D: discovered issue (subtypes DU, DC, DO)

3. T: thought (subtypes TB, TU, TC)

12.1.1 finding type P: perceived event

An utterance has finding type P if it verbalizes the recent perception (typically
seeing or hearing) of events in the pair’s work environment, excluding utter-
ances of the partner. A P finding utterance may direct the partner’s attention
towards something, may include an interpretation or evaluation of the event
(e.g. as welcome or unwelcome), or may potentially have still other roles.

12.1.2 finding type D: discovered issue

A finding has type D if it talks about passive information being observed. This is
typically the verbalization of potential defects, problems, irregularities, or other
relevant issues of the observed information or recognizable via the observed
information. A general adequacy assessment or evaluation of a new or existing
part of an artifact also counts as a D finding.

Type-D findings usually require prior knowledge, but as usual the base layer
suggests avoiding double annotations here unless your research question re-
quires otherwise.

finding type D has three subtypes:

finding type DU: uncatalyzed discovered issue. The information observed is
in an artifact, the finding pertains to development artifacts, and the finding
was not triggered or advanced by something the partner said or did or some
other event in the environment.

12.1. Topic and typology of finding concepts 115

finding type DC: catalyzed discovered issue. Ditto, but the finding was trig-
gered or advanced by something the partner said or did or some other event in
the environment.

finding type DO: observation. The information is not in an artifact or the
finding pertains to something outside of artifacts (such as the configuration of
development tools).

Example 12.1: Episode from Session CA2 (12:42:37–12:42:57)
with several D-type findings. Driver C2 has opened class
FeatureAttributeConfigurationProxy (which inherits from
AbstractFeatureAttributeConfiguration) and the pair reviews it. The
findings pertain to a potential defect in the code.

(1) C5.explain_finding

“The get (..) (missing)”

A DU finding. After the pair had looked at the code of the class (which all
fit on the screen), C5 remarks the absence of a certain getter method.

(2) C5.amend_finding

“It gets that from the Abstract.”

A DU finding. After two seconds of silence, C5 extends or elaborates his
finding. He points to the class’ inheritance clause and apparently wants to
make the point that the method is inherited. He sounds like it should not
be.

(3) C2.amend_finding

“It mustn’t take the Abstract.”
A DC finding. Interrupting him, the partner completes that thought: It
should not be inherited.

(4) C5.agree_finding

“Yup.”

Immediate agreement.

(5) C5.propose_design

“You must overwrite it.”
C5 suggests to implement their own local get method.

(6) C2.mumble_sth + C2.propose_step

116 Chapter 12. Universal concepts: finding

“It should never (!...!). Yes. What stuff is there in the Abstract? Let’s
look.”
C2 proposes to first review the full set of methods inherited from the super-
class.

(7) C5.challenge_design

“In a sense, it shouldn’t inherit from Abstract really. Or we must not
have this in Abstract. One or the other.”
C5 disagrees with overwriting the method and proposes to clean up the
whole inheritance construction instead.

12.1.3 finding type T: thought

A finding of type T is an utterance that verbalizes the results of thinking or sud-
den (more precisely: apparently sudden) ideas and insights, possibly without
a recent triggering event or recently observed information. finding type T has
three subtypes:

finding type TB: betterment. Utterances that correct (or find as incorrect) a
speaker’s own previous knowledge or finding utterance without external events
that appear to have caused that insight.

finding type TU: uncatalyzed idea. Utterances that verbalize spontaneous
ideas or insights that are not betterments and that occur without external
events that appear to have helped create that idea or insight.

finding type TC: catalyzed idea. Utterances that verbalize spontaneous ideas
or insights that are not betterments and that were preceded by an external
event that appears to have catalyzed that idea or insight: The insight must be
such that it required taking into account additional information beyond that
coming from the event and leading thought in a different direction than that
perhaps suggested by the event.

12.1.4 Priority rules for checking finding types

The finding types are part of the base layer (as primary characterizing attributes
of the finding concepts), but are not stand-alone concepts within the base
concept set. The purpose of the finding types, much like the proposal modes
of Section 4.2.1 or the strategy types of Section 9.1, is to help with the decision
whether to apply finding at all. For the finding types, this even takes the form
of an if-else-if chain, much like for the knowledge-related concepts overall
(Section 11.3) as follows:

• Assume you have worked through the Section 11.3 priority rules down

12.1. Topic and typology of finding concepts 117

to (including) gap in information without finding an appropriate concept
class. So the utterance ought to be either of class finding or knowledge.

• Does it verbalize (and perhaps evaluate) a concurrent event? Then anno-
tate a type-P finding.

• Does it verbalize an insight or evaluation relating to information currently
being viewed? Then annotate a type-D finding.

• Does it appear to verbalize a spontaneous insight or cogitation result?
Then annotate a type-T finding.

• Otherwise either postulate a new finding type or annotate a knowledge
concept.

Note that the finding types are not orthogonal; they overlap. This is because
they only serve to decide what is a finding utterance, not to canonically classify
any finding utterance. Feel free to add your own (and even modify the existing)
finding types where appropriate during your research.

Despite this help, reliably recognizing finding utterances tends to be difficult,
because by their very nature findings have strong unverbalized components.

12.1.5 finding type indicators and examples

For examples of finding phenomena see Examples 3.1, 6.4, and 12.1 above,
the compressed examples just below and Example 12.2 further down. The
compressed examples serve to explain common symptoms and indicators from
which to recognize the finding verbalization type of explain_finding utterances.

finding type P applies to verbalizations of recent computer outputs. Example
from Session BA1: B1 has started an Eclipse search. While it is still running, B2
comments “Two matches.”.

finding type P applies to evaluations of test run results. Example from Ses-
sion CA2: After some code changes, the pair runs the application and manually
tests it. None of them says anything. After several steps, the driver concludes
“There!”.

finding type DU applies to summaries regarding the quality of a part of an
artifact the speaker has visibly just reviewed (see verify_sth in Section 19.4).
Example from Session CA2: The driver announces he will inspect a certain
method and runs down its lines with the mouse pointer while doing so. Near
the end he states “Yes, fits.”.

finding type DU applies to utterances about some unusual property of a
part of an artifact the speaker has visibly just reviewed. Example from Ses-
sion CA2: While reviewing a method and running down its lines with the

118 Chapter 12. Universal concepts: finding

mouse pointer, the speaker reaches a variable declaration and says “This is an
IFeatureProxiesTableModel, not a normal one”.

finding type DU applies to utterances that effectively state “I found what I was
looking for” at the end of the search for an item with some property. Example
from Session CA2: The driver wants to navigate to a method to be changed,
but neither remembers its name nor the classname, so he looks through the
code of several plausible classes before the utters “Ah, there. (..) Exactly. (.) That
is it, I think”.

finding type DC applies when the speaker explicitly points out a defect after
the partner made a remark that apparently made the speaker recognize the
problem. Example from Session BA1: The driver attempts to decipher the
meaning of an existing if condition and does not succeed. The observer
provides partial explanations that make the speaker recognize that his only
problem was that the code comment explaining the condition (that he himself
happens to have written in an earlier session) was wrong. He says “Then I wrote
the wrong comment, only.”.

finding type DO verbalizes aspects of information freshly shown on the screen
that relates to the work environment itself, not the program artifacts nor the
events from test runs, etc. Example from Session BA1: Driver B1 opens the list
of installed plugins in his IDE to check the status of the PHPEclipse plugin.
No entry of this name exists and he asks rhetorically “What happened to my
PHPEclipse that originally I had installed here?”

finding type TB applies to self-criticism regarding changes the speaker had
previously made on her own initiative. Example from Session BA1: The driver
asks why two particular statements are not grouped together and then groups
them without waiting for an answer. He ponders his change for five seconds
(the partner still passive) before he says “Well, it’s not really nice like this”.

finding type TC applies to the following example from Session BA1: The driver
adds a structured comment to a PHP function. As he writes “@return int”,
the observer makes a “no” sound and the driver immediately states “There we
have our problem”. The function returns int at one point and boolean at another.
The observer was aware of the boolean part; his utterance is disagree_activity
(see Chapter 17) and a P-type explain_finding. This made the driver (who was
previously more aware of the int part, but not exclusively so) recognize the
problem and state it as a a TC-type explain_finding.

finding type TC applies to a conclusion drawn from a previous knowledge
utterance of the partner. Example from Session CA2: Observer C2 suggests
to use the Alt-Shift-C key combination, but C5 explains that that would do
something different (having to do with constants). C2 checks this against his
own keystrokes knowledge and concludes “Then you have changed that”; see
Examples 16.2 and 16.4 for details.

12.1. Topic and typology of finding concepts 119

Any finding type may apply if the speaker emphasizes an insight explicitly by
linguistic means such as “Now I understand. . . ”, “Oh, wait. . . ”, “Aaaahhh!”, etc.

Examples for this from Session BA1: The driver comments on the name of
a function he has been editing “I just recognize that’s total bullshit, that name”.
Elsewhere he says “Aahh, we don’t want to reduce traffic really, of course, we want
to save write accesses to the remote side. That’s the whole trick: That they don’t update
something that is up-to-date anyway”. At still another time the observer says “Oh,
Account!”. From their context, we can recognize these as DU, TC, and P finding
utterances, respectively.

Example 12.2: Episode from Session BA1 with many findings. A num-
ber of code changes have been performed so that the PHP script should
only return those database entries modified in a given time interval.
For testing, the pair had enforced a particular time-difference by hard-
coding, then removed that code again just before this episode. All utter-
ances but one come from B1.

(1) B1.propose_step

“And now we’d said we could run a little simulation now.”
B1 suggests to do a realistic test call from the browser and performs it right
away.

(2) B1.explain_finding

“Now we return files (.). That means the last change (.) was after the
query.”

finding type P: He verbalizes the result that appears in the browser (a list
of strings each containing one hexadecimal result value) and interprets it as
having a particular property.

(3) B1.propose_step

“Stop, wait. After the last query?”

A rhetorical question after several seconds of silence. Its meaning is “Let us
consider whether my interpretation was indeed correct.”

(4) B1.ask_knowledge

“What do we hand over really as timestamp[last_request]?”

B1 has switched back from the browser into the IDE where the if-condition
is still marked that determines the return value. It is unclear whether his
question asks for the current value of the variable or for its general mean-
ing.

120 Chapter 12. Universal concepts: finding

(5) B2.explain_knowledge

“Well, that’s where the (~remote side) hands over to us (.) its Timestamp

(..) when it last (~modified) the (~FriendslistId).”

B2 explains the semantics of the variable without hesitation.

(6) B1.agree_knowledge + B1.ask_knowledge

“Right, but what is our script doing now?”

B1 agrees immediately; he has apparently known this before. He asks about
the behavior in the current specific case.

(7) B1.explain_finding

“I gave it some arbitrary Timestamp (;;;) I’m surprised that it worked with
-1000, +1000.”

After four seconds of silence, B1 formulates the insight that the Timestamp

he submitted to the test run was not chosen in any particular manner and
so the script should not have returned the expected results like it did. The
screen still shows the IDE initially and B1 switches back to the browser
while speaking and marks the relevant part of the URL. The insight may
have arisen earlier: before step (3). The numbers -1000, +1000 refer to pre-
viously hard-coded values that were actually -100, +100 and had been re-
moved before.

Even with the many explanations we provide, the content of the example is
difficult to understand, which illustrates how much context understanding
may be needed for annotating even the base concepts properly.

12.2 finding concepts and their properties

As shown in Figure 3.2, we have observed explain_finding, agree_finding, dis-
agree_finding, amend_finding, and challenge_finding.

Many properties of finding utterances have already been explained in the
previous section. We will not repeat those here, only discuss more specialized
ones.

12.2.1 Aggregation of utterances

If an utterance contains what could be viewed as several (but related) find-
ings, we still annotate only one explain_finding to avoid unnecessary decision
difficulty. You might want to drop this rule if findings are a focus of your inves-
tigation. If the findings appear unrelated, the utterance should be considered
two utterances and annotated separately.

12.2. finding concepts and their properties 121

12.2.2 Repeated statements

If the same finding is apparently verbalized more than once in similar or
paraphrased form, we consider the following cases depending on who repeats
and when:

• Same speaker shortly afterwards: Annotate the second utterance with
explain_finding again.

• Different speaker shortly afterwards: Decide which of the following is
the most likely meaning of the utterance:

– “OK, I understand your idea”; this would be annotated as explain_
standard of knowledge.

– “OK, I understand your idea and think it is correct”; this would be
annotated as agree_finding.

– The speaker had the same idea as the partner at essentially the same
time; this would be annotated as another explain_finding.

• Same or different speaker a long time later: If the utterance shows symp-
toms of a fresh finding again, it should again be annotated as explain_
finding. Otherwise, the previous finding should now be considered prior
knowledge and be annotated as explain_knowledge.

12.2.3 Thinking aloud

Some developers sometimes verbalize substantial parts of their thinking pro-
cess in real time. For instance we found this long utterance in Session BA1:

“First change zero (!...!) (..) The problem is if it returned the current
Timestamp (!...!) (..) (Hm.) (.) We have a problem anyway that we keep
the clocks in sync. (.) And if we take the Timestamp now it could happen
that by a few seconds, milliseconds (!...!) (.....) No, seconds. That it lags
behind by one, two seconds and (.) that we send something unnecessarily.”

The utterance is far from contiguous (it has long pauses), but it is coherent and
uninterrupted and is hence considered a single utterance rather than several.
Unless some of its parts have to be annotated as explain_standard of knowledge
(see the discussion in Chapter 14) or explain_knowledge (see the discussion in
Chapter 14), we will annotate such cases simply as explain_finding.

122 Chapter 12. Universal concepts: finding

12.2.4 Revoking and replacing findings

Just like we saw speakers amend or revoke their own design proposal (see
Section 4.2.6), we saw speakers revoke their own finding and replace it by
another. Such utterances should be annotated as challenge_finding. Do not be
confused if the new version states prior knowledge: The fresh insight is that
this is (subjectively) correct. See also the discussion in Section 21.6.5.

12.2.5 “Additional” findings

It is often difficult to decide whether an utterance is “merely” an addition or
detailing of a previous finding (with or without elements of a new insight,
but which should be annotated as amend_finding) or an entirely new one (and
should be annotated as explain_finding). As in many similar places in the base
concept set, we err on the side of reducing complexity and will always annotate
such cases as amend_finding, no matter which speaker. Subtle cases arise in the
context of knowledge and will be discussed in Chapter 16.3.

Example 12.3: Episode from Session BA1 (14:44:21–14:44:52) in which a
speaker amends his own previous finding. The episode also shows how
to detect proposals (design in this case) in finding contexts.

(1) B1.explain_finding

“I just recognize that’s total bullshit, that name.”

finding type DU: B1 has added a comment on function
registerFriendsLastChange and now evaluates the function name.

(2) B2.ask_knowledge

“Why?”

The observer promptly wants an explanation.

(3) B1.propose_design

“Either registerFriendsChange (!...!)”

Almost interrupting the partner (and not answering his question), B1 pro-
poses how the function should be named. This is an elaboration of the
finding, but also a propose_design which takes annotation precedence. He
starts to offer two versions but stops after the first (perhaps due to another
insight, but this is not relevant at this point).

(4) B1.amend_finding

“Ah, (.) you know, (~FriendsLastChange) is total nonsense somehow so
’cause we register, somehow, that this event occurred.”

12.2. finding concepts and their properties 123

After three seconds of silence, B1 elaborates on his insight. “Ah” signals
another finding, but its close relation to the initial one makes us annotate it
as amend, not explain.

(5) B1.challenge_design

“What do you think of (..) UpdateFriendsLastChangeTime?”

Without a pause, B1 makes another naming suggestion different from his
(incomplete) previous one. He starts performing the renaming even as he
speaks.

(6) B2.agree_design

“Wonderful.”

B2 accepts the second proposal.

(7) B1.amend_finding

“’cause that’s the nice thing about it is (..) (~that it’s different here every-
where). Here we have it and here we update it. And that is clean I guess.”

Although B2 has not asked, B1 immediately explains his reasoning. Both
times the “here” is supported by pointing the mouse. This sounds more
like an elaboration than like a new insight, so we annotate it as amend_
finding.

(8) B2.agree_finding

“Good.”
This could refer to many things so we consider it as referring to the tempo-
rally closest of them.

Example 12.4: Episode from Session BA1 (14:23:59–14:24:38) in which
a speaker amends the partner’s finding. It also serves as an example of
how even difficult acoustic conditions do not always prevent proper
annotation.

(1) B1.propose_step

“Er, I’d say, we go copy everything here bad-ass.”

The pair wants to implement the function getFriendsLastChange which
currently has an empty body. B1 suggests to start from a copy of the whole
body of function getFriendsIDs. He scrolls to the top of that body while
he speaks.

(2) B2.propose_design + B2.explain_finding

124 Chapter 12. Universal concepts: finding

“The SQL we don’t need anymore. Because we only have an a Memcache

query.”

After one second, B2 remarks that the first statements of the body will not
be needed and explains why. Meanwhile, B1 starts copying the body.

(3) B1.agree_design/B1.agree_finding

“Exactly.”

B1 immediately agrees in full; apparently, this was not new information for
him.

(4) B1.propose_step

“I’ll delete it in a second.”
Three seconds later, the copying is still going on, B1 explains how he in-
tends to handle the issue.

(5) B1.explain_finding

“What are these TABs here?”
B1 reports that he has stumbled over some incorrect source code formatting.
Could as well have been annotated as ask_knowledge. The utterance has no
consequences in the episode.

(6) B1.explain_finding

“If not dollar id?!”

After finishing the copying ten seconds later, B1 reads a line of code from
the screen: if (!$id). The pronunciation sounds like he has found an
irregularity, not like an actual question.

(7) B2.mumble_sth

“Return array, ne, (~~), (null)”

This appears to talk about the loop body: return array();. The middle
part is incomprehensible because B1 talks at the same time.

(8) B1.amend_finding

“(crap)”

B1’s adequacy assessment for the if clause.

(9) B2.amend_finding

“(~) Dollar id so-and-so (~)”

12.2. finding concepts and their properties 125

Much of the utterance is incomprehensible, but the understandable part
clearly references the previous explain_finding and the partner’s reaction
shows he has understood. We therefore annotate this utterance as amend_
finding.

(10) B1.agree_finding

“Yes, exactly.”

B1 has apparently understood without problem and immediately agrees.

12.2.6 Justifications of proposals

As discussed in previous chapters, when a rationale or justification is provided
along with a proposal, this will usually be annotated as explain_knowledge.
Sometimes, however, this knowledge will be fresh and then explain_finding
is the appropriate concept. The rules for discriminating these two in this
particular context will be discussed in Chapter 16.

12.2.7 Justifications of findings

If a finding and an accompanying explanation or justification are stated in a
single utterance, without a longer pause and without an intermediate utterance
from the partner, they are annotated as one single explain_finding (or amend_
finding or challenge_finding), because it is impossible to decide whether they
represent a single insight or not.

We usually ignore whether or not prior knowledge is part of the explanation;
specialized studies may want to change this decision.

12.2.8 disagree_finding, challenge_finding

Just like for other objects, the partner may reject a finding with either disagree or
challenge.

disagree_finding: The speaker does not provide information beyond the rejection
itself. Actual cases of this infrequent behavior may take curious forms. For
instance in Session CA2, C5 had said “It needs to do a rebuild – it is rebuilding right
now” (explain_finding), which C2 rejects without explanation by saying “That has
nothing to do with the taskbar not working” (disagree_finding); see Example 19.4 for
more context. This reply is just as illogical as it sounds, the underlying problem
being that C2’s previous complaint about the taskbar had been completely
missed by C5. The rules of annotating base concepts know nothing of such
mishaps, so we simply annotate disagree_finding.

challenge_finding: The speaker suggests either a different finding or a reason
why the partner’s finding is likely incorrect. The former can either lead into

126 Chapter 12. Universal concepts: finding

agreement or into controversy. The latter can either lead into controversy or
into a state where the pair is left with no valid finding at all, as in the following
example (we will come back to this topic during the discussion of challenge_
knowledge in Section 16.2.9):

Example 12.5: Episode from Session ZB7 (16:15:39–16:15:48) in which
the speaker rejects his partner’s finding. The annotation does not reflect
whether the rejection involves prior knowledge.

(1) Z19.explain_finding

“No, with the lib wasn’t right, there had to be ’dot dot’ there.”

The pair works through the file build.properties and the build error
messages on the Eclipse console. The observer suggests that the line
lib.dir=$basedir/lib should in fact be lib.dir=$basedir/../lib

(2) Z20.challenge_finding

“That cannot be. The lib is lying here, too.”

The driver immediately replies why this cannot be true, but nevertheless
makes the suggested modification. This behavior points out a boundary
of the base layer: it does not express such inconsistency between speaking
and action.

(3) Z19.agree_finding

“Yes, right. Then it wasn’t the problem.”

The observer withdraws his original finding.

The rejection is not always explicit, it can also be implicit in a propose in which
case we perform a double annotation as in the following example:

Example 12.6: Episode from Session CA2 (12:39:27–12:39:52) in which
the speaker rejects his partner’s finding implicitly by proposing some-
thing that would not be needed if he agreed.

(1) C2.explain_finding

“Good.”
C2 has started a test run to see if a certain attribute table works as in-
tended. He accesses the menu, displays the table, then displays the at-
tributes, then makes this utterance which confirms the test as successful.

(2) C5.propose_step/challenge_finding

“Do (..) please change the values (.) and go there again.”

12.2. finding concepts and their properties 127

C5 suggests that modifying the attribute values should be tested as well.
This is primarily a propose_step, but implicitly also refuses the partner’s
“Good” conclusion as premature. The challenge_finding (as opposed to dis-
agree) takes the view that the proposal explains what needs to be done
before the finding can become justified.

(3) C2.agree_step/C2.agree_finding

“Um. (.) Yes.”

C2 agrees immediately (almost interrupting C5’s utterance). He modifies an
attribute value, closes all attribute tables, and reopens them.

(4) C5.explain_finding

“(OK.)”

The observer recognizes that the table still contains the previous value. His
utterance is fairly quiet.

(5) C2.explain_finding

“Okayyy, doesn’t work.”

A moment later the driver also states that something is wrong. We anno-
tate this as explain_finding rather than agree_finding because C5’s utterance
was quiet and C2 stared at the screen transfixedly at the time and has pre-
sumably not heard it at all.

(6) C5.propose_step

“(Let’s look.)”

The observer asks (but quietly) to see the code.

(7) C2.propose_step

“Theeeeeen we should look why.”

Two seconds later, the driver proposes the same. Again he has apparently
not heard his partner.

12.2.9 Reasons for agreement

As in the other concept classes, agree_finding utterances tend to be short. In
some cases it is helpful to consider three possible situations in which the
speaker expresses his or her agreement:

• known: The agreement may express “I knew this already since some time”
(in the sense of prior knowledge as opposed to a finding). See for instance

128 Chapter 12. Universal concepts: finding

the first agree_finding in Example 12.4. In principle, such utterances are
explain_standard of knowledge, but we give the existing finding context
priority unless there is a rather explicit declamation of a standard of
knowledge.

• understood: The agreement may express “I did not know this, but I under-
stand what you say and now I think so, too”. For instance, in Session BA1,
B2 explains “You haven’t passed any parameters” to which B1 replies with a
happy “Right!”.

• me-too: The agreement may express “I just had the same insight”. For
instance, again in Session BA1, B1 explains “The problem is when you stop
the script here (.) then (.) the request will not get a response. (.) Or though then
it will send its standard header and also (~not) send anything” to which B2
replies “I suppose so” (which is not a hypothesis utterance because we are
in a finding context already).

Like the proposal modes in Section 4.2.1, the strategy types in Section 9.1, and
the finding types in Section 12.1, these agreement types are primary characteriz-
ing attributes but are not themselves stand-alone members of the base concept
set and you need not be able to annotate them consistently; they serve only to
make it easier to understand whether a particular utterance is an agree_finding
or not. We have not found a similar discrimination necessary for refusals so far.

12.2.10 Doubt

Agreements to findings may involve visible or audible doubt: The speaker is
only half convinced. We will discuss this issue in Section 21.6.4.

12.2.11 ask_finding?

There is no base concept ask_finding, because the asker just needs information
and will usually not care whether the underlying knowledge is new or old.
(Exceptions are possible, for instance mentors might ask questions that aim at
triggering findings.)Therefore, expect to see episodes in which ask_knowledge is
followed by explain_finding or a similar pattern as in Example 12.7.

Example 12.7: Episode from Session BA1 (15:17:14–15:17:42) which is
the closest we ever came to introducing the concept ask_finding. How-
ever, strictly speaking the asker cannot know (and likely will not care)
whether the requested knowledge is old or new, so we stick with the ex-
isting ask_knowledge instead. The example also illustrates amend_finding.

(1) B1.explain_finding

12.3. Discrimination from similar concepts 129

“The last Request here, (;;) last and here, er, change and thus (!...!) Yes,
right. Yes, now we get a friends list.”

The driver thinks about what a certain if statement will produce in the sit-
uation currently considered. He takes notes on a slip of paper and partially
articulates his thoughts. As a result, he formulates the insight that the set
of friends of a certain person will be computed.

(2) B2.challenge_finding

“No, we don’t get a friends list.”

B2 immediately contradicts B1 by postulating the opposite.

(3) B1.challenge_finding

“Yes, we do get one.”

B1 repeats his original claim. (The reaction shows that B2.challenge_finding
is more appropriate than B2.disagree_finding above; see Section 21.7.3.)

(4) B2.ask_knowledge

“Why? If (!!...!!)”

B2 demands a justification (and B1 interrupts the question early). As the
justification of an insight is likely part of that insight or another insight,
this could have been called ask_finding but for the reasons explained above
we have not introduced that concept.

(5) B1.amend_finding

“100 seconds after their last query we have (.) 100 seconds after their last
query we have changed something (..). So we have changed something after
they last asked. So they now get a fresh answer.”

B1 explains his insight by providing details.

12.3 Discrimination from similar concepts

Discriminating finding concepts from product-oriented and process-oriented
concepts is guided by the principle that the latter classes take priority as
explained in Section 11.3 and the principle that knowledge transmitted along
with process/product concept utterances is not annotated separately (only
justifications are) as explained at the end of Section 3.6.

The remaining issues are discussed in the subsections following below.

130 Chapter 12. Universal concepts: finding

12.3.1 finding vs. other universal concepts

Most ideas for discriminating finding from knowledge were already explained in
Section 12.1 above and the rest will follow in Chapter 16 about the knowledge
class. Discriminating finding from the other classes of universal concepts will
be discussed only in the respective chapters.

12.3.2 explain_finding vs. propose_design

See Section 3.7, Section 4.2.3, and Section 12.3.3.

12.3.3 explain_finding vs. *_step

For propose_step, see Section 6.2.1. If a speaker explicitly marks an insight as part
of a step utterance, this is annotated as an additional explain_finding. We have
seen such behavior when the speaker, after a proposal had been formulated,
has perceived something that suggests the proposal was unsuitable (as in
Example 6.1). The same rule should be applied to the other product-oriented
and process-oriented concepts, but we have not seen such phenomena so far.

12.3.4 explain_finding vs. explain_completion or explain_state

explain_completion and explain_state are both special cases of explain_finding and
therefore take annotation precedence.

Chapter 13
Universal concepts: hypothesis

13.1 Topic of hypothesis concepts

A hypothesis in the sense of the base concepts is an utterance relating to a
conjecture, assumption, or hypothesis that the speaker observably doubts to
some degree. It may be that the speaker expects it (or sometimes its opposite)
to be true more likely than not or that no particular conviction is present. It can
be new (a doubted finding) or old (uncertain knowledge). Actual verification
of the hypothesis needs not be practical for the pair.

We have seen the following three types of hypothesis utterances, but more
may exist. For examples see Section 13.1.4 which lists the types of issues that
hypothesis utterances tend to talk about.

13.1.1 Uncertain knowledge

A hypothesis of type ’doubted’ pertains to something that could (and often
should) be part of the speaker’s existing knowledge but that is available only
partly, making the speaker doubt it. For instance, relevant detail may be lacking,
the speaker may be only half-convinced of the correctness of his or her memory,
or the knowledge is altogether vague. Such a hypothesis is not specific to the
context of the current session.

13.1.2 Hard-to-verify assumptions

A hypothesis of type ’hard-to-verify’ pertains to something that either takes a lot
of effort to check (beyond what is practical in the current session) or that the
speaker does not know how to check or that can only be verified by waiting
a long time (beyond the length of the current session) to see how the world
develops.

131

132 Chapter 13. Universal concepts: hypothesis

13.1.3 Readily verifiable conjectures

A hypothesis of type ’can-check’ pertains to something that the pair is able to
check within the current session. It is not important if they actually do.

13.1.4 Issue types addressed by hypotheses

We have seen the following types of topics (issue types) occur in hypothesis
utterances, but more may exist.

Program execution properties. Hypotheses about what happened in a recent
program execution or what may or will happen in a future one. For example,
a few seconds after a NullPointerException has terminated a run in Session
ZB7, Z20 comments: “You know what happened? (...) I guess (no) (.) I don’t know
but I guess (..) that the receive didn’t receive anything after 10 seconds.” (type
can-check). And in Session BA1, after the pair has modified a call argument,
the observer speculates about the effect “Is bigger. (So we) should get an exit, not
a friends list, right?” (type can-check). Such utterances can have any hypothesis
type but will often tend towards can-check.

Environment properties. Hypotheses regarding properties of the various
development tools used, the networking environment, etc. For example, while
the pair investigates configuration issues in Session ZB7, Z19 comments “Does,
er, (!...!) I think XDoclet butchers that (..) perhaps?” (type can-check). And in
Session BA1, after a call to the wget utility failed, the observer has an idea why
and asks “Firewall?” (type can-check). Such utterances can have any hypothesis
type but will often tend towards can-check.

Program artifact properties. Hypotheses regarding properties of the program
that are formulated in terms of the program text and related artifacts. For
example, after a test run yielded the wrong result in Session BA1, B2 utters
“Safe::id_to_code. Probably some old bracketing error” (type can-check). And in
Session CA2, before moving a class to a different package, C2 proposes a
justification “This is probably not used here anymore” (type is unknown). Such
utterances can have any hypothesis type.

Process course. Hypotheses formulated about properties of past or future
development activities. For example, after the n-th failed change-build-test
cycle Z20 says in ZB7 “Perhaps we should have made a real undeploy” (type can-
check). And in Session CA2, C2 justifies a strategy proposal by saying “Cause I
fear that for this work task that we will exceed the time anyway, (.) because it will be
fairly complicated” (type can be considered can-check or hard-to-verify). Such
utterances can have any hypothesis type.

Conventions. Hypotheses about general conventions (often regarding for-
matting or naming) that the pair is expected to follow. For example, after C5
has started filling the comment field during an SVN commit operation with

13.2. hypothesis concepts and their properties 133

“cad-507” in Session CA2, C2 interjects “I think the ’cad’ is upcased or so?” (type
doubted). Such utterances will usually have hypothesis type doubted.

13.2 hypothesis concepts and their properties

As shown in Figure 3.2, we have observed propose_hypothesis, agree_hypothesis,
disagree_hypothesis, challenge_hypothesis, and amend_hypothesis.

13.2.1 propose_hypothesis

propose_hypothesis represents utterances in which the speaker states how some-
thing could be explained or what properties something might possess. For this
character, the verb propose appears more appropriate than explain, so this is
what we use.

13.2.2 agree_hypothesis, disagree_hypothesis, challenge_hypothesis

agree_hypothesis represents any utterance by which the speaker expresses that
he or she believes the proposed hypothesis is correct more likely than not. For
example in Session CA2, C5 explains where he thinks the pair can obtain a
required task ID by saying “Well I think <**Developer**> has it in his Opera” to
which C2 agrees with a quiet “(OK)”. If the utterance also explains why the
speaker agrees, this is expressed by annotating explain_knowledge or explain_
finding in addition. For example, in the episode from Session ZB7 we know
from above, Z20 hypothesizes “You know what happened? (...) I guess (no)
(.) I don’t know but I guess (..) that the receive didn’t receive anything after 10
seconds” and Z19 replies “Yes, it took a while, right”, which we annotate as agree_
hypothesis+explain_finding.

Note that this style of annotation loses the relationship between agreement
and explanation, so you might want to extend the modeling if that aspect is
important for your particular study.

Likewise, disagree_hypothesis represents any utterance by which the speaker
expresses that he or she believes it is more likely than not that the proposed hy-
pothesis is incorrect. If the utterance also explains why, this is again expressed
by annotating explain_knowledge or explain_finding in addition. For example in
Session ZB7, Z19 appears to believe that the failing of the previously run test
most likely occurred because not all required configuration settings had been
made by the pair; he is leafing through a configuration documentation. He
vaguely states his hypothesis as “Yes, er, to get (.) to get that running we need to
do certain things and something is missing of that”, but Z20 disagrees by saying
“But we DID do all that” (disagree_hypothesis/explain_finding).

Had the speaker disagreed and offered an alternative hypothesis, this should
have been be annotated as challenge_hypothesis.

134 Chapter 13. Universal concepts: hypothesis

13.2.3 Conditional agreement

Sometimes the speaker says something of the type “If we find condition X to
hold, then I agree with your hypothesis”.

For instance in the example of Section 13.1.4, Z20 says “Perhaps we should have
made a real undeploy” and Z19 replies “If it still doesn’t work now, we can do it”. We
consider such conditions that do not modify the hypothesis as such to be part
of the agreement and annotate the above utterance as agree_hypothesis/propose_
step.

13.2.4 Revoking or replacing one’s own hypothesis

Like for explain_finding (see Section 12.2.4), we found cases of explain_hypothesis
where the speaker takes it back a short time later. Sometimes, the speaker sim-
ply appears to lose confidence in the former idea; for example in Session CA2,
C2 proposes “Because it could be that it’s just this one AttributeConfiguration
that we don’t have added yet” and then adds “But (.) I don’t think so” (disagree_
hypothesis).

In other cases, a “better” idea appears (from discussion or simply from further
thinking) and the hypothesis is replaced by a supposedly superior one; for
example in Session CA2, C5 first proposes “That should, we must, the demo down
here <*points to a class*> (.) it ought to be in there, the EditColumnAttribute” and
then has a 12-second discussion with his partner, during which the class is not
opened, and concludes “Stop, no, then it must be up here <*points to a different
class*>, right?”. Such cases are annotated as challenge_hypothesis.

13.2.5 amend_hypothesis: One hypothesis or several?

If a subsequent utterance refers to a previously proposed hypothesis, and is not
simply agreement or disagreement, it is not always clear whether it proposes a
new hypothesis or refines the previous one. If it proposes a new hypothesis, that
might be an additional one (propose_hypothesis) or an alternative one (challenge_
hypothesis). If it refines the previous hypothesis, it should be annotated as
amend_hypothesis.

We use the following criterion for deciding when to encode with amend: If the
original proposal can be paraphrased in the form “If A, then B”, then we use
amend if the new utterance widens the condition (“If A or A2, then B”), narrows
down the condition (“If A and A2, then B”), loosens the consequence (“If A,
then B or B2”), or extends the consequence (“If A, then B and B2”).

Such utterances do not appear to be frequent; we have not seen any single
instance of them. The only reason that amend_hypothesis is part of the base
concepts nevertheless is Example 13.1 which, with a little stretching of the
above definition of amend_hypothesis, could be considered to contain one.

13.2. hypothesis concepts and their properties 135

Example 13.1: Episode from Session ZB7 in which driver Z20 states
hypotheses and supporting justifications. One justification is another
hypothesis, the other comes from existing knowledge.

(1) Z20.propose_hypothesis

“I think these dot dot there are wrong. (..) And it could be that I had set
them on my machine.”

While discussing the reasons for the failure of a previous build pro-
cess, the pair looks at a configuration entry of the form conf.dir =

$basedir/../conf. The driver conjectures that the ’go to parent directory’
part of the path is wrong (H1). He adds another conjecture H2 that this set-
ting was correct on his machine (from which it was taken) but is inappro-
priate for the setup of the present machine. The second hypothesis serves
to support the first and we decided to consider them one single hypothesis
in our annotation.

(2) Z20.mumble_sth

“I, er (!...!)”

The driver removes the ’../’ part from three such paths in the configuration
file.

(3) Z19.ask_knowledge

“Are these all files so, not?”

Z19 asks if corresponding changes need to be made elsewhere.

(4) Z20.propose_hypothesis

“Hm, hmmmm. No, that is only (.) here it should be proble(.)matic.”

Z20 does not appear to be sure; the reply is another conjecture (H3).

(5) Z20.explain_knowledge+Z20.propose_hypothesis

“Cause I had the project different before. The basedir I think is the Eclipse
project.”

Z20 justifies his former hypothesis. The first part is existing knowledge,
the second part is another hypothesis (H4). We view H4 as an additional
hypothesis here, but if we would construe the first statement above to have
the shape “If H2, then H1”, then we could take the present one as refining
it into “If H2 and H4, then H1” and accordingly annotate it with amend_
hypothesis.

(6) Z19.explain_standard of knowledge+Z19.agree_hypothesis

136 Chapter 13. Universal concepts: hypothesis

“Ah, now I see. You are right.”

The second part formulates agreement – it is not fully clear to what. The
first part does not sound like a very local statement, so it makes sense to
assume the agreement covers more than only H4, which is another argu-
ment why amend_hypothesis might be an appropriate annotation above.

13.2.6 Justification of hypotheses

Not only agreements and disagreements (as in Section 13.2.2) but also the
hypothesis proposals themselves often come with a justification. Depending on
its content, this justification should be annotated separately as either explain_
knowledge, explain_finding, or propose_hypothesis. Do not confuse parts of the
hypothesis (such as conditional clauses) with justifications.

13.2.7 Justification by hypotheses

A hypothesis may also serve as justification for any other proposal (not just
a hypothesis), as well as as justification for various types of explain and other
utterances.

13.3 Discrimination from similar concepts

Most interesting is the discrimination from finding and knowledge concepts. The
former is discussed below, the latter will be discussed in Chapter 16.3.

13.3.1 propose_hypothesis vs. explain_finding

A hypothesis will often be of recent creation rather than being part of existing
knowledge and then represents an insight (finding). So when do we annotate
propose_hypothesis rather than explain_finding in such cases? We have defined
that the main criterion is incomplete conviction of the speaker: A finding is
considered true, a hypothesis is considered uncertain. But how to discriminate
those cases?

Indicators for the hypothesis-ness of an utterance are words such as think,
hope, guess, expect (and others) or the use of question form. But neither do
all hypothesis utterances exhibit those features nor do all finding utterances lack
them – “think” in particular is highly ambiguous:

“Ahh, I think it has this (!...!) it does not accept this as a PHP project.”

In this quote from Session BA1, the insight character is obvious, but the degree
of conviction is not.

13.3. Discrimination from similar concepts 137

The only solution is judging, from the context before and after the utterance,
whether the speaker appears to be (at the time of the utterance) convinced of
the truth of the assumption or not. In the above case, our analysis decided yes
and we hence annotated explain_finding.

Studies that pay major attention to validation-of-knowledge processes in pair
programming will definitely need to create finer instruments for diagnosing
and expressing what is going on in the session than the base layer provides.

Chapter 14
Universal concepts: standard of
knowledge

14.1 Topic of standard of knowledge concepts

The standard of knowledge concepts represent utterances in which the speaker
queries the partner’s or explains his or her own level of currently available
knowledge: Whether a particular piece of knowledge is consciously present
or how much knowledge about a certain topic is available (or missing). The
utterance does not aim at communicating the content knowledge itself.

These utterances talk about the knowledge of a single pair member, not the
pair as a whole (see gap in knowledge, Chapter 15, for the latter). The standard
of knowledge concepts exist because we found they serve important roles in
the pair programming process; explain_standard of knowledge typically prepares
or rejects or acknowledges a knowledge transfer. The following subsections
explain these three different standard of knowledge utterance types.

14.1.1 PT: Preparing knowledge transfer

The speaker states that he or she lacks certain knowledge (and perhaps ex-
plains what that knowledge would be about), implying (or stating) that this
knowledge would need to be transferred to him or her. It is not important
whether that transfer then actually happens or not or even whether it would
be feasible. There are three subtypes:

PTd, for decision: The speaker explains to what extent he or she possesses
knowledge sufficient for decisions to be made soon.

For example in Session CA2, C2 has just stated that he thinks a Facade should
be introduced into the program to hide some details and then continues “What

139

140 Chapter 14. Universal concepts: standard of knowledge

the Facade looks like I don’t know. That I don’t yet, I don’t (.) yet see”.

PTe, for execution: The speaker explains to what extent he or she possesses
knowledge sufficient for performing certain activities (often a step) required
soon.

For example in Session CA2, the pair needs to determine the official task ID of
their current work goal and driver C2 says “(~Could) you just look? I have no
idea how I would (!...!). Don’t know by heart”. The solution suggested explicitly
in this utterance, that the better-informed partner next take the driver role, is
often tacitly applied to resolve such situations.

PTo, other: This is the catch-all type for knowledge transfer triggers that do
not immediately pertain to decisions or actions.

For example in Session BA1 during a sequence of connected simple changes,
B1 states that he momentarily lost and then presumably re-established his
orientation: “translate each friend’s id to ids: We’ve been there before. I’m really not
sure right now where we are. (~Ah, here)”. At some other point he says about a
complicated if statement: “I find it all quite confusing as well. I always make myself
a sketch each time to understand it (~at all).” (explain_standard of knowledge+explain_
knowledge)

14.1.2 RT: Refusing knowledge transfer

The speaker negatively answers a query for information (ask_knowledge) or for
a proposal (e.g. ask_step) by stating that he lacks the necessary knowledge for
fulfilling the request. For example in Session CA2, C5 asks what argument to
pass to a method parameter: “That needs All, probably?”. C2 replies “No idea
what that thing does”.

14.1.3 AT: Acknowledging knowledge transfer

The speaker states whether or to what degree a previous knowledge transfer
(explain_knowledge or explain_finding) was successful or what its result was. For
example in Session CA2, after C5’s explanation of the reasons for some changes
he had made, C2 states “OK, I don’t get it, but OK. I haven’t understood, but
OK” to acknowledge the knowledge transfer as unsuccessful, yet terminate the
episode nevertheless. Elsewhere in CA2, C5 explains where to find a certain
class: “The VirtualAttribute is here in pro <*points on screen*>”, which C2
first repeats, sounding astonished, then acknowledges as understood: “In
<*packagename*>.pro is the VirtualAttribute? OK”. Type AT includes the case
that the speaker states to have possessed the respective knowledge even before
the transfer.

14.2. standard of knowledge concepts and their properties 141

14.2 standard of knowledge concepts and their properties

As shown in Figure 3.2, we have observed ask_standard of knowledge and explain_
standard of knowledge.

14.2.1 ask_standard of knowledge

The speaker sometimes queries the partner regarding how much he or she
knows about something. If the immediate goal of such questions is more
obtaining an understanding of the constraints under which the session is
performed rather than obtaining knowledge for directly pursuing the session’s
goals, then we encode them as ask_standard of knowledge.

For example in Session BA1, driver B1 wants to know how well his partner
understands the PHP script next to be reworked: “You don’t know the script at
all, do you?”. Interestingly, B2’s reply is more complex than expected: “Yes, I
looked at it a little while ago and it’s not actually complicated” (explain_standard of
knowledge+explain_knowledge). (To understand why explain_knowledge appears
as well, see Section 16.2.1.)

14.2.2 AT with paraphrasing

In order to state and make sure that transferred knowledge has properly been
received and understood, the speaker will sometimes paraphrase the knowl-
edge in his or her own words, sometimes adding aspects that were not explicit
before (sometimes even completing a cut-off or trailed-off utterance of the
partner); see Example 14.1 (5+6). Such utterances are still considered purely
explain_standard of knowledge.

Example 14.1: Episode from Session BA1 (14:14:31–14:14:51) in which
explained knowledge is paraphrased by extension to signal understand-
ing.

(1) B2.ask_knowledge

“Can timestamp_last_change greater zero happen? (.) Er, er, less than
zero, or equals zero for all I care. (.) Under this <*points to screen*> condi-
tion.”
B2 asks about the value of a variable.

(2) B1.explain_knowledge

“Hmmm, that is our requirement so to say that we have of this function
(!!...!!)”

B1 starts to answer but gets interrupted.

142 Chapter 14. Universal concepts: standard of knowledge

(3) B2.mumble_sth

“Should we not that there, so that not that there, I mean (!...!)”

B2 does not finish; it remains unclear what he intends to say.

(4) B1.explain_knowledge

“. . . that it returns zero, em.”

B1 ignores the interjection and continues his explanation.

(5) B2.agree_knowledge

“OK, hmhm.”

B2 agrees immediately.

(6) B2.explain_standard of knowledge

“If it doesn’t, if it fails, somehow.”

B2 complements B1’s explanation by a condition for the zero return. B1
knows that condition but had not mentioned it. B2’s utterance states how
he understood the explanation and what he assumes to know now.

(7) B1.agree_knowledge

“Exactly.”

This confirms the correctness of the standard of knowledge that B2 claims
to have achieved, not the knowledge content, so it should be something
like attest_standard of knowledge, but we have decided against such a super-
specialized and rare concept, using the much more generic agree_knowledge
instead.

Note that paraphrasing of recently transferred knowledge also occurs as part
of proposals and should then not be annotated as explain_standard of knowledge.
See Example 9.2 where both uses of paraphrasing occur right after one another
in utterances (2) and (3).

14.2.3 standard of knowledge in the making

We have discussed for finding (in Section 12.2.3) that sometimes speakers ver-
balize some of the thinking process that leads to a finding before the finding
itself.

Something similar may happen before a speaker diagnoses his or her standard
of knowledge, as in this long utterance of B1 in Session BA1: “Really great would
be, if we could return something that always (!...!) (..) hm (...) Wait-a-sec. That

14.2. standard of knowledge concepts and their properties 143

always (!...!) (.....) Now I (~somehow) lost the thread.” Such utterances should be
annotated with explain_standard of knowledge.

14.2.4 explain_standard of knowledge may be findings

A explain_standard of knowledge utterance may result from a fresh insight: a
finding. Because of the priority rules stated in Section 11.3, it is nevertheless
simply annotated as explain_standard of knowledge. This is particularly and
undoubtedly true if the utterance does not actually explain the finding but only
announces it, as in “I have an idea” from CA2.

14.2.5 Limited-knowledge proposals

As we have discussed in the respective chapters on the product-oriented and
process-oriented concepts, a proposal is still a proposal if the speaker reveals
that he or she is not fully convinced of the proposal.

However, the base layer’s principle of encoding primary intentions (Sec-
tion 2.3.2) demands that if the speaker apparently intends to inform the partner
about a low or high standard of knowledge that underlay the proposal, this
should be annotated separately as explain_standard of knowledge. However,
minor doubts are common and so this rule would lead to frequent double
annotations if applied generally. Therefore, we apply it only if the standard of
knowledge is expressed explicitly and separately – as in utterances (3)+(4) of
Example 9.3 taken together.

14.2.6 Implicit statements

Sometimes the standard of knowledge is not described explicitly and rather
an interest in certain information is stated instead. Examples: “I’d be interested
in that myself” (C2 in CA2, explain_standard of knowledge) or “I would like to
understand it!” (B1 in BA1, explain_standard of knowledge and propose_step, B1
starts investigating the respective source code right away).

14.2.7 Backward-looking statements

explain_standard of knowledge utterances are not always about the present, they
may also pertain to the past and sometimes even exclusively to the past (that
is, the standard of knowledge has since improved).

For instance in Session CA2, after deleting a line of code C2 remarks “Hadn’t
understood it anyway” to declare a previous (and now irrelevant) lack of under-
standing of the meaning of the deleted code line.

144 Chapter 14. Universal concepts: standard of knowledge

14.2.8 Signaling ongoing thinking

If a speaker reveals that he or she is currently thinking about something, this
should be annotated with explain_standard of knowledge.

For example in Session BA1, B1 explains the consequence of a previously
proposed change as “Ehm, that would make it optional” to which B2 replies
“That’s what I’m considering”.

14.3 Discrimination from similar concepts

We discuss various discriminations of only the concept explain_standard of
knowledge to concepts from the finding and hypothesis and the product-oriented
and process-oriented concept classes. With one exception, the discrimination
from knowledge concepts however will be discussed in Chapter 16.

14.3.1 explain_standard of knowledge vs. ask_knowledge

Any explain_standard of knowledge that diagnoses a less-than-perfect knowledge
level can also be interpreted as a request to transfer the missing knowledge:
ask_knowledge. So what should we annotate? Relying on the priority rules
(Section 11.3), we would always chose explain_standard of knowledge, because it
is more specific. But another general rule should in fact take precedence here:
The encoding of primary intentions (Section 2.3.2).

If the primary goal of the utterance appears to be obtaining knowledge by
making the partner explain it, ask_knowledge is the right concept. But if the
primary goal is to simply inform the partner of the speaker’s knowledge-
related situation, we use explain_standard of knowledge. Both concepts will be
used together only if we find both goal types to be equally strong, which ought
to be rare.

14.3.2 explain_standard of knowledge vs. agree_finding or disagree_
finding

Any agree_finding can be interpreted as an explain_standard of knowledge, but
based on the principle of encoding intra-dialog relationships (Section 2.3.6), the
former should take precedence to make the episode structure more visible; see
Example 12.5. This does not preclude an additional annotation with explain_
standard of knowledge if sufficient emphasis of this aspect is present in the
utterance nor an exclusive annotation with explain_standard of knowledge if the
utterance is neither agreement nor disagreement but rather a statement of
insufficient judgment capability.

The same holds for disagree_finding.

14.3. Discrimination from similar concepts 145

14.3.3 explain_standard of knowledge vs. explain_finding

See Section 14.2.4.

14.3.4 explain_standard of knowledge vs. agree/disagree for a
proposal

We discussed in Section 14.2.5 that a proposal may lack complete conviction and
said that such cases may or may not deserve additional annotation with explain_
standard of knowledge. The same idea holds for agree and disagree utterances
(regarding proposals) that reveal a sufficiently unreliable underlying standard
of knowledge.

14.3.5 explain_standard of knowledge vs. propose_hypothesis

Formulating a statement as a hypothesis always also provides a glimpse of the
current standard of knowledge – do not let this fool you. Normally, the priority
rules (Section 11.3) suggest that in such cases propose_hypothesis, being the more
specific concept, should take annotation precedence; see most of the examples
in Chapter 13.

For understanding the overall session, though, it might actually be most produc-
tive to consider the specific nature and origin of the ambiguity in a particular
case. For example, in the statement “Maybe I have even written some myself, I’m
not sure” the first part is clearly propose_hypothesis while the second part could
be considered explain_standard of knowledge. However, you might come to the
conclusion that in this particular case it is merely a re-emphasis of the “Maybe”
at the front.

In other cases, the principle of encoding primary intentions (Section 2.3.2)
might suggest otherwise and should then be given priority: If signaling the
insecurity appears more important than the actual content of the hypothesis,
explain_standard of knowledge should (also) be used.

Chapter 15
Universal concepts: gap in
knowledge

15.1 Topic of gap in knowledge concepts

During our research, we found several cases where it appeared that moments
in which the pair recognizes (and states) that both partners are lacking the same
relevant piece of knowledge may be of particular importance for the further
course of the session. We decided to create a separate concept class for this
special case of standard of knowledge, called gap in knowledge.

For example in Session ZB7, driver Z20 summarizes the joint standard of
knowledge as “We don’t know whether our changes to the file (..) make it through to
JBoss” (explain_gap in knowledge) and the observer confirms: “Exactly” (agree_gap
in knowledge). This is one of the two types of explain_gap in knowledge utterance
we have seen: the situation summary, where the underlying knowledge deficits
have already been verbalized before and the utterance mainly puts them in a
nutshell.

The other type is asymmetric: The partner has (explicitly or possibly implicitly)
declared a certain standard of knowledge and the speaker now declares his
own by way of explaining a joint gap in knowledge. Here is an example of the
’implicit’ subtype from Session ZB7: Z20 summarizes the previous discussion
(about how to obtain a Topic object) as

“The question is: Who provides us with a Topic? <*Z19: JBoss!*> JBoss,
yes. JBoss provides it. Why does it do that? In which (.) file is it stated?
And is that file generated by XDoclet or not?”

(ask_knowledge, or more precisely: Z20.ask_knowledge, Z19.explain_knowledge,

147

148 Chapter 15. Universal concepts: gap in knowledge

Z20.agree_knowledge, Z20.ask_knowledge). The pair looks at one another silently
for about 3 seconds before Z19 states

“Very good question. Can’t remember anything.”

(explain_gap in knowledge), which declares the joint technology knowledge of
the pair to be too low.

15.2 gap in knowledge concepts and their properties

As shown in Figure 3.2, we have observed only explain_gap in knowledge and
agree_gap in knowledge, but obviously at least the respective disagree, challenge,
and amend concepts can readily be added as soon as a corresponding utterance
is encountered.

15.2.1 explain_gap in knowledge

The base layer requires for an explain_gap in knowledge phenomenon that the
speaker not merely diagnoses a gap in joint knowledge but also apparently
assumes that this gap is considerably relevant for the further course of the
session.

15.3 Discrimination from similar concepts

We only discuss discrimination from standard of knowledge here (and from
propose_step) but postpone discrimination from knowledge to the respective
Chapter 16.

15.3.1 explain_gap in knowledge vs. explain_standard of knowledge

Most explain_gap in knowledge utterances can be considered to also fulfill the
conditions for a explain_standard of knowledge. According to the priority rules
(Section 11.3), only explain_gap in knowledge should be used and explain_standard
of knowledge should not be used in such cases.

Specialized studies may for instance want to vary the ’speaker assumes rel-
evance’ condition mentioned in Section 15.2.1 such that the gap must also
objectively be considerably relevant. Such studies will also need to make the
notion of ’considerable relevance’ more concrete.

15.3.2 agree_gap in knowledge vs. agree_standard of knowledge

According to the principle of encoding intra-dialog relationships (Section 2.3.6),
agreements to a previous explain_gap in knowledge will always be annotated

15.3. Discrimination from similar concepts 149

with agree_gap in knowledge, never with agree_standard of knowledge, even if the
speaker only talks of him or herself.

If for an agreement to a previous explain_standard of knowledge you feel tempted
to use agree_gap in knowledge because the speaker extends the previous ut-
terance’s scope from the partner to the pair, then explain_gap in knowledge is
probably the right annotation instead.

15.3.3 explain_gap in knowledge vs. propose_step

An utterance such as “Now we need to find out: (.) Where does that value come
from?” (BA1) will usually be a clear propose_step. However, if (as in this case)
it can appropriately be paraphrased as “We should take time to think because we
both do not know where the value comes from” and recognizing that “both do not
know” is a relevant insight, then explain_gap in knowledge should be annotated
in addition. Such paraphrasing is often helpful for finding the right annotation.

Chapter 16
Universal concepts: knowledge

16.1 Topic of knowledge concepts

Now would be a fine time to re-read Section 3.6, which introduced the notion
of ’knowledge’ used in the base concept set, and Chapter 11.2, which explains
it in some more detail. We repeat the key points here:

• knowledge concepts represent verbalizations of (some forms of) knowl-
edge, not the knowledge itself and also not implicit forms of knowledge
transfer.

• Most kinds of knowledge verbalization are addressed by other, more
specialized concept classes (such as finding or standard of knowledge), not
the knowledge class.

• The knowledge concept class serves as a kind of catch-all last resort, much
like an else-clause, to accommodate utterances not captured by the other
concept classes1 (Section 11.3).

• knowledge utterances are truthful (the speakers believe them to be true)
but not necessarily true.

The latter two conditions result in a large variety of phenomena being rep-
resented as knowledge in the base concept set. For instance the knowledge
underlying a knowledge utterance may stem from a variety of areas, such as

• generic programming knowledge (such as design knowledge or technol-
ogy details knowledge),

1Not all utterances: activity utterances remain.

151

152 Chapter 16. Universal concepts: knowledge

• domain knowledge (problem domain),

• product-oriented project knowledge about properties of the program
system being developed,

• process-oriented project knowledge about previous events, activities,
and decisions regarding the development process not covered by P&P
concepts,

• and others.

Also, there are various different roles of knowledge utterances (see again Sec-
tion 2.3.2 on illocutionary acts and Section 2.3.2 on encoding primary intentions)
and correspondingly different types of knowledge could be discriminated.
Most prominently, many knowledge utterances explain the reasoning under-
lying a proposal and hence serve to justify the proposal. Such justifications
could have been expressed by a verb justify, so that for instance propose_design
would often be followed by a justify_design of the same speaker. Or consider
the following scene from Session CA2: Driver C2 throws his arms in the air
and exclaims “I didn’t write that!”. This is clearly a rejection of responsibility,
which we could have considered important enough a phenomenon to allocate
a separate concept class for it. But as has been discussed in Sections 3.6, 3.7,
4.2.3, and other spots, the base layer takes a different approach: It prescribes
to simply use the generic (and somewhat vague) explain_knowledge in those
cases2.

In order to keep the size of the base concept set at bay, we also do not perform
the area-based discriminations mentioned above or any other type of subcat-
egorization and simply use knowledge for all of the variants. Since knowledge
is an important concept class, this means that future studies will add their
own concepts particularly often in this region, but note that it might be more
convenient to add property concepts rather than splitting existing concept
classes; see Chapter 22 for the discussion.

Example 16.1: Isolated (or mini-episode) examples of ask_knowledge and
explain_knowledge utterances, all from Session BA1.

(a) B2.ask_knowledge

“But curl is on it?”
Question whether the http utility program curl is installed on the develop-
ment machine.

2And also for other types of justifications such as the “I didn’t write that!” that C5 claims with
defensively lifted hands in CA2 after C2 criticized some code and which could have been expressed
with a concept such as explain_responsibility

16.2. knowledge concepts and their properties 153

(b) B1.explain_knowledge

“Yes.”
Answer to question (a).

(c) B1.explain_knowledge

“Well, we don’t call that. It has such a big overhead that I have left it out.
Look, it’s commented out up here.”

B1 answers a question regarding the use of some existing functionality. The
statement soon after turns out to be not entirely correct.

(d) B2.ask_knowledge

“What do you do here? Here you check, er, whether, er, id_code is a real
key, real thingamabob?”

A question while displaying a particular piece of code.

(e) B1.explain_knowledge

“Ahm, right. (.) That’s simply hex with 16 (.) digits.”

Answer to question (d).

(f) B1.explain_knowledge

“friends_ids. (.) There we have it; that’s why it did it. Writing com-
ments razzes me. i d s and ids are easily confused, id_codes you can’t
confuse. And that function here <*highlights a call*> is called id_to_code

anyway.”

Without having been asked, B1 explains names he has chosen prior to the
session.

16.2 knowledge concepts and their properties

As shown in Figure 3.2, we have observed explain_knowledge, agree_knowledge,
disagree_knowledge, challenge_knowledge, and ask_knowledge.

16.2.1 Evaluations and judgments

Most evaluations or judgments of artifacts, parts or aspects of artifacts, or
other items such as conventions are findings and require a finding concept.
Sometimes, however, the speaker reveals that the respective insight is not
recent and then explain_knowledge ought to be used instead; the final PTo
example in Section 14.1.1 is such a case.

154 Chapter 16. Universal concepts: knowledge

16.2.2 Unprompted knowledge transfer

Speakers sometimes explain_knowledge without prior query from the partner,
as in Example 16.1 (f). Although this will often appear to be triggered by an
insight (“My partner needs this knowledge now.”), no finding concept is annotated
unless the insight is verbalized; usually, only explain_knowledge will be used.

16.2.3 Rhetorical questions

Presumably-rhetorical questions for knowledge will not usually be annotated
as ask_knowledge. Rather, their illocutionary act needs to be determined: They
may be the verbalization of an insight or knowledge (as in the DO example in
Section 12.1.5), lead-in to such verbalization, or implicit suggestions what to
work on (then use propose_step, see Example 12.2 (3)).

16.2.4 Aggregation of utterances

The same rules apply as discussed for finding in Section 12.2.1; see Example 16.1
(c) and (f).

16.2.5 amend_knowledge?

In contrast to findings, which are held together reasonably well by the short
period in which the insight was achieved (but note our nevertheless simplified
handling of amend_finding in Section 12.2.5), it is very difficult to determine a
sensible granularity that defines what is considered one piece of knowledge
versus another (in particular because knowledge contains so many different
things that are not clearly kept apart). It would therefore be overly difficult
to provide a consistent operationalization of amend_knowledge (in contrast to
just using another explain_knowledge) and we have thus not included amend_
knowledge in the base concept set.

16.2.6 “Different” answers

Not every question is answered in the manner expected by the asker. For
instance, the reply may instead explain why an answer is not actually needed
as in Example 16.2. Such phenomena are not particularly frequent and are not
addressed explicitly in the base concept set; we simply use explain_knowledge
here as well.

Example 16.2: Episode from Session CA2 (12:04:53–12:05:13) in which
there is a difference of opinion regarding a knowledge transfer.

(1) C5.ask_knowledge/C5.propose_step

“Do you know the (.) how I access the function to change a method?”

16.2. knowledge concepts and their properties 155

Said while opening the context menu for method setVirtualAttributes.
Section 6.3.3 discusses this double annotation.

(2) C2.explain_knowledge/C2.disagree_step

“That doesn’t get you anywhere.”

C2 answers by giving an assessment of the idea underlying the question.
Section 6.3.6 discusses this double annotation.

(3) C5.challenge_knowledge+C5.propose_design

“It does. In the method, once opened, I can turn the IVirtualColumn into
I(!!...!!)”

C5 insists on his idea, explaining his immediate goal. C2 interrupts him.

(4) C2.challenge_knowledge/C2.disagree_step/C2.disagree_de-
sign+C2.explain_knowledge

“That will (!...!) That doesn’t buy you much. But Alt-Shift-C, do, do it
with Alt-Shift-C.”

C2 dissents again, but suggests an approach we decided to be the answer
to the original question.

(5) C5.challenge_knowledge

“Alt-Shift-C should be constants.”

The driver explains that the key combination will call some other than the
required functionality.

16.2.7 Modes of agreement

An agree_knowledge utterance can be made in at least the following three differ-
ent modes:

• known: The recipient knew this before, as in Example 12.2.

• understood: The recipient signals to have understood the explanation
and to consider it correct, whether after an actual verification or otherwise.
See Examples 14.1 and 16.3 (4). Such utterances often border on explain_
standard of knowledge; see Section 16.3.10.

• unchecked: The recipient signals to be willing to assume the explanation
to be correct without making his or her own judgment about it. See
Example 16.4 (1). Such utterances often have the character of pushing
away additional explanations or of delegating responsibility (see also
Example 16.3 (6)) or they are preliminary.

156 Chapter 16. Universal concepts: knowledge

We consider these modes to form different agreement types here, that is, prop-
erties that characterize agreement utterances; compare to the respective types
for agree_finding (and their role) in Section 12.2.9.

Example 16.3: Episode from Session CA2 in which the partner corrects
explained knowledge.

(1) C5.propose_design

“As it is now (;) we can do without this one.”

The driver highlights one line of code and suggests deleting it.

(2) C2.explain_knowledge+C2.agree_design

“That wasn’t right anyway.”

The observer agrees and states the logic in that line to be incorrect.

(3) C5.challenge_knowledge

“It was right before. It was no longer after your change. Before it it was.”

The driver dissents and explains when the line had become wrong (which
was before the session).

(4) C2.agree_knowledge+C2.disagree_knowledge

“Uhuh, OK. (..) Actually not.”

C2 agrees, then reconsiders and disagrees.

(5) C5.explain_knowledge

“That was (!...!) The, the, the strategy then was such that via (.), er,
AllColumnAttributes we’d get the virtual ones as well. So I had to reset
them and upon no change set them again.”

C5 elaborates further.

(6) C2.explain_standard of knowledge

“(OK, I don’t get it, but OK.) I haven’t understood, but OK.”

C2 gives up his attempt to understand and pushes off further explanations.

Example 16.4: Episode from Session CA2 (12:05:16–12:05:35) which
follows directly after Example 16.2.

(1) C2.agree_knowledge

“Okayyy”

16.2. knowledge concepts and their properties 157

The observer agrees (using mode unchecked) to the challenge_knowledge of
Example 16.2 (5).

(2) C2.explain_finding

“Then you have changed that.”

C2 now recognizes (a TC-type finding) that C5 must have modified the
Alt-Shift-C key binding.

(3) C5.amend_finding

“’t is <**developer name**>. And we have the (.) agreement here, y’ know,
that we’ve set it so.”
Although it comes from existing knowledge and although it justifies, this
utterance is amending the finding.

(4) C2.agree_finding+C2.explain_knowledge

“Yes, sure, well, who, who likes it, who likes to change it, sure.”

C2 agrees to the amendment and then evaluates its content which the base
layer treats as explaining existing knowledge.

(5) C2.agree_step/C2.explain_knowledge

“Then do (!...!). You need to point here <*points to method name*> (..)
then ’refactor’, ’change method signature’.”

C2 answers the question from Example 16.2 (1), agreeing to the step by
explaining how to perform it.

16.2.8 Indicating agreement vs. indicating attentiveness

See Section 4.2.7.

16.2.9 Opposition and controversy

As for most base concept classes, explained knowledge can be contradicted in
two manners:

• challenge_knowledge: The explanation is refused in a manner that provides
additional knowledge which either subjectively corrects the knowledge as
in Example 16.3 (3) or which at least shows that the previous explanation
cannot be correct as in Example 16.2 (5). For the latter case, later studies
may decide that it would be better to annotate disagree_knowledge+explain_
knowledge rather than challenge_knowledge.

158 Chapter 16. Universal concepts: knowledge

• disagree_knowledge: The explanation is refused without providing ad-
ditional knowledge, as in Example 16.3 (4). Such utterances are often
short.

16.2.10 Disagreeing by agreeing to the opposite

If an explain_knowledge states a binary property, e.g. “X does not have property
Y” and the partner disagrees in “Yes, it does!”-style, this should be considered
offering alternative knowledge and thus be annotated with challenge_knowledge.

16.2.11 Opinions

The base concepts considers an utterance expressing an opinion to express a
belief. It should therefore be annotated with explain_knowledge.

16.2.12 Limited conviction

While an explain_knowledge is always uttered with apparently complete convic-
tion (otherwise it would be propose_hypothesis instead), the base concepts do
not require complete conviction for subsequent agree and disagree utterances,
which explicitly or implicitly are allowed to reveal remaining doubt; see Exam-
ple 9.3 (8). The example “Really?” from BA1 illustrates that this even results
in cases where it is difficult to decide between annotating agree_knowledge and
annotating disagree_knowledge.

16.2.13 ask_knowledge is not always that

Many explain_knowledge utterances are triggered by a previous question, as in
Example 12.2 (4), see also (6). But such questions are to be annotated as ask_
knowledge only if they do not imply a proposal, as Example 12.2 (3) does, and
also do not pertain to P&P concepts.

16.2.14 Questions including possible answers

Speakers sometimes phrase questions that include a hypothesis for the answer,
such as Example 16.1 (4). If such a hypothesis appears to be present merely
for clarity or other rhetorical purposes, we simply annotate ask_knowledge. A
propose_hypothesis is added only if the hypothesis appears to be meant as such
(perhaps as the primary aspect then); see Section 16.3.6.

16.2.15 Statement or question?

Even when fully exploiting the information available from context and intona-
tion, it is sometimes hard to decide whether an utterance should be taken as a
statement for explaining knowledge (explain_knowledge) or as a question asking

16.3. Discrimination from similar concepts 159

for verification (ask_knowledge). It may even be that neither is the case and the
speaker is actually formulating an insight to be exploited (explain_finding).

The best example we have is untranslatable into English because it rests on the
use of the German word “ja” (normally “yes”) as a modal particle. With that
word left in, the half-translated utterance of C2 from Session CA2 goes

“The processing of the, the thread IDs stays [ja] the same, there is [ja]
nothing (!...!)”

C2 says this unpromptedly after he stated the pair could now proceed (after a
successful test). C5 replies “Exactly”. The “ja” can mean “as you know”, which
would lead to the meaning explain_knowledge. Or it can mean “I think”, which
would allow for ask_knowledge or explain_finding. Or it can mean “surprisingly”,
which would suggest explain_finding. The nature of knowledge as the fallback
concept class suggests to annotate such ambiguous cases as explain_knowledge.

16.3 Discrimination from similar concepts

Except for a very few bits and pieces, everything needed to correctly apply
the knowledge concept class and to discriminate its instances from those of
the previous classes has been said above. But because of the importance of
knowledge utterances and the subtlety of the class (due to its catch-all character),
we nevertheless discuss a large number of cases explicitly at least shortly here.

16.3.1 explain_knowledge vs. propose_step

A longer utterance containing a step proposal can involve three aspects: The
actual step proposed, a justification of why it should be performed, and an
additional explanation of how it could or should be performed. Only the first of
these is annotated as propose_step, the other two parts, if present, must each be
annotated with an appropriate knowledge, finding, or perhaps hypothesis concept.
Without a separate proposal, the otherwise exact same explanation how to do
“it” can be considered the proposal.

16.3.2 explain_knowledge vs. propose_design

If design proposals are accompanied by a separate justification, separately
annotate the latter as explain_knowledge as discussed in Sections 3.7 and 4.2.3:
propose_design+explain_knowledge. If the proposal is implicit in the knowledge
utterance, use a double annotation propose_design/explain_knowledge; see the
discussion in Section 4.3.2.

160 Chapter 16. Universal concepts: knowledge

16.3.3 explain_knowledge vs. explain_finding

As we have discussed at length in Chapter 12, we use finding not only for
utterances that contain findings explicitly, but in many other cases as well. Five
remarks remain to be made:

1. If finding and knowledge appear equally likely, then explain_knowledge should
be used: we may lack any symptom at all that would let us favor finding
over knowledge or vice versa, as in the following example from BA1 where
B1 asks “What will happen here when this friend here deletes himself <*points to a
paper note*>? (.....) Then strictly speaking I have to, then strictly speaking I need to
(~invalidate) mine, my friends list.” and B2 answers without any hesitation

“That it does, yes. It, you are friend (~too) of him who deletes himself. (.)
And here in this function will be (.) for all (.) of his friends, including you,
(.) the MemCache object will be (~deleted).”

You may perceive the promptness of the reply to suggest existing knowledge
as the content of the reply, but it may as well be a finding created during
the five seconds of silence within the previous utterance of B1. We simply
cannot decide the matter and will annotate explain_knowledge as a result. Such
problems are common in particular for (possible) findings of the idea types (TC
and even more so TU).

2. Even if a linguistic finding symptom such as “Ah, ...” is present in the
utterance, it may only signal an insight of the type “I just recognize that you
need the following information”, but the base layer does not annotate such minor
aspects of utterances. If the content of the subsequent utterance is existing
knowledge, the whole utterance should be annotated with explain_knowledge
and only with explain_knowledge.

3. It is normal that existing knowledge is required for having an insight. It
is therefore also normal that such existing knowledge is verbalized as part
of the verbalization of the insight. Such verbalizations should normally be
annotated simply as finding, except if the speaker explicitly marks some part
of it as existing knowledge, in which case a separate annotation or double
annotation of explain_knowledge is called for.

4. Explaining existing knowledge may itself be the trigger for an insight – a
potentially very important phenomenon for understanding pair programming.
If this happens, both parts should separately be annotated accordingly as after
the self-interruption in the following B1 utterance from Session CA2:

“The problem is, er, if you want to, er, use the (.) Columns, and in all

too, you need to have the same attribute column (.) names. And to have
that, you need to (!...!) Oh, no, stop, that’s not a problem: We have them
here.”

16.3. Discrimination from similar concepts 161

5. The speaker’s idea that existing knowledge should be explained will often be
a finding. If this idea itself is not verbalized, however, the base layer suggests
to annotate explain_knowledge only. Since the idea may be important for the
session, subsequent studies may decide to change this decision.

Many of these remarks apply not merely to explain_knowledge and explain_
finding, but likewise to amend_finding, challenge_finding, and challenge_knowledge.

16.3.4 explain_knowledge vs. amend_finding, challenge_finding,
disagree_finding

Elaborations as part of explain_finding as well as parts or all of amend_finding or
challenge_finding utterances may consist of existing knowledge. In the base layer,
this fact is not annotated; according to the episode principle (Example 2.3.6),
only the respective finding concept is used. Later studies may want to introduce
properties to be annotated additionally in order not to lose the information
about the origin of the knowledge in such cases.

Accordingly, a disagree_finding elaborated by a justification based on existing
knowledge will be annotated as challenge_finding.

16.3.5 explain_knowledge vs. agree_design/disagree_design

Rather than to agree or disagree with a design proposal explicitly, the speaker
may package his opinion in a knowledge utterance. As this may be a relevant
phenomenon for pair programming, the base layer suggests to use double
annotations (e.g. disagree_design/explain_knowledge) in such cases.

The same idea applies to all P&P proposals, but in our data we have observed
such behavior only for design.

16.3.6 ask_knowledge vs. propose_hypothesis

We have previously allowed that a hypothesis utterance may take the form of a
question (as in the example below). We have also allowed that an ask utterance
may include possible answers (as in Example 16.1 (4)). Therefore, there may
be ambiguity whether an utterance is asking for knowledge or proposing a
hypothesis. The base layer rule for these cases states to use ask_knowledge iff it
appears that the speaker believes the partner will be able to reliably answer the
question (and use propose_hypothesis otherwise).

Here is an example from BA1: After the pair changed an argument supplied
to a PHP script, the observer wonders what the result will now be: “Is greater.
(~So we) should get an exit, not a (~friends list), or not?” Here it is unlikely that
the speaker assumes definite knowledge in his partner, in particular since that

162 Chapter 16. Universal concepts: knowledge

partner had attempted (and aborted) an explanation himself previously, so
propose_hypothesis is the right annotation.

In contrast in Example 16.1 (4), while the second part sounds a lot like propose_
hypothesis, the first part is a direct question to the partner, so ask_knowledge
it must be. Example 16.5 is another illustration for how similar these two
concepts can be.

Example 16.5: Episode from Session CA2 (12:29:04–12:29:10) showing
the similarity of ask_knowledge and propose_hypothesis.

(1) C2.ask_knowledge

“That’s how it went, with a minus, right?”

The pair is filling an SVN commit message and wonders about the pre-
scribed syntax for the task ID. C2 has typed ’cad-509’ and has moved the
cursor back to the minus sign.

(2) C5.propose_hypothesis

“I think the ’cad’ is upcased or so?”

As C2 is apparently unsure about the format, C5’s question must be a hy-
pothesis.

16.3.7 ask_knowledge vs. explain_finding

Questions are typically the result of a more-or-less recent insight which told
the speaker that he or she is lacking relevant information or understanding.
Such a tacit underlying insight is not annotated unless the question must be
considered rhetorical in which case the question is not annotated as such. A
borderline case occurred in Session BA1, where the driver encounters tabulator
characters in the source code and asks “What are these TABs here?”. explain_
finding and ask_knowledge are equally adequate annotations for this utterance,
see Example 12.4 for the context.

16.3.8 explain_knowledge vs. explain_standard of knowledge

As discussed in Section 14.2.2, if a speaker paraphrases knowledge previously
explained by the partner, this will be annotated as explain_standard of knowledge
even if it includes additional bits of knowledge as in Example 16.6 (2). This
rule was chosen for practicality. Its limit is reached when the parts can clearly
be identified as separate instances in which case explain_knowledge should be
used for the respective part. Later studies may wish to find more refined rules
in this area.

16.3. Discrimination from similar concepts 163

Example 16.6: Episode from Session CA2 (11:53:01–11:53:23) in which
C2 agrees to an explanation by means of explain_standard of knowledge.

(1) C5.explain_knowledge

“I said, I (...) I (.), er, work different from you. I (...) including
along. I have included in the considerations that they from that
getColumnAttributes may, that they are included there. That’s why
they’re reset there now.”

The observer “explains” the code he wrote before the session. He points to
spots visible on the screen.

(2) C2.agree_knowledge+C2.explain_standard of knowledge

“Um, then you can easily, then you can easily change it. (!!That had con-
fused me.!!)”

C2 agrees by explaining how he understood the explanation. C5 interrupts
him during the last part.

(3) C5.explain_knowledge

“(!!Yes.!!)”

C5 states that C2 understood him correctly. (There is no specialized base
concept for such utterances.)

16.3.9 ask_knowledge vs. explain_standard of knowledge

See Section 14.3.1.

16.3.10 agree_knowledge vs. explain_standard of knowledge

An agree_knowledge is sometimes ambiguous versus an AT-type explain_standard
of knowledge. In such cases we stick to the episodes principle (Section 2.3.6) and
annotate agree_knowledge unless both possible intentions are made somewhat
explicit, in which case we either make a double annotation as in Example 16.6 (2)
or split up the utterance as in Example 14.1 (5+6).

Chapter 17
Universal concepts: activity

17.1 The notion of facade concept class

The design pattern Facade1 [7] defines a construct (usually a class) that provides
an appropriately simplified view of a set of other constructs (such as a set of
classes), omitting detail and focussing attention on the parts relevant for the
purpose at hand.

The base layer borrows (rather loosely) from this idea to introduce the notion
of a facade concept class. A facade concept class contains concepts that provide a
simplified perspective on a part of a session. That part is

• somehow coherent for the purpose of the analysis,

• but consists of more than one utterance or of an utterance and something
else (and often both).

Such facade concepts will typically not be used alone: they are designed to
commonly be used as one part of a double annotation. The elements of any
one facade concept class together may or may not provide an episode structure
as the normal HHI concept classes do.

In the base layer, activity is the only facade class, but others might conceivably
be introduced in later studies.

17.2 Topic of activity concepts

The activity concepts represent utterances that comment on HEI or HCI ac-
tivities (Chapter 19) currently or recently going on, for instance expressing

1http://en.wikipedia.org/w/index.php?title=Facade_pattern&oldid=559454643

165

http://en.wikipedia.org/w/index.php?title=Facade_pattern&oldid=559454643
http://en.wikipedia.org/w/index.php?title=Facade_pattern&oldid=559454643

166 Chapter 17. Universal concepts: activity

agreement or disagreement with actual code changes just performed by the
partner. They thus link the HHI dialog world to the HCI/HEI world.

The core concept is think aloud_activity. Such utterances explain on the fly all
or part of what the speaker is concurrently doing2. One think aloud_activity
addresses exactly one activity (but several think aloud_activity annotations may
be made for subsequent stretches of the same activity). The verbalization can
be descriptive. Or it is explanatory, reflecting, or otherwise adding (whether
consciously or not) information beyond what the partner could derive by pure
observation otherwise. In particular, the verbalization may constitute one or
more instances of HHI concepts. These will be annotated separately and the
think aloud_activity serves to capture their relationship to one instance of an
HCI/HEI concept. For example in Session CA2, C2 is modifying a method:

“<*starts modifying the method*>
It ought to be implemented like this. (;;;)
<*stops modifying the method*>
(.)
<*starts wandering up and down with the cursor*>
And it must not, definitely not, be part of Abstract. Or so I think.
<*stops wandering up and down with the cursor*>”

The activity being verbalized here is a write_sth (see Section 19.1), the two HHI
utterances are both propose_design, and the think aloud_activity relates those
three parts to one another.

Note the cursor wandering may in fact be a form of displacement activity4. The
base layer’s model of HCI/HEI activities is coarse, so it provides no concepts
for modeling such behavior, but subsequent studies may want to introduce
appropriate extensions.

A think aloud_activity may start a bit before the activity or continue a bit after
its end as explained in Figure 17.1. In any case, the base layer suggests a new
activity always requires a new instance of think aloud_activity.

The concept does not say anything about what the content of the verbalization
is, how complete it is, or whether the resulting information or integration of
the partner is a conscious goal or not. If the verbalization comes in several
parts with pauses in between, multiple instances of think aloud_activity may be
used. These rules will be elaborated in Section 17.3.

A think aloud_activity utterance typically addresses one or more of the following:
2 Starting to verbalize is typically a spontaneous decision of the speaker, so this concept is

different from what happens when using the think aloud research method3 where the speaker is
repeatedly requested to verbalize.

4http://en.wikipedia.org/w/index.php?title=Displacement_activity&oldid=

558153583#Use_in_science

http://en.wikipedia.org/w/index.php?title=Displacement_activity&oldid=558153583#Use_in_science
http://en.wikipedia.org/w/index.php?title=Think_aloud_protocol&oldid=543592059
http://en.wikipedia.org/w/index.php?title=Displacement_activity&oldid=558153583#Use_in_science
http://en.wikipedia.org/w/index.php?title=Displacement_activity&oldid=558153583#Use_in_science

17.2. Topic of activity concepts 167

time

verbalization

throughout

partial verbalizations

verbalizations

beginning before and

extending beyond

two adjacent activities

with separate

verbalizations

verbalization

extending into a

subsequent activity

HCI/HEI activity

think aloud_activity

Figure 17.1: How activities may relate to think aloud_activity utterances.

• TA1: What am I doing? This may include verbalizing typing input. Will
often involve propose_design.

• TA2: Why am I doing what I am (or soon will be) doing? Will often be
explain_knowledge (or finding).

• TA3: How am I doing what I am (or soon will be) doing? Will typically
be explain_knowledge.

• TA4: What decisions am I making? Will often be propose_design or propose_
step (but also amend and challenge and sometimes others).

• TA5: What decisions underlie my activity? Often involves a strategy.

• TA6: What fresh insights am I having? Will usually be finding utterances.

• TA7: How do I interpret and evaluate feedback the computer is provid-
ing? Also finding.

• TA8: How sure am I to be doing the right thing? Tends to be explain_
standard of knowledge.

• TA9: How do I judge the quality of what I am doing? Tends to be finding.

• TA10: How far have I come in what I am doing? Typically completion.

168 Chapter 17. Universal concepts: activity

• TA11: How does the infrastructure (development tools and runtime tools)
influence what I am doing? Typically knowledge or finding.

Here are a number of examples from Session BA1. The mentioned HCI/HEI
concepts will be introduced in Chapter 19.

1. B1 modifies a URL in a shell script call and remarks on two differences to
his usual workstation setting. B2 makes an interjection and B1 replies without
stopping the editing. Length 33 seconds:

“ <*start write_sth*>
<*TA11:*> I need to adjust each time to not having an apple-key. (;)
<*TA4:*>Here. We simply use localhost, I’d say. (;;;;;) (And then it is)
(!...!)
<*B2: You call it from the shell, don’t you?*>
Yes. (;) <*TA1: reads his inputs aloud*> projects, um, <**URL part**>
(..) trunc (.) API (;;) <**URL part**> (~~)
<*end write_sth*>
<*TA11:*>Mighty small, that screen.”

2. B1 has opened the Eclipse Preferences window and is expanding several tree
nodes. Length 3 seconds:

“<*do_sth is running*>
<*TA2:*> Hmmm. Fonts and Colors must be somewhere.
<*do_sth continues*>”

3. A short time later Fonts and Colors is found. B1 wants to make the editor
font smaller to get better overview in the code. He eventually finds that his
Courier font size change to the smallest value 10 did not help much. Length 21
seconds:

“<*do_sth is running*>
<*TA4:*> Let’s see. What does Courier have? (;;;;;;;;;;;;;) Bah! (;;)
<*TA10:*> Not a big improvement.
<*TA6:*> The problem is it cannot go much smaller.
<*end do_sth*>”

4. Elsewhere, B1 opens a file by double-click, but it opens in the external editor
TextPad rather than the internal Eclipse editor. Another attempt via the context
menu has the same result. The third attempt uses a different context menu
entry. Length 27 seconds:

17.3. activity concepts and their properties 169

“<*start do_sth*>
(;;;) <*TA5:*> OK, we don’t do that with TextPad (;;) No way. (;;)
<*TA6:*> We need to tell it with what to open it. (;;;)
<*B2: Can’t you drag-and-drop? (~~)*>
Oh God. (;)
<*TA3:*> We need to use this: Open in Editor.
<*do_sth continues*>”

5. Still elsewhere, B1 has changed a configuration file and once again calls
wget http://dev-intern in a shell. The call terminates with the message
“connection refused”. Length 13 seconds:

“<*start verify_sth*>
(;;;) <*TA4:*> Then we can try it again. (;;;;)
<*TA7:*> OK, the connect still doesn’t like us. <*end verify_sth*>”

17.3 activity concepts and their properties

As shown in Figure 3.2, we have observed think aloud_activity, agree_activity,
disagree_activity, challenge_activity, amend_activity, and stop_activity. While think
aloud_activity refers to activity of the speaker, all others refer to activity of the
partner; see Section 17.3.14 for corner cases.

A joint goal for most of the rules for using these concepts, in particular think
aloud_activity, is not to allow the granularity get too small. Subsequent studies
may need to deviate from the rules wherever they blur the relevant phenomena
too much, e.g. a study interested in the role of fluent versus halting speech.

17.3.1 Granularity of think aloud_activity

A core question for the activity class is to determine the beginning and end
of a think aloud_activity. We answer it by answering a whole sequence of
subquestions as follows.

• When do we consider an HCI/HEI activity to begin or end? This will be
discussed for each type of activity in Chapter 19. In short, the answer is to be
found neither by looking at syntactical elements of the artifacts nor by looking
at contiguous stretches of physical activity but rather by considering logical
work steps.

• How to handle verbalizations beginning before or ending after the HCI/HEI
activity (Figure 17.1)? If the protruding part is only a part of an utterance,
it should usually be considered to be part of the think aloud_activity iff the
utterances are comments going along with the activity. Such prefixes and
suffixes should be kept short, however. For instance in Example 5 above,

170 Chapter 17. Universal concepts: activity

the verify_sth could technically have been considered complete before the last
utterance, but for understanding it is more helpful to extend the think aloud_
activity to fully include it.

• How many aspects relevant for the activity can be left unsaid before we stop
calling it a think aloud_activity? How many need to be verbalized at least? The
number is irrelevant; only one aspect needs to be verbalized.

• How continuous and contiguous does a verbalization need to be (gaps and
pauses, Figure 17.1)? Arbitrary gaps and pauses are acceptable as long as
the same verbalization intent still appears to be at work. Only if the speaker
appears to stop the verbalization entirely and then begins a new one will we
annotate a new think aloud_activity. The behavioral details of this difference are
difficult to describe but are often not difficult to decide for an actual researcher.

• How to handle deviations from the main topic? As long as the deviation
is semantically connected to the activity’s topic at all, the think aloud_activity
is allowed to continue. For instance in Session BA1, there is a point during
an editing step where the actor explains a syntactic improvement to the PHP
language that he would like to see introduced.

• How to handle interjections from the partner? If the actor reacts to them
casually or not at all, they are not considered to break the think aloud_activity. If
the actor reacts to them by shifting her attention focus, the think aloud_activity
ends. Subsequent studies may wish to change either of these decisions.

17.3.2 think aloud_activity phenomena leading to questions

If the actor poses a question to the partner during a think aloud_activity and
continues verbalizing right afterwards, the question is not considered to break
the think aloud_activity. If there is a speaking pause after the question, the rules
for gaps and pauses from Section 17.3.1 apply. Subsequent studies may want
to introduce their own rules for this aspect.

17.3.3 HCI/HEI activities resulting from an utterance

think aloud_activity represents utterances that accompany an HCI/HEI activity.
In the converse case, an activity may accompany an utterance (most commonly
pointing to or highlighting on the screen). think aloud_activity does not apply to
such situations.

Subsequent studies for which such auxiliary activities are important should
introduce an appropriate class of facade concepts to express the relationship.
An example might be a study interested in misunderstandings due to missing
pointing and highlighting.

17.3. activity concepts and their properties 171

17.3.4 Disconnect of HCI/HEI activity and verbalization

If utterances of the actor during an activity have no discernible semantic rela-
tionship to the activity, think aloud_activity is not applicable. If a think aloud_
activity is already ongoing, the utterance(s) should be treated like pauses and
gaps (Section 17.3.1).

Subsequent studies may want to introduce a new facade class for such phe-
nomena if they occur regularly.

17.3.5 The partner commenting on activity vs. on verbalizations

Use agree_activity, disagree_activity, challenge_activity, amend_activity, and stop_
activity when the partner comments on what the actor is doing. They do not
apply if the partner only comments on the actor’s verbalization of what he or
she is doing.

Note that many activities have so little physical “body” that activity and ver-
balization are hard to keep apart and so the above problem is less likely to
occur.

17.3.6 challenge_activity

The counter-proposal formulated in a challenge_activity may pertain to process
aspects of the activity (procedure, as in Example 17.1), to product aspects
(content, as in Example 17.2), or to both.

Example 17.1: Episode from Session BA1 (13:46:49–13:47:01) containing
a procedure-related challenge_activity.

(1) B1.propose_hypothesis

“Ah, maybe we must enable the chat.”

B1 is already in an B1.explore_sth. This utterance starts a B1.think aloud_
activity.

(2) B2.agree_hypothesis

“Um, or so.”

This does not break the B1.think aloud_activity.

(3) B1.propose_step

“That’s a possibility. We need the auto_prepend.”

This continues both the B1.explore_sth and the B1.think aloud_activity:
B1 moves the Eclipse Navigator View’s highlight cursor to the file
auto_prepend. B1.explore_sth ends. B1.think aloud_activity ends.

172 Chapter 17. Universal concepts: activity

(4) B2.challenge_step

“No, that’s in the Conf.”

This constitutes a B2.challenge_activity.

(5) B1.propose_step

“I’ll first make a Working Set.”

B1 calls the Eclipse function Select Working Set (B1.do_sth and B1.think
aloud_activity).

Example 17.2: Episode from Session BA1 (14:30:39–14:30:47) containing
a product-related challenge_activity.

(1) B2.propose_design+B2.explain_completion

“return 0, but otherwise; exactly.”

B1 is modifying a return statement (B1.write_sth). B2 proposes something
about its content (B2.amend_activity), B1 continues editing, B2 finds his
proposal to be implemented (B2.agree_activity).

(2) B2.propose_design

“No, that was quite right.”

B1 selects a part of the return statement do delete it (B1.write_sth contin-
ued), B2 requests to leave it as is (B2.challenge_activity).

(3) B2.explain_standard of knowledge

“Aaah, you want to do it up there.”

B1 performs the deletion (B1.write_sth continued), B2 recognizes his plan of
action and agrees with it (B2.agree_activity).

17.3.7 agree_activity, disagree_activity

Activity agreements are often very short utterances. See both a long and a short
one in Example 17.2.

Activity refusals that come without a counter-proposal (disagree_activity) are
often very short utterances and just like challenge_activity may pertain to process
aspects or product aspects. For instance in CA2 the driver is about to click
’Commit All’ in an SVN commit operation when the observer says “Not All”.

17.3. activity concepts and their properties 173

17.3.8 Comments before the fact

The disagreement in the above example was uttered before the deed it referred
to had actually begun. This was possible because the speaker could see the
preparations and infer the intention. Such behavior is possible for agree, disagree,
challenge, amend, and even stop_activity.

17.3.9 Comments after the end

An agree, disagree, challenge, and amend may be uttered when the respective
activity has already terminated. Such annotations are acceptable if the gap
is sufficiently short and there are other symptoms as well that suggest the
comment pertains to the activity itself (such as the act of searching) rather than
only its result (such as the search hits found).

17.3.10 amend_activity vs. challenge_activity

When the partner comments on an activity constructively (that is in a proposal-
like manner), it is not always easy to decide whether that includes an element
of criticism (challenge_activity) or not (amend_activity). Example 17.3 illustrates
such ambiguity.

The base layer suggests to use amend_activity whenever no controversy is
apparent in the utterance itself nor in the partner’s reaction, and also use
it when the actor had previously hesitated (and even if controversy ensues
afterward). Subsequent studies particularly interested in such phenomena,
however, will need to develop their own, much finer set of rules here.

Example 17.3: Episode from Session CA2 with high ambiguity. The pair
has discussed how to modify a particular interface. The respective file
is open.

(1) C5.mumble_sth (semantics unclear)

“OK. (;;;;) That would be (!...!)”

The OK may signal a start of something (C5.think aloud_activity begins).
C5 navigates to method setVirtualColumns in the Eclipse package explorer
and hovers there (C5.explore_sth).

(2) C2.propose_design

“getVirtualAttributes then maybe.”

C2 suggests what to modify. This should be C2.amend_activity if the re-
searcher has not seen a different action plan in the activity of C5 and
should be C2.challenge_activity otherwise. C5 promptly starts editing the
method name (C5.write_sth).

174 Chapter 17. Universal concepts: activity

17.3.11 stop_activity

If a speaker disagrees with an activity that has already started but not yet
ended, and disagrees with the whole of it rather than only some aspect, we
do not use disagree_activity but rather the specialized stop_activity: An explicit
appeal to entirely terminate the current activity.

For example in Session CA2, the driver is testing a class by means of the JDemo
GUI testing framework, when observer C5 says “OK, but what we did has more
influence on the Action (.) than on (.) the GUI. So (.) that means, I’d rather go from
<**application name**>.” This is an C5.explain_knowledge leading to a C5.propse_
step, the latter constituting a stop_activity.

17.3.12 Interjections leading to activity change

Activity comments need not be stop_activity to lead to a change of activity.
Example 17.3 may be such a case (but possibly the change would also have
happened without the interjection).

17.3.13 think aloud_activity by the “observer”

think aloud_activity requires actorship and so most commonly is performed by
the driver. In practice, however, the “observer” also may look something up
in a book, make a sketch on paper, or do any of many other things that entitle
him or her to think aloud_activity as well.

17.3.14 Self-criticism

The verbalization occurring during an activity (think aloud_activity) may include
elements such as

• self-evaluations of the activity which have a positive result, reinforce the
activity, and would be annotated as agree_activity if they came from the
partner;

• self-evaluations with negative result that flag some aspect as deficient
and would be annotated as disagree_activity if they came from the partner;

• self-evaluations with negative result that find the whole activity to be
the wrong idea and that would be annotated as stop_activity if they came
from the partner;

• mental notes to do something else as well that would be annotated as
amend_activity if they came from the partner;

• self-corrections of approach that would be annotated as challenge_activity
if they came from the partner.

17.3. activity concepts and their properties 175

Such an annotation style would turn the currently straightforward think aloud_
activity annotations into something much more complicated and therefore the
base layer suggests not to make them.

Subsequent studies particularly interested in reflection phenomena will need
to change this decision and possibly also further refine the concepts used.

Chapter 18
Universal concepts: Miscellaneous

There are two HHI concepts that have only little semantic content: mumble_
sth and say_off topic. They only serve to mark spots in the session where some
element of the dialog is largely ignored by the annotation.

18.1 mumble_sth

mumble_sth is used for utterances that cannot be annotated otherwise because
they are incomprehensible, whether for acoustic or phonetic reasons (which
depending on recording quality and background noise may not be rare at all)
or for semantic ones. Semantic reasons may be incompleteness (often cut-off or
trailing-off utterances) or plain gibberish.

Note that what appears to be mumble_sth for the researcher may well be un-
derstandable for the pair partner, even the gibberish. If the partner reacts to
the utterance, the reaction can often be used to reconstruct the illocution (if not
the wording), and then the concept appropriate for that illocution should be
annotated even if the utterance itself could not be understood; use mumble_sth
only if there is no way to reconstruct the meaning. Be aware that this approach
can occasionally lead to misinterpretations; see the discussion in Section 21.7.3.

18.2 say_off topic

say_off topic represents utterances on topics that have nothing to do with the
goal of the session such as matters of private life or events in the wider work
environment. For instance in Session CA2, C5 makes a remark regarding the
fact that the session is being recorded: “I wonder what they will think, who don’t
know what we are doing here”. We should mention that such remarks and in

177

178 Chapter 18. Universal concepts: Miscellaneous

fact any indication whatsoever that the pair is still aware of being recorded is
generally rare after the starting moments of a session throughout our data.

Part III

Other concepts

. . . in which we define the concepts that aim at non-verbal interaction employ-
ing the computer, paper and pencil, the index finger, and possibly other useful
equipment.

179

Chapter 19
The HCI/HEI concepts

An annotation with an HCI/HEI concept represents an interaction of a pair
member with the computer (HCI, human-computer interaction) or the remain-
ing environment other than the partner (HEI, human-environment interaction).
There are currently only eight simple interaction types or purposes (write, search,
explore, verify, read, sketch, show, and do), the concepts for which all use the same,
generic object sth (short for something) only. This leads to a coarse modeling of
HCI/HEI activities, which is appropriate because the base layer puts its focus
on utterances. The modeling is just enough to serve as the nucleus of a fuller
modeling of HCI/HEI issues. Later studies interested in action (rather than
only in dialog) will have to introduce a additional concepts.

The maximum granularity of an HCI/HEI annotation is called one activity entity.
An activity entity is a sequence of actions guided by one short-term goal. The
goal can be explicit (e.g. defined by a previous design or step episode) or tacit;
the sequence can be expressed by one HCI/HEI annotation or several; the base
layer does not model the activity entities themselves.

The above granularity notion can lead to near-arbitrary segmentation for tacit
goals, cannot cope well with goals that change during execution, and hardly
gets a grip on the way in which the execution may occur in multiple, uncon-
tiguous stretches of time.

The notion of activity entity is central to understanding the HCI/HEI concepts:
Although these concepts often represent physical activities, they are not meant
to characterize these physical activities as such. Rather, a respective annotation
should cover the intellectual process that underlies the observable physical
activity (if any) and holds together its parts, see Example 19.1. This is difficult
to do properly, given our behavioristic ideal (Section 2.3.4), but we at least
attempt a reasonable approximation.

181

182 Chapter 19. The HCI/HEI concepts

Here is a short overview of what the verbs mean (in the order of their subse-
quent description):

• write: editing product (or product-related) computer artifacts

• search: manual or automated search for well-defined target items

• explore: investigate and analyze in or among artifacts

• verify: checking the suitability of the modifications performed on artifacts

• read: reading aloud information shown on the screen or in paper docu-
ments

• sketch: graphical sketching on paper or by computer

• show: pointing to elements or sections of physical or non-physical artifacts

• do: everything else not covered by the above concepts

19.1 write_sth

write_sth addresses writing activity in product artifacts (such as program code)
or product-related artifacts (such as configuration or documentation files).

Writing activity should not be confused with typing. While typing is a necessary
part of it, activity connected to the typing is also part of the writing activity, such
as proofreading, correcting, near-range screen navigation, and in particular
thinking (before typing, in between, and even after). The visibility of several
of these parts is limited, so we will need to use context indicators and apply
our best judgment. For instance in the first example on page 168, after typing
and speaking the word “projects”, the actor hesitates for about a second before
further typing, meanwhile saying “um”, and later makes two more typing
pauses during which he remains silent. Neither of these, however, should be
considered to terminate the write_sth because from a semantic point of view it
all clearly belongs together (which may not appear obvious in the transcript
provided, but was reasonably obvious for us in the actual session recording).

The editing aspect of write_sth needs not be fulfilled by direct keyboard input;
semi-automated mechanisms such as search-and-replace or the application of
a refactoring operation also count.

A write_sth ends when the goal is reached or substantially changed, when a
break occurs, when the driver changes, and when some other HCI/HEI concept
needs to be annotated for this actor. It does not automatically end when HHI
concepts need to be annotated or when an HCI/HEI concept is annotated for
the partner. Here is a complex case of write_sth:

19.2. search_sth 183

Example 19.1: Episode from Session BA1 (starting 13:55:24) in which
a lot of dialog occurs during a single write_sth. There was a B1.agree_
design just previously.

(1) B1.explain_finding, 8 seconds

“That’s then total <*starts editing*> independent of the (..) implementation.
As long as they’re independent (.), or not?”

Start think aloud_activity, start write_sth. B1 explains why the design
proposal is good. The “or not?” is rhetorical.

(2) B2.agree_finding, 1 second

“Hm.”
B2 agrees immediately.

(3) B1.agree_design, 1 second

“We can try.”

This refers to the original proposal. B1 does not stop editing.

(4) B1.explain_finding, 3 seconds

“<*stops editing*> Er, what are we (!...!) Have we even (!...!) Ah, no, our
script is running (!...!). Right. OK.”

After a very short pause, B1 thinks aloud and arrives at an insight.

(5) B1.amend_design, 2 seconds

“And one needs to be id_to_code now.”

After a short pause, B1 refines the proposal: One of the two code_to_id

calls must become id_to_code instead.

(6) B1.explain_finding, 13 seconds

“We have a code: id_to_code (!...!) <*continues editing*>”

think aloud_activity ends after the utterance. B1 makes further changes to
the same line. He then switches into the browser to test the change; this
ends the write_sth.

19.2 search_sth

search_sth represents the search for well-defined items in digital (HCI) or physi-
cal (HEI) documents, by manual or automated mechanisms, in an efficient or
inefficient manner, to either locate something or to check its existence.

184 Chapter 19. The HCI/HEI concepts

We call an item well-defined if the actor appears to believe to know the item
well enough to be able to specify it explicitly by an identifier, a file name
plus line number (typically from an error message), a regular expression, etc.
Automatic search includes the time of waiting for its results.

Example 19.2: Episode from Session BA1 showing a two-part search_sth.

(1) B1.propose_step, 2 seconds

“Let’s look where that’s used in here.”
B1 proposes to search for calls to a method; he points to a method name
(show_sth), then starts the search using the Eclipse search function (starts
B1.search_sth/B2.search_sth).

(2) B1.explain_finding, 4 seconds

“Workspace (!...!) (;;) Workspace is (~)”

Start B1.think aloud_activity. The Eclipse search dialog is open, the search
scope is to be selected as either Workspace (default, currently selected) or
Working Set. B1 starts the search as is. The search reports “Scanning file 1
of 2348”.

(3) B1.say_off topic, 1 second

“Muffins afterwards!”

Unrelated remark after 2 seconds.

(4) B2.say_off topic, 3 seconds

“First work, then reward.”

B2 replies laughingly. The search is still running.

(5) B2.explain_finding, 2 seconds

“We have 2350 files? Wow.”

After two seconds, B2 takes notice of the “Scanning [...]” display.

(6) B1.explain_finding+B1.amend_step, 6 seconds

“Eeeeer, yes. That’s total nonsense of course. We could search in our Work-
ing Set. I thought I hadn’t checked out anything else, but (!...!)”

After another second, B1 recognizes that the search scope was ill-chosen
(finding type TC). While speaking, he stops the search. The utterance ends
the B1.think aloud_activity. He starts the search again, this time using
Working Set scope. The pair waits for its results quietly. The results appear,
ending the search_sth.

19.3. explore_sth 185

19.3 explore_sth

Exploring something means to investigate or probe a set of digital or physical
data with respect to items that are not well-defined (contrast with search_sth).
The goal is either to determine whether such an item exists at all (such as a
method providing a certain functionality), or to locate the (or such an) item, or
to understand a set of items better (such as looking for ideas what to do next or
how).

Exploring may look through the content of one file, the content of several files,
the names of files, information provided by the IDE (such as lists of method
names), the results of program runs (including compilation error messages, but
see verify_sth in Section 19.4), the content of a database (including IDE settings
and so on), etc. Such activity may or may not have physical symptoms such as
scrolling.

For instance in Session ZB7, the current driver Z20 suggests to look “what
methods the Subscriber offers” and immediately starts scrolling through the
TopicSubscribe JavaDoc webpage and then the MessageConsumer JavaDoc
webpage (explore_sth); he verbalizes the names of several methods of potential
interest.

The exploration may be superficial or thorough. Quiet reading (and even pure
thinking) of material counts as exploration and reading aloud to oneself counts
as exploration as well. Several exploration goals covered in one contiguous
exploration procedure count as a single explore_sth.

In contrast, reading aloud to the partner is read_sth (Section 19.5). Checking
the outcome of previous work is verify_sth; explore_sth does not apply to items
created during the same session (Section 19.4) if these items are part of artifacts
(as opposed to execution results). Discriminating explore_sth from a manual
search_sth can be difficult. Even recognizing an explore_sth at all may be difficult
because no physical activity may be obvious; only context information can
help.

Example 19.3: Episode from Session BA1 beginning 13:42:11 and show-
ing an explore_sth. B1 had previously issued a wget http://localhost

command line call (do_sth); the result analysis has sufficient structure to
turn it into explore_sth.

(1) B1.explain_finding+B1.ask_knowledge, 1 second

“Hey. Hm. What’s cooking there?”

The console displays “Can’t resolve hostname ’localhost’. Connection re-
fused”. Starts B1.explore_sth and B1.think aloud_activity.

(2) B2.propose_hypothesis, 1 second

186 Chapter 19. The HCI/HEI concepts

“Firewall?”
Starts B2.explore_sth. B2.think aloud_activity: Apparently B2 is exploring,
too.

(3) B1.explain_finding, 1 second

“Can’t resolve hostname ’localhost’.”
B1 considers this the interesting part. Ends B1.think aloud_activity.

(4) B2.propose_hypothesis, 2 seconds

“Maybe only the (~~)?”

B2.think aloud_activity: A new idea (understandable for the partner) after 2
seconds of silence.

(5) B1.agree_hypothesis

“(Yes.)”

Start B1.think aloud_activity: Agreement after a pause.

(6) B1.explain_finding, 1 second

“(~) is OK.”

The utterance ends B1.think aloud_activity and also B1.explore_
sth/B2.explore_sth. B1 proceeds with a new proposal and switches from
the console into the browser.

explore_sth represents exploration that stands for itself. If the activity occurs
within or at the end of another activity and can be considered part of that other
activity, only a concept for that other activity should be annotated. For example,
a verify_sth may consist of running a test and then examining the test’s output.
The latter, by itself, would qualify as explore_sth, but since from the point of
view of the verify_sth it is an integral part of the verification process, no explore_
sth should be annotated.

19.4 verify_sth

verify_sth represents activities for verifying or validating results of the pair’s
previous work done in the same session. The checking can be manual or
automated and can be review-based, analysis-based, testing-based, or mixed-
mode. It includes the case of making sure that all process steps have been
performed (as opposed to checking the product). It does not matter whether
the actor expects to find correctness or rather incorrectness.

A verify_sth may be announced by a propose_step such as “Let’s look”. If it is not
and also has no think aloud_activity, it may be hard to detect. It can contain

19.4. verify_sth 187

actions such as reading and paging through code, program outputs, log files,
data displays, and other representations as well as starting compile, build,
deploy, or program run processes, operating programs, and many others.

verify_sth often starts with a preparatory step, such as starting the program to
be tested or opening a file to be reviewed. Implementing automated tests is
not verify_sth. The proofreading usually done as part of write_sth is write_sth,
not verify_sth (but semantic checking after a write_sth is verify_sth). Corrections
(including commenting) performed during a verify_sth terminate that activity
and are write_sth.

If the verification of the pair’s work-results directly leads to the investigation of
other material, it may be unclear whether this should be considered to end the
verify_sth and start an explore_sth or rather be considered to continue a complex
case of verify_sth.

If a test leads into a code review, it is useful to annotate two separate verify_sth.
If the pair does not verbalize the result of the verify_sth, it can be difficult to
decide when it ends. Like for explore_sth, identifying when the partner is or is
not taking part in the verify_sth can be difficult and is largely an open problem.
Subsequent studies need to decide whether to modify some of these criteria.

Example 19.4: Episode from Session CA2 (12:25:39–12:26:23) in which
C2 performs two HCI/HEI activities at the same time: a do_sth during a
verify_sth. The pair had previously modified some code.

(1) C2.propose_step, 1 second

“OK, let’s go.”

C2 proposes to test the application and clicks ’Run’ to start it. Starts
C2.verify_sth. Is a C2.think aloud_activity.

(2) C2.ask_knowledge (or perhaps C2.explain_finding), 2 seconds

“Huh, (.) our <**application name**> (.) why can’t we get at it?”

C2 moves the mouse to access the invisible Windows taskbar in order to
see whether an instance of the program is already running, but the taskbar
does not appear: C2.do_sth. C2.think aloud_activity (a separate one, because
it refers to a new activity entity).

(3) C5.explain_finding, 3 seconds

“It needs to do a rebuild – it is rebuilding right now”

While he speaks, the window of the new run appears at center-screen.

(4) C2.disagree_finding, seconds

188 Chapter 19. The HCI/HEI concepts

“That has nothing to do with the taskbar not working.”

C2 disagrees and opens the Eclipse Console view.

(5) C5.ask_knowledge, 1 second

“What taskbar?”
C5 had not previously understood what was C2’s problem.

(6) C2.mumble_sth, 1 second

“(~Hm. Oh.)”

Meaning unclear.

(7) C5.ask_knowledge, 1 second

“(~What ta) (!!...!!)”

C5 asks again but gets interrupted.

(8) C2.mumble_sth, 1 second

“(~)”

Incomprehensible interjection.

(9) C5.ask_knowledge, 1 second

“Is, is down?”

C5 asks whether the taskbar is (routinely) hidden.

(10) C2.explain_knowledge, 2 seconds

“No, I don’t have one. (.) Just look.”

C2 explains he considers the taskbar gone, not just hidden.

(11) C5.explain_knowledge, 5 seconds

“But it appeared for me a moment ago.”

C5 grabs the mouse that C2 is holding (C5.become_driver, starts C5.do_sth,
C5.think aloud_activity). He moves it down to the edge of the screen, but no
taskbar appears. (end of C5.do_sth).

(12) C2.explain_finding, 2 seconds

“We have an <**application name**> still running.”

It is unclear how C2 knows. Meanwhile, the startup of the new run fin-
ishes, is ready for testing.

(13) 6 seconds

19.5. read_sth 189

–
C5 starts testing the newly-run application: Starts C5.verify_sth.

(14) C5.explain_finding, 1 second

“OK”
C5.think aloud_activity: C5 finds the application to work correctly. End of
the C5.verify_sth started in entry (13).

(15) C2.agree_finding, 1 second

“Fine.”
C2.think aloud_activity: C2 agrees. End of the C2.verify_sth started in en-
try (1).

(16) C5.propose_step, 1 second

“Now we can check in.”
This suggestion how to proceed makes sure the verify is over.

19.5 read_sth

By read_sth one should annotate those (parts of) activity entities where the actor
intentionally reads aloud (and verbatim) information shown on the screen, in a
printed document, etc. – whether to communicate the information or only to
direct attention (the partner’s or one’s own) to it. In contrast, casual reading
(e.g. during a verify_sth) that has more the character of speaking to oneself is
not read_sth. In HHI terms, read_sth will often be explain_finding of type D.

19.6 sketch_sth

The creation of sketches, whether on paper, on a whiteboard, on a computer,
or elsewhere is annotated as sketch_sth. This is typically performed to clarify
thoughts, whether the actor’s own, the partner’s, or both, and whether the
clarification is directed more to the partner, the actor, or both.

Sketching is a potentially very interesting part of pair programming and
subsequent studies interested in it should probably discriminate the above-
mentioned cases.

19.7 show_sth

Pointing to certain information in a physical or non-physical artifact is an-
notated as show_sth if it is the primary activity. The pointing can happen by

190 Chapter 19. The HCI/HEI concepts

any means such as the mouse cursor, highlighting via a mouse-generated or
keyboard-generated text selection, a pen, a finger, and conceivably also a nod
(if specific), etc.

For instance, a developer explaining a stretch of code may point to identifiers
or control constructs as she goes. Again, it is the underlying goal that defines
the activity, so multiple pointings go together into a single show_sth if they
contribute to the same goal. Pointing may also serve to provide emphasis as in
Example 10.1 (2).

In contrast, if the pointing is only part of a different primary activity, such as
explore_sth or verify_sth, where the reader may for instance follow the current
focus with the cursor, no separate show_sth should be annotated to keep the
annotation economical.

19.8 do_sth

Anything that is not addressed by any of the concepts introduced previously
can be annotated as do_sth. In principle, it could be used for almost any physical
movement at all or at least for minor computer actions such as clicking a button
– but obviously that would as such hardly reflect a goal as base layer activities
should and so should probably not be annotated separately.

In contrast, a good example of do_sth could be the cleaning-up of the IDE
workspace by closing multiple editor windows. Depending on the goal of your
study, there might be many such meaningful actions that fall under do_sth in
the base layer – but a do_sth annotation provides too little meaning.

So please consider do_sth to be a kind of beacon: Whenever you feel tempted to
use it, also consider whether you should leave out that annotation as most likely
unimportant or invent a more specific concept to represent the phenomenon
more meaningfully. Using do_sth is advisable only if neither is the case.

19.9 On drivers, observers, and co-action

In order to understand pair programming by qualitative analysis, it is obviously
important to record who is the actor of each event being conceptualized. For a
speech act represented by an HHI concept instance, this is trivial. In contrast,
while the HCI/HEI concepts presented above are all based on an observable
(at least in principle) physical act as well, it is the underlying goal that really
counts and it may be far from obvious whether P1, P2, or both are pursuing it.

HEI and even HCI activities can be performed not only by the person cur-
rently in possession of the keyboard (the “driver”) but also by the other (the

19.9. On drivers, observers, and co-action 191

“observer”)1 In order to understand the phenomena in the session, we should
ask ourselves who is the actor (or actors) for each HCI/HEI annotation and
assume that co-action, both partners sharing the activity intellectually, may be
common.

This is not easy even for the physical act itself: The observable physical act
is clear and obvious for some concepts (such as for write_sth, sketch_sth, and
show_sth, unless hidden by limitations of the session recording) but often subtle
for others (in particular verify_sth). And even a partner not participating in
a physical computer-operating act may well co-perform the corresponding
intellectual act.

The base layer suggests the following criteria as a starting point for assigning
HCI/HEI actorship: Unless there is specific evidence against it. . .

• . . . consider the main physically active pair member as an actor. Where
operating the computer is involved, this will be the driver, but where
fingers, pencils, or eyes suffice as the active infrastructure, it can also be
the observer.

• . . . consider apparently concentrated gazing at the monitor (if it can be
diagnosed) to be an important indicator (in favor or against actorship,
depending on the situation).

• . . . consider each person who proposed the activity or participated in its
discussion as an actor.

• . . . consider each person verbalizing part of the activity as an actor.

• . . . consider each person asking or answering questions pertaining to the
activity during the activity as an actor.

Not only the participation itself in some activity may be hard to diagnose, its
exact beginning and end may be as well (see also Section 21.5).

Overall, the base layer cannot provide sufficient criteria for reliable assignment
of HCI/HEI activities to the right actors. However, approximate correctness of
the annotation may be sufficient for many purposes.

1We have even seen cases where the “observer” obtained full control, telling the “driver” what
to do on a keystroke-by-keystroke basis (“Down, Down, Down, Return”).

Chapter 20
Supplementary concepts

The base layer provides a few very rough additional concepts that may be
useful on some occasions.

20.1 become_driver

The actor takes control of the keyboard and mouse. Cases such as a pair
member taking the mouse only are not covered.

20.2 work in parallel_sth

Both partners are independently working on different activities. This simplistic
concept can either be used without an actor (work in parallel_sth) or with pairs
of annotations (P1.work in parallel_sth+P2.work in parallel_sth), allowing more
granular use.

For studies interested in such behavior, in particular when analyzing dis-
tributed pair programming based on tools such as Saros1 that allow the pair
to also each use their computer independently, much more refined ways of
describing the degree of coupling of the two activity strands will be needed.

20.3 work alone_sth

The actor continues work without any partner at all because the partner left
the workplace.

1http://en.wikipedia.org/w/index.php?title=Saros_(software)&oldid=566544288

193

http://en.wikipedia.org/w/index.php?title=Saros_(software)&oldid=566544288
http://en.wikipedia.org/w/index.php?title=Saros_(software)&oldid=566544288

194 Chapter 20. Supplementary concepts

20.4 wait for_sth

The “actor” suspends all activity until a certain expected event occurs, such as
the results arriving after a long-running search (Section 19.2) or test. Typically
used together with concepts such as search_sth or verify_sth.

20.5 react to_interrupt

Marks a point where the pair stops its work due to an external event such as a
phone call coming in. Such an annotation explains why no further annotation
follows for some time afterwards.

Part IV

Using the base concepts

. . . in which we summarize how to use the base concepts as they are (Chap-
ter 21), how to adjust them to your particular study (Chapter 22), and how to
introduce your own layer(s) of concepts in addition (Chapter 23).

195

Chapter 21
Guidelines for annotating

If you have read the concept descriptions in Chapters 4 to 17 attentively, you
have seen not only many concept-selection rules, but also a number of hints on
how to operationalize the annotation process. Both are fragmented over many
pages, so we summarize them in this chapter.

21.1 How to pick appropriate HHI concepts

The many details of each concept as presented in the previous chapters notwith-
standing, here are the principles of annotating appropriate HHI concepts to
utterances:

• Your goal is to determine the primary illocution of an utterance. The
length of utterances is determined by what still belongs to the same
illocution.

• Describe the utterance’s possible illocution in your own words. Make
sure you notice if the speech act is indirect so you can cleanly tell apart
the secondary (obvious) illocution from the primary (actual) illocution
and use the primary one. There are many more different illocutions than
there are different verbs in the base concepts so you will usually need to
make a subsumption step to determine which base concept (combination
of a verb and an object) fits best with the overall content of the utterance.
Best fit will often depend on specifics of the current pair programming
session context. There are many examples throughout the book in which
this problem is discussed; start for instance in Section 4.2.1.

• If it is an initiative utterance, annotate the most specific base concept that
applies. (Roughly speaking, specificity decreases from chapter to chapter.
See also Section 11.3.)

197

198 Chapter 21. Guidelines for annotating

• If it is a reactive utterance, observe the episodes principle (Section 2.3.6).

• If no base concept appears to apply properly, consult Chapter 22.

• If more than one base concept applies, consult Section 21.4.

While using this procedure, be aware of two inherent limitations: First, in
the best possible world, each concept would be defined by stating all of its
necessary and sufficient conditions. This goes back as far as Aristotle and while
it works well in mathematics, it does not apply well1 in the world of human
language and action. Thus, the manner in which we define the base concepts is
more akin to the idea of Wittgenstein’s Familienähnlichkeit2 (or other kinds of
prototype theory3) combined with some amount of ostensive definition4.

As a result, the base concepts on the one hand may not precisely cover a
particular given case exactly, but on the other hand are open for modification
to repair that problem. Mindless application of fixed rules is definitely not a
manner of working with the base concepts that is likely to create useful results.

Second, not only the base concepts are limited, the observer is limited as well:
There is no way you (or anyone, including the pair members themselves) could
guarantee to have determined the “right” illocution for a given utterance.

From our pragmatist point of view, both of these restrictions are not overly
disturbing, because perfection is not required, only usefulness is.

21.2 How to pick appropriate HCI/HEI concepts

The criterion for determining an appropriate HHI concept for an utterance
is the utterance’s illocutionary act. We use an analogous criterion for the
HCI/HEI concepts: What does the activity do (in terms of its intention, goal,
purpose) in the context of the session?

For instance, scrolling down through a file might be the execution of a verify_
sth, a manual mode of search_sth, some part of an explore_sth, and perhaps some-
thing else entirely (do_sth). In particular, it might be a displacement activity5.
As mentioned in Section 17.2 (see the possible example there), displacement
activities are not modeled in the base layer but one may want to model them
in subsequent studies.

1http://en.wikipedia.org/w/index.php?title=Concept&oldid=567169993#Notable_

theories_on_the_structure_of_concepts
2http://en.wikipedia.org/w/index.php?title=Family_resemblance&oldid=565012381
3http://en.wikipedia.org/w/index.php?title=Prototype_theory&oldid=540675817
4http://en.wikipedia.org/w/index.php?title=Ostensive_definition&oldid=

544692051
5http://en.wikipedia.org/w/index.php?title=Displacement_activity&oldid=

558153583

http://en.wikipedia.org/w/index.php?title=Concept&oldid=567169993#Notable_theories_on_the_structure_of_concepts
http://en.wikipedia.org/w/index.php?title=Family_resemblance&oldid=565012381
http://en.wikipedia.org/w/index.php?title=Prototype_theory&oldid=540675817
http://en.wikipedia.org/w/index.php?title=Ostensive_definition&oldid=544692051
http://en.wikipedia.org/w/index.php?title=Displacement_activity&oldid=558153583
http://en.wikipedia.org/w/index.php?title=Concept&oldid=567169993#Notable_theories_on_the_structure_of_concepts
http://en.wikipedia.org/w/index.php?title=Concept&oldid=567169993#Notable_theories_on_the_structure_of_concepts
http://en.wikipedia.org/w/index.php?title=Family_resemblance&oldid=565012381
http://en.wikipedia.org/w/index.php?title=Prototype_theory&oldid=540675817
http://en.wikipedia.org/w/index.php?title=Ostensive_definition&oldid=544692051
http://en.wikipedia.org/w/index.php?title=Ostensive_definition&oldid=544692051
http://en.wikipedia.org/w/index.php?title=Displacement_activity&oldid=558153583
http://en.wikipedia.org/w/index.php?title=Displacement_activity&oldid=558153583

21.3. What to consider as context 199

21.3 What to consider as context

Many times we have used the term context when discussing that an utterance
can usually not be interpreted based on its wording and pronunciation alone
and that further information needs to be used as well but we have never
explained what context really means.

From a practical point of view, the applicable context is restricted to what
is known to the researcher to a sufficient degree. In our setting, a relevant
restriction will often be imposed by the scope of the current pair programming
session. The following items may or may not be available to the researcher as
part of the applicable context:

• The goal or task set for the session.6

• Everything said in the session so far (HHI).

• Everything done in the session so far (HCI, HEI).

• All information shown on the screen (and noticed by a pair member!)
now or previously in the session.

• The personality, physical state, and mood of the pair members, their
general and their short-term social relationship, etc.7

While the second and fourth of these are often reasonably well observable, the
observability of the others tends to be severely restricted. The researcher’s
understanding of the actual context is thus limited.

21.4 When to use double HHI annotations

In order to keep the annotation process manageable, the base layer attempts to
normally assign only a single HHI concept to each utterance. This principle
is not always appropriate. You may occasionally need two (or possibly more)
annotations to best describe the current phenomenon. Here is the list of such
cases as known to us8:

1. Proposals (or agreements, disagreements, challenges) that are “packaged
into” (that is, take the form of) explain_knowledge or explain_finding utterances.
These are indirect speech acts in which both the secondary (explain) and the
primary illocution are of major interest. In such cases, both concepts should be

6Such information can and should be gathered by other means outside the actual session
recordings, such as an interview or questionnaire.

7Ditto.
8You may occasionally encounter additional ones – but if you think you do, re-read the

annotation principles in order not to open the floodgates prematurely.

200 Chapter 21. Guidelines for annotating

annotated; see Section 6.3.6, Example 16.2, Example 17.2. There are also cases
in which it is ambiguous whether the explain is primary or secondary; they are
handled in the same way. Also, instead of explain you may see challenge as in
the propose_step/challenge_finding pair of Example 12.6.

2. Utterances containing subutterances9 that need to be annotated differently
but where splitting the utterance up is not possible or not wanted; see Sec-
tion 10.2.3. For the common case of finding utterances that explain some existing
knowledge as well, you will need to decide how to handle them in subsequent
studies: double annotation for completeness or only the finding for simplicity.

3. Utterances that are ambiguous with respect to the base concepts. It does not
matter whether the ambiguity appears to exist in the speaker’s head as well (as
in Section 9.3.5 and Example 16.6 (2)) or appears intended by the speaker (as in
Section 6.3.5).

4. Indirect speech acts where the secondary illocution is of a type that is in the
focus of your particular studies; see Section 9.3.5.

5. Design proposals made as part of strategy proposals.

6. Implicit action announcements as discussed in Section 21.6.1.

7. Any activity utterance that is not only that.

Any HCI/HEI annotation that happens to coincide with an HHI annotation is
not a double annotation at all in this sense.

Note that this list concerns only the base layer as such. Your own subsequent
studies will likely deserve their own rules for the use of double annotations
that are aligned with the research question and may have to modify the above
list considerably.

21.5 How to segment utterances

For many types of qualitative study, the segmentation of the raw data is a
crucial and difficult step and consumes a large fraction of the overall effort –
yet we have not talked about this at all so far. Why not?

Because in the base layer’s approach, asking for “how to” segment is not a
question that has an explicit answer. It has no explicit answer because the
choice of concept to use for an annotation and the choice of segment to which
to assign that concept are determined at the same time and influence each
other.

The following is the best approximation to “segmentation rules” for the base
layer:

9Also, utterances the meaning of which contains such subutterances, i.e., that can be paraphrased
such that the subutterances emerge.

21.6. How to handle specific phenomena 201

• Segmentation is a holistic process concurrent with assigning the concepts.

• If you have decided to annotate the HHI concept X and your candidate
segment covers a whole utterance, covers the respective X completely,
but does not cover more than the X, then you have chosen a suitable
segmentation.

• If your segment covers less than a whole utterance and the remaining
part needs to be annotated with a different HHI concept, then you have
also chosen a suitable segmentation.

• If your segment covers less than a whole utterance and the remaining
part needs to be annotated with the same HHI concept, extend your
utterance unless the remaining part is clearly a semantically separate and
different instance of X.

Apply the same idea analogously to the HCI/HEI concepts as well (“utterance”
becomes “activity”). During your annotation process, you should perform
constant comparison and always consider not only the annotations themselves
as preliminary, but the segments to be annotated as well – in particular (but
not only) for HCI/HEI concepts.

21.6 How to handle specific phenomena

21.6.1 How to annotate implicit announcements

A question or other utterance may sometimes reveal that the speaker intends
to do something although the intended action is not mentioned; see Exam-
ple 16.2 (1). We call such a disclosure, whether conscious or unconscious,
an implicit action announcement. Such announcements are not easy to detect,
because in comparison to explicit ones they require the researcher to have a
much better understanding of the session’s technical meaning. However, as the
partner may detect that intention and this may influence the session’s course
substantially, you should annotate the implicit propose whenever you detect
one.

Depending on their research question, subsequent studies may have to define
rules for limiting the effort put into detecting such implicit announcements in
a well-defined way.

21.6.2 How to annotate thematic shifts

One of the primary intentions during the creation of the base layer was making
visible the structure of basic dialog episodes; the approach chosen for doing
so was by marking intra-dialog relationships (Section 2.3.6). Via the notion

202 Chapter 21. Guidelines for annotating

of initiative versus reactive verbs (Section 3.5), this basic approach led to the
structure of concept classes as explained in the chapters above. Each such
concept class essentially represents a topic type. An episode in the primitive
sense of the base layer is basically a sequence of utterances regarding one
particular instance of one such topic.

When using the base layer, it is therefore important to correctly identify the
topic (concept class) at each point. The base layer provides help for doing this
in various forms, starting with the basic definition of what holds together a
concept class (such as “What is a design proposal?”, Section 4.1), over some-
times a few helper concepts that distinguish important subtypes (such as the
various strategy types (Section 9.1) or hypothesis types (Section 13.1)), down to
subtle additional rules for individual concepts such as the idea that an explain_
knowledge must not express any doubt (that would make it a propose_hypothesis)
but an agree_knowledge may.

Nevertheless sticking to one concept class within an episode is not always the
right thing to do: Sometimes, a reply does not react to the primary topic set by
the previous utterance but on something else such as a subaspect of it. Such
cases may constitute a change of topic which we call thematic shift (or simply
shift for short). For instance in Example 21.1, B2’s reply neither pertains to
B1’s design proposal nor to the hypothesis stated along with it. Rather, it only
pertains to a finding that is implicit in the proposal:

Example 21.1: Episode from Session BA1 (14:57:00–14:57:19) in which
an annotation is used only due to a thematic shift. For description and
discussion of the content you will need to consult the whole of Sec-
tion 21.6.2.

(1) B1.amend_design/B1.explain_finding+B1.propose_hypothesis

“But then why don’t we also, er (.) kick out the one for this id <*points to
element*>? (.) Or do they do that explicitly somewhere else again?”

“They” are the previous programmers of the code.

(2) B2.agree_finding

“That’s a good point. That’s missing here.”

B2 says this after the pair has sat silent for 10 seconds.

In this episode, the pair is discussing a modification of a for loop that removes
objects from a cache and that (like most of the surrounding code) was written
by other programmers. B2 had previously suggested a particular deletion
(propose_design) and B1 now amends that by another. B1’s utterance has three
aspects that can be paraphrased as follows:

21.6. How to handle specific phenomena 203

• “This element needs to be deleted too.” (explain_finding)

• “I suggest to do it right here.” (propose_design)

• “But perhaps it’s already being done elsewhere.” (propose_hypothesis)

The design proposal is the main aspect and would hence normally suppress
the annotation of the finding (Section 4.2.1), because the finding is not stated
explicitly. B2’s reply ignores the design proposal, ignores the hypothesis, and
only refers to the implicit finding. B2’s utterance clearly should be annotated as
agree_finding. What the base layer suggests to do in addition is adding another
code to the previous utterance that “prepares the ground” for the concept used
for the reply: We annotate the finding aspect (that would normally have been
merely implicit) in addition to the already-present design and hypothesis
aspects.

This is a general rule and the whole point of this short chapter: If a thematic
shift from class A to class B occurs in a reply, then

• annotate the reply by a B concept even if that breaks the normal episode
structure, but

• also consider adding a suitable corresponding B concept to the previous
utterance (the one to which the reply refers).

The addition should be made if the B concept is appropriate according to its
own definition and had only been suppressed due to the definition of the
A concept used and/or the A-versus-B discrimination rules. We call such
annotations shift-motivated annotations. The addition should not be made if by
itself the B concept is inappropriate for the previous utterance.

Later studies may additionally or alternatively want to introduce an explicit
shift concept or property if that better suits their respective research goal.

21.6.3 How to annotate repetitions

If the semantically (but not necessarily syntactically) same thing is said again
by the same speaker, there are four cases:

An immediate repetition occurs within the same utterance. This is not annotated
separately but is simply considered to be either emphasis or meaningless and
lumped together with the first.

An early repetition occurs when the session context has not yet changed substan-
tially. Its dialog role will usually be to make sure the original utterance is not
lost or ignored. Such repetitions will be annotated with the same concept again.

204 Chapter 21. Guidelines for annotating

The fact of being a repetition is not modeled by the base layer; subsequent
studies may want to introduce concepts for doing this.

An early repetition of an explain_finding can be a special case: If the dialog topic
has not progressed since the first time the finding was stated, the above early
repetition rule applies; we just annotate explain_finding again. If however,
the dialog has touched a different topic in the meantime (such as the partner
commenting on something else than the finding), the same content will then be
annotated as explain_knowledge, because the insight is now considered to have
become part of existing knowledge. Do not apply this rule if you find clear
symptoms that the speaker had forgotten his or her earlier insight (and not just
its relevance!).

A later repetition is annotated as is most appropriate for its new context.

21.6.4 How to annotate incomplete agreement or disagreement

The agreement (or disagreement) with proposals and explanations is often
less than one hundred percent. So far, we have seen two cases: Either the
speaker is unsure of his or her own judgment (as in Section 4.2.10), or he or
she agrees with only a part of the previous utterance and disagrees with some
other (which may be common for strategies, as in Section 9.2.9). If a challenge
annotation is not appropriate, the base layer annotation should then simply be
an agree or a disagree – whichever sentiment appears to dominate.

Subsequent studies, however, may need to introduce concepts for also annotat-
ing the doubt and/or partial criticism.

21.6.5 How to annotate self-corrections

Utterances that extend (amend) or contradict (disagree, challenge) a previous
utterance need not come from the partner; they may also come from the same
speaker as in Example 4.2 (amend_design), Example 6.3 (amend_step), or as
discussed in Section 12.2.4 (challenge_finding). This is not unusual and may be
important for the course of the session.

The base layer does not express the fact of self-correction in any way, it is
only (ambiguously) visible from the overall episode structure. Subsequent
studies may wish to introduce concepts for annotating self-corrections as such
explicitly.

21.6.6 How to annotate justifications

One particular type of explain_knowledge utterance is the justification of a pro-
posal. From its frequency and importance alone, justification could have been a
separate concept class. However, to justify something is a form of illocution

21.7. Method hints 205

and in the base concept set illocutions are expressed by the verbs, not the
objects.

Thus, there is no indication (in an annotation that uses only the base layer)
of justifications and suitable concepts (probably just attributes) for modeling
them may be one of the first additions that subsequent studies interested in
these phenomena should make.

21.7 Method hints

The guidelines in this book so far may be sufficient to define what the result
of your annotations should look like (unless you chose to modify them as
discussed in Chapter 22). However, as you may have guessed already from
reading the examples, the session reality you will face can be very peculiar,
leaving you perplexed. In such moments, the following tricks may help. They
are not meant to be used in any particular order; rather, they are part of the
annotator’s toolkit much like the definitions of the concepts themselves.

21.7.1 Step back

If there were a mantra of the base layer annotator, it would be “Context, context,
context!”. So if you are having a hard time deciding which concept is the right
one for the next utterance, it may be that (a) as a beginner you are not taking
the context into account enough and are rather attempting to categorize an
utterance based on only its language content, or (b) later on you are looking at
context but cannot see the forest for the trees; you are considering the previous
utterances and their annotations but still cannot make up your mind what the
current one means.

In the latter case, step back and put on your software developer hat (as in
Example 6.2): What is going on there in terms of the overall programming
session? What is the current goal? What is understood and what is unclear? To
whom?

21.7.2 Paraphrase

If that does not help and you are still torn between two concepts, it may
help to use your context understanding for re-expressing the utterance in new
wording.

For instance in Session BA1, B2 asks

“Should we store both values or should (!...!). (..) Or is last_change
sufficient? Do we really need last_request?”

206 Chapter 21. Guidelines for annotating

A first-time user of the base layer might immediately annotate this as ask_
knowledge, but let us assume you have meanwhile learned to mistrust the
syntactical form and ask yourself whether maybe this ought to be viewed as
propose_design? How would you make the decision between the two? You use
each of these possibilities and rephrase the essence the utterance would then
have.

If it was indeed propose_design, it ought to mean “I suggest to use last_change
only and not use last_request”. In this case, this does not sound right, because
not handing over last_request to the script had been suggested previously,
so the original utterance above would be a rather strange way of suggesting
something closely related and is thus probably not intended to be a proposal.

Counter-check: If the utterance was indeed ask_knowledge, it ought to mean
“I do not understand why we should store last_change as well as last_request”.
This meaning fits nicely into the context so it is likely the right interpretation
and hence ask_knowledge should be annotated. See also Example 12.2 (3).

21.7.3 Peek into the future

If paraphrasing also does not help, it is time to use your ultimate weapon:
Your super-human power of seeing the future. An often very helpful indi-
cator towards an appropriate annotation for an utterance is the reaction of
the partner: If the partner apparently interpreted the utterance as X, maybe
you should do so too rather than annotating Y? If the speaker subsequently
protests, this may obviously be the wrong idea, so you should do a little further
peeking to safeguard against that possibility. See the discussion in Section 9.3.7.
The technique will be particularly valuable when you need to understand a
misunderstanding where the respective utterance may appear totally illogical
at first; see again Example 19.4.

Beware, however: The partner’s reaction may actually be a misunderstanding
and the speaker simply too lazy, too tired, too shy, too slow, too inattentive, or
any of a dozen other things to protest. In that case, the annotation resulting
from peeking into the future would be wrong. It may be a tiny little bit wrong
only, because the speaker may not have been fully clear of his or her own
intentions to begin with. It may be wrong but without consequence, because
that particular annotation difference does not make a difference with respect to
your research question. But if your research question has anything to do with
the precision or reliability of communication, with contingency or serendipity,
or with shifts (Section 21.6.2) you rather want to detect and annotate ambiguity
than making this kind of annotation mistake. So like all superheros you should
use your power with great care.

Chapter 22
Guidelines for modifying the base
concept set

Whatever your research question is for a subsequent study that uses the base
layer, the base concepts alone are not likely to get you an answer. You will
usually require additional and/or different concepts to cover all your annota-
tion needs in order to produce your insights. Remember that the base concepts
should not be viewed as a coding scheme but rather as a starting point for your
own understanding and modeling; see Section 2.1.

For instance, the clean differentiation between finding and knowledge (here and
in Chapter 16) and between them and the other HHI concepts (Chapters 4 to
10) required an extremely lengthy research process. We are convinced that the
resulting concept class structure is very useful for pursuing a broad variety
of research questions. Nevertheless, it may be ill-suited for your particular
question. Feel free to kick parts or all of it overboard as soon as you have
precisely understood why you are doing it and have developed some idea of
what you will gain. (Be advised that you will likely not have a good idea what
you will lose.)

We cover modifications and additions within the topic realm of the base concept
set in this chapter and outside of it in the next chapter.

22.1 What makes a good concept set

A good set of concepts for analyzing pair programming should fulfil at least
the following two quality criteria:

• Adequacy: It should allow to express all phenomena of interest ade-
quately (that is, without too much distortion), with sufficient precision,

207

208 Chapter 22. Guidelines for modifying the base concept set

and in a matter that explains (“theoretical coding”, see Section 1.4.4)
rather than merely describes.

• Parsimony: It should sufficiently limit the intellectual effort required
during the annotation process so that the process remains manageable.

It is not easy to create an adequate set of concepts anyway, but it becomes very
difficult if you strive for parsimony at the same time. There must neither be
too many concepts nor must the concepts be overly diverse and arbitrary.

The base concept set has nice properties in this respect: The overall number
of concepts is modest, the concepts are nicely grouped into concept classes,
and even the individual concept classes are similarly structured and constantly
re-use almost the same criteria for discriminating the concepts. Furthermore,
the concepts are fairly generic and can be applied uniformly across studies on
a diverse set of topics, thus connecting those studies to one another. This char-
acter should be maintained when modifying and extending the base concept
set.

22.2 When to shift a boundary

If you find that for a particular phenomenon the base layer does explain how
it should be annotated but that annotation would blur a distinction that is
important for your research question, feel free to change that particular rule
and shift the boundary between certain base concepts.

If that need arises for a detail rule that only discriminates one pair of concepts
(from somewhere in a “Discrimination from similar concepts” section) the
modification is usually unproblematic. Just make sure you thoroughly docu-
ment (including rationale) all such deviations from the normal definition of
the base concepts so that the meaning of your annotations can be reproduced.
We have already marked many plausible candidates for such alterations in the
respective places.

If, however, the modification need arises for a more general rule that discrimi-
nates one verb from another for all concept classes or one object from another
for all its verbs, be aware that the modification may shatter the integrity of the
base concept set as a whole if you are not careful. It is a good idea to sleep over
such a decision, discuss it with somebody else (perhaps with us?) and then not
do it – resort to an extension instead; see Chapter 23 and the remainder of the
present chapter.

22.3 When to add a new property value

It may happen that you encounter phenomena you are inclined to consider, for
instance, a strategy but that do not fit into any of the existing strategy types as

22.4. When to add a concept and which 209

defined in Section 9.1.

In this case, after carefully checking that your phenomenon does indeed not fit
into any of the existing types, you should not hesitate to add a new type to the
list. This amounts to refining the base layer by completing the description of a
primary characterizing attribute with respect to a case that had never occurred
in our data.

It it conceivable (although we do not think it is likely) that you will discover
another primary characterizing attribute. In this case, you would not only add
property values but rather a complete property along with its values.

22.4 When to add a concept and which

If you arrive at the end of the instructions of Section 21.1 and have not found
a base concept that characterizes the illocution you have determined, the
first step is asking yourself whether one of the universal concepts (e.g. a
knowledge concept) can do the job. These concepts are collection pools for
many different phenomena and yours may be among them if you consider the
illocution less specifically. If none of them fits, continue as explained in the
next paragraph. Do the same if one of them does fit but such annotation would
lose a discrimination that is important for your research question.

The second step is considering new combinations of existing verbs and existing
objects. For instance you might encounter an utterance that is clearly a disagree,
applied just as clearly to a todo. No concept disagree_todo exists in the base
concept set, so what are you to do? You need not get the least bit nervous in
such cases. The only reason why disagree_todo is missing from the base concept
set is that we have never seen it in our sessions. If it occurs in yours, nothing
speaks against adding it to your concept set right away. Just make sure that over
time you understand how to discriminate it from its neighbors in ambiguous
cases. For instance, if the speaker provides a justification, the resulting disagree_
todo+explain_knowledge might sometimes be similar to an explain_state. If you
communicate your results, feel free to consider your addition to be part of the
base concept set, but make sure you properly explain the new concept(s) to
your readers.

The third and final step is considering to add new verbs or new objects. For
instance, a number of times during the analysis of our sessions we encountered
utterances in which the speaker stated where a certain relevant information
could be found (such as in certain other parts of the code, certain project
documentation, or certain public documentation). For instance in Session ZB7,
Z19 says “There was this page where you could look up what to do in the, um,
JNDI directory”. We considered the possibility of adding a concept such as
remember_source of information to represent such utterances. This concept would
reuse an existing (if rare) verb, but introduce a new object. The resulting

210 Chapter 22. Guidelines for modifying the base concept set

concept would be highly specialized, but that is also true of, for instance,
explain_gap in knowledge. So why did we include explain_gap in knowledge in the
base concepts but did not, eventually, include remember_source of information?
For two reasons: First, gap in knowledge concerns the subtle but important
distinction of knowledge and meta-knowledge, while source of information is
just another type of fact knowledge. Second, we felt that moments of explain_
gap in knowledge utterances are interesting, even crucial moments in a pair
programming session, whereas remember_source of information is merely another
form of tapping into resources – which pairs do all the time.

This does not mean that in your particular studies you should never add
something like remember_source of information, but we think that entirely new
concepts should rarely be considered part of the base concept set but rather be
considered part of a new layer. Separate layers will be discussed in Chapter 23.

Chapter 23
Guidelines for creating new
concept sets

23.1 The idea of layers

As discussed in Section 1.4.3 (it might help to re-read that one-page section
now), the purpose of layers is modularizing the overall research process: Rather
than inventing each concept yourself, you reuse one or several sets of concepts
that are well-worn, refined, delineated, documented, minimized, and validated.

If all goes well, this has a number of advantages:

• Even though you may work with a large number of concepts, you can
find each concept easily because they come in clearly arranged topic
blocks.

• For the same reason, you are less likely to misinterpret and abuse a
concept.

• You save a lot of concept development work, but grounding is still in
place, because constant comparison applies to reused concepts just like it
does for your own.

• When you write up your results, you can do so more concisely, because
you may be able to refer to this book rather than explain everything
yourself in some places.

• If some other researcher concurrently reuses the same concepts as you, it
will be much easier to compare and combine the results afterwards.

211

212 Chapter 23. Guidelines for creating new concept sets

23.2 Granularity

To introduce successful concept layers for your own research questions, it may
be required to explain phenomena of a much larger or much smaller granularity
than those described by base concepts.

In some cases your research question may require (figuratively speaking) to
pull out a microscope to look at the local details of particular utterances. In
other cases, your research will want to understand larger-scale structures that
comprise several utterances and help understanding the overall development
of a pair programming session. For instance, some of the new concepts may
need to talk about whole episodes (in the sense of Section 2.3.6) or about sets
of such episodes.

23.3 Properties and property values

An example for a sort of finer-grained concept that may be useful for your layer
are properties. Properties (and property values) relate to main concepts (and
their annotation instances) somewhat like attributes (and their values) relate to
classes (and their instances): A property value annotation provides detail on a
particular instance of a concept.

Property concepts are a great way to add almost any detail you need regarding
the phenomena of an existing concept (whether a base concept or other). In par-
ticular, adding such detail to existing concepts can be a useful intermediate step
when working towards identifying new concepts: Once you have enriched the
existing concept with enough detail, you may suddenly discover an expressive
new concept.

With respect to the base concepts, one use of this technique will apply when
your research question requires differentiating a single base concept into several
narrower concepts, in particular:

• Discriminating different “flavors” of an object type.

• Discriminating different “flavors” of a verb type.

For instance if you are interested in understanding how pair programmers
develop the design of their software, you will need to record much more detail
about the design proposals, such as their granularity, the context in which they
arise, their focus (data, logic, structure, etc.), their newness relative to previous
proposals of the same speaker, their newness relative to previous proposals
of the partner, their newness relative to existing code, the level of abstraction
used to express them, the degree of detail given, and so on and so forth.

23.4. Forming “nice” layers 213

Also for verbs, there is no reason why for instance there could not be different
types or modes of challenging. The base layer description has already men-
tioned two such verb subtypes for explanatory purposes: the agreement types
for agree_finding (Section 12.2.9) and for agree_knowledge (Section 16.2.7) and
the proposal modes (Section 4.2.1) that apply to many concepts.

23.4 Forming “nice” layers

Obviously the advantages of layering will be damaged if the layers are too
fine-grained, too coarse-grained, or their topic not well-defined. But how to
obtain a right-grained and well-defined layer?

One could think about the problem of forming good layers in terms known
from software modularity: A nice layer would then have an interface that
hides detail (meaning not all of the concepts will be explained in the article
you eventually write about your study), it will have high coherence (meaning
it focuses on a particular topic area), and it will strive for low coupling to other
layers (meaning it does not meddle with the concepts of other layers more than
necessary, rather reusing them as they are when possible).

However, we do not know yet whether this metaphor is helpful. It may actually
stand in the way of focussing on what is most important, namely obtaining
insight with respect to your research question. “Nice” layers should probably
be considered a by-product of your pair programming research, not a goal in
themselves.

23.5 Go!

If you are one of those people who have to read the end of a book first even if it
is a non-fiction book: Congratulations, you have now done so. Please proceed
to Section 1.5.3, choose one of the two suggestions described there, and start
reading in that manner.

If you have arrived here while following the suggestions of Section 1.5.31:
Great, you are now ready to start your base-layer-driven research. Just go
ahead and complete your base layer knowledge as you go. Feel free to get in
contact with us any time to discuss interesting phenomena you see or decisions
you face. Maybe you also want to chat with us when defining your precise
research question? We will be glad to!

1If you have arrived here by reading this book cover-to-cover: Wow! You appear to be really
keen on studying pair programming.

Bibliography

[1] E. Arisholm, H. Gallis, T. Dybå, and D. I. Sjøberg. Evaluating pair pro-
gramming with respect to system complexity and programmer expertise.
IEEE Transactions on Software Engineering, 33(2):65–86, 2007.

[2] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, 1999.

[3] K. Beck and C. Andres. Extreme Programming Explained: Embrace Change,
Second Edition. Addison-Wesley Professional, 2004.

[4] S. Bryant, P. Romero, and B. du Boulay. Pair programming and the myste-
rious role of the navigator. International Journal of Human-Computer Studies,
2008.

[5] L. Cao and P. Xu. Activity patterns of pair programming. In Proc. of the
38th Annual Hawaii International Conf. on System Sciences (HICSS 2005),
page 88a, Washington, DC, USA, 2005. IEEE Computer Society.

[6] J. Chong and T. Hurlbutt. The social dynamics of pair programming. In
ICSE07: Proceedings of the 29th Int’l Conf. on Software Engineering, pages
354–363, Washington, DC, USA, 2007. IEEE Computer Society.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[8] J. Hannay, T. Dybå, E. Arisholm, and D. Sjøberg. The effectiveness of
pair programming: A meta-analysis. Information and Software Technology,
51(7):1110–1122, 2009.

[9] J. E. Hannay, E. Arisholm, H. Engvik, and D. I. K. Sjøberg. Effects of per-
sonality on pair programming. IEEE Transactions on Software Engineering,
36(1):61–80, Jan. 2010.

[10] J. T. Nosek. The case for collaborative programming. Communications of
the ACM, 41(3):105–108, 1998.

[11] S. Salinger. Ein Rahmenwerk für die qualitative Analyse der Paarprogram-
mierung. PhD thesis, Freie Universität Berlin, Fachbereich Mathematik
und Informatik, 2013.

215

216 Bibliography

[12] S. Salinger, L. Plonka, and L. Prechelt. A coding scheme development
methodology using grounded theory for qualitative analysis of pair pro-
gramming. Human Technology: An Interdisciplinary Journal on Humans in
ICT Environments, 4(1):9–25, 2008.

[13] S. Salinger, F. Zieris, and L. Prechelt. Liberating pair programming re-
search from the oppressive driver/observer regime. In Proc. 35th Intl. Conf.
on Software Engineering (ICSE), pages 1201–1204. IEEE Press, 2013.

[14] A. L. Strauss and J. M. Corbin. Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. SAGE, 1990.

[15] L. Williams and R. Kessler. Pair Programming Illuminated. Addison-Wesley
Professional, 2002.

[16] S. Wray. How pair programming really works. IEEE Software, 27(1):50–55,
2010.

Index

Symbols
*_design, 66
*_step, 79, 130

A
activity, 31, 32, 40
activity, 40, 41, 46, 56, 67, 111, 151,

165, 169, 200
agree_, 169, 171, 172, 174
amend_, 169, 171–174
challenge_, 169, 171–174
disagree_, 118, 169, 171, 172, 174
stop_, 169, 171, 173, 174
think aloud_, 56, 166, 167, 169–

175, 183–189
activity entity, 181
advantage, 100
agree, 41, 47–49, 64, 65, 67, 106, 145,

158, 161, 173, 204
agree_activity, 169, 171, 172, 174
agree_completion, 84
agree_design, 60, 61, 64, 65, 81, 123,

124, 156, 161, 183
agree_finding, 115, 120, 121, 123–128,

144, 156, 157, 183, 189, 202,
203, 213

agree_gap in knowledge, 147–149
agree_hypothesis, 133–135, 171, 186
agree_knowledge, 102, 103, 120, 142,

148, 153, 155, 156, 158, 163,
202, 213

agree_requirement, 70, 71
agree_standard of knowledge, 148, 149
agree_state, 97, 106
agree_step, 75–78, 127, 157
agree_strategy, 88, 96, 97, 99, 102, 103
agree_todo, 88

agreement type, 127, 128, 155, 157,
213

known, 127, 155
me-too, 128
unchecked, 155, 157
understood, 128, 155

all is data, 27
amend, 41, 47–49, 64, 78, 98, 123, 134,

148, 167, 173, 204
amend_activity, 169, 171–174
amend_design, 60–64, 80, 84, 89, 90,

101, 183, 202, 204
amend_finding, 54, 115, 120, 122–125,

128, 129, 154, 157, 161
amend_hypothesis, 133–136
amend_knowledge, 154
amend_requirement, 72
amend_step, 63, 75–78, 82, 184, 204
amend_strategy, 33, 63, 87, 88, 96–99
annotation, 25, 30, 31, 37, 41, 46, 133,

182, 197, 199, see also dou-
ble annotation

behavioristic ideal, 40
memo, 77
segmentation, 181
shift-motivated, 203

ask, 38, 41, 47–49, 52, 81, 112, 114,
161

ask_design, 60, 65, 67, 82
ask_finding, 128, 129
ask_knowledge, 55, 66, 67, 81, 82, 103,

119, 120, 122, 124, 128, 129,
135, 140, 141, 144, 147, 148,
152–154, 158, 159, 161–163,
185, 187, 188, 206

ask_standard of knowledge, 55, 141
ask_step, 75, 79, 82, 103, 140

217

218 Index

ask_strategy, 95, 96, 99, 103
AT, 140, 141, 163
attest_standard of knowledge, 142
axial coding, 25

B
BA1, 55, 59, 60, 63–65, 69, 70, 75, 78,

80, 83, 85, 95, 106, 117–119,
121–123, 128, 132, 136, 140–
144, 149, 152, 158, 160–162,
168, 170–172, 183–185, 202,
205

base concept, 23, 40
style of definition, 198

base concept set, 23, 27, 35, 39, 207,
see also coding scheme

and episodes, 40
base layer, 23, 24, 27, 30, 31, 37, 95,

126, 181, 200
and other layers, 211

base layer modification, 27, 30, 33,
35, 37, 39, 41, 48, 49, 53,
84, 85, 88, 95, 101, 102, 110,
111, 114, 125, 128, 133, 137,
148, 152, 157, 161, 162, 166,
169–171, 173, 175, 181, 187,
189, 190, 193, 198, 200, 201,
203–205, 207–210

become_driver, 188, 193

C
CA2, 59, 60, 63, 64, 66, 70, 75–77,

87, 89, 95, 96, 99, 102, 106,
115, 117, 118, 125, 126, 132–
134, 139, 140, 143, 152, 154,
156, 159, 160, 162, 163, 166,
172–174, 177, 187

can-check, 132
category, 24
challenge, 41, 47–49, 57, 64, 78, 98,

107, 125, 148, 167, 173, 200,
204

challenge_activity, 169, 171–174
challenge_completion, 84

challenge_design, 60, 62–64, 116, 123
challenge_finding, 120, 122, 125–127,

129, 161, 200, 204
challenge_hypothesis, 133, 134
challenge_knowledge, 126, 153, 155–

158, 161
challenge_requirement, 70, 71
challenge_state, 105–107
challenge_step, 63, 75, 77, 80, 82, 172
challenge_strategy, 63, 96, 98, 99, 102
code, 46
coding scheme, 28, 35, 35, 207
completion, 46, 47, 73, 83–85, 105,

167
agree_, 84
challenge_, 84
disagree_, 84
explain_, 56, 83–85, 107, 130, 172

completion/state
explain_, 111

concept, 24, 25, 31
concept category, 36

HCI/HEI, 36
HHI, 36

concept class, 29, 36, 37, 202
facade concepts, 37
for HCI/HEI concepts, 36

concept name, 45
constant comparison, 25
constructive concept, 49
context, 25, 37, 38, 59, 61, 62, 76, 90,

120, 128, 137, 182, 197, 199,
205

D
D, 114, 115, 117, 189
DC, 115, 118
decide, 41, 47–49, 64
decide_design, 60, 64, 89
decide_step, 75, 78
decide_strategy, 96, 99, 102
design, 46, 56, 59, 60, 65–67, 73, 74,

76, 78, 79, 82, 85, 89–91, 94,
99, 101, 122, 161, 181

Index 219

*_, 66
agree_, 60, 61, 64, 65, 81, 123,

124, 156, 161, 183
amend_, 60–64, 80, 84, 89, 90,

101, 183, 202, 204
ask_, 60, 65, 67, 82
challenge_, 60, 62–64, 116, 123
decide_, 60, 64, 89
disagree_, 60, 64, 66, 155, 161
explain_, 56
justify_, 152
propose_, 53–56, 59–64, 66, 67,

71, 72, 75, 77, 79, 80, 84, 90,
91, 101, 115, 122, 123, 130,
152, 155, 156, 159, 166, 167,
172, 173, 202, 203, 206

design/requirement/step/strategy/todo
propose_, 111

dimensionalization, 25
disagree, 41, 47–49, 57, 65, 67, 78, 80,

125, 127, 145, 148, 158, 161,
173, 204, 209

disagree_activity, 118, 169, 171, 172,
174

disagree_completion, 84
disagree_design, 60, 64, 66, 155, 161
disagree_finding, 120, 125, 129, 144,

161, 187
disagree_hypothesis, 133, 134
disagree_knowledge, 153, 156–158
disagree_requirement, 72
disagree_step, 33, 40, 75, 78, 82, 88,

105, 106, 155
disagree_strategy, 88, 96, 98, 99
disagree_todo, 209
DO, 115, 118, 154
do, 181, 182
do_sth, 168, 169, 172, 185, 187, 188,

190, 198
doing, 36
double annotation, 67, 79, 90, 102,

107, 112, 114, 126, 143, 159–
161, 163, 165, 193, 199, 200

doubted, 131, 133

DPR, 93–95, 97, 99, 100
driver

become_, 188, 193
DU, 114, 115, 117–119, 122

E
early repetition, 203, 204
episode, 40, 41, 62, 128, 201, see also

example
shift, 203

example, 55, 59–62, 65–66, 69–71,
74–81, 83–84, 87–89, 95–97,
102–103, 105–106, 115–120,
122–129, 134–136, 141–142,
152–157, 162–163, 171–173,
182–189, 202

for ostensive definition, 28
reference to, 28, 33, 41, 56, 60,

62–64, 67, 70, 71, 76–79, 81,
84, 85, 89, 90, 96–99, 101,
102, 106, 117, 125, 128, 130,
134, 141–144, 154–158, 161–
163, 171–174, 181, 190, 200–
202, 204–206

explain, 47–49, 56, 57, 123, 133, 136,
199, 200

explain_completion, 56, 83–85, 107,
130, 172

explain_completion/state, 111
explain_design, 56
explain_finding, 55, 64–66, 72, 74–76,

78, 79, 82, 85, 89, 90, 99,
107, 112, 115, 117–128, 130,
133, 134, 136, 137, 140, 145,
157, 159–162, 183–189, 199,
202–204

explain_gap in knowledge, 112, 147–
149, 210

explain_hypothesis, 134
explain_knowledge, 30, 33, 53–56, 64,

66, 67, 71, 72, 74, 76, 79, 82,
85, 87–90, 96, 99, 102, 103,
111, 112, 114, 120, 121, 125,
133, 135, 136, 140–142, 147,

220 Index

152–163, 167, 174, 188, 199,
202, 204, 209

explain_responsibility, 152
explain_standard of knowledge, 61, 97,

102, 112, 113, 121, 128, 135,
139–145, 148, 149, 155, 156,
162, 163, 167, 172

explain_state, 56, 97, 105–107, 130,
209

explain_step, 48
explore, 181, 182
explore_sth, 171, 173, 185–187, 190,

198
EXS, 93, 94, 97, 99

F
facade concept class, 165
facade concepts, 37
finding, 113
finding, 46, 52, 54–56, 66, 77, 79, 99,

110, 111, 113–120, 122, 123,
125, 126, 128–130, 136, 142,
144, 151, 153, 154, 159–161,
167, 168, 200, 207

agree_, 115, 120, 121, 123–128,
144, 156, 157, 183, 189, 202,
203, 213

amend_, 54, 115, 120, 122–125,
128, 129, 154, 157, 161

ask_, 128, 129
challenge_, 120, 122, 125–127, 129,

161, 200, 204
disagree_, 120, 125, 129, 144, 161,

187
explain_, 55, 64–66, 72, 74–76,

78, 79, 82, 85, 89, 90, 99,
107, 112, 115, 117–128, 130,
133, 134, 136, 137, 140, 145,
157, 159–162, 183–189, 199,
202–204

finding type, 114–119, 122, 154, 157,
160, 184, 189

D, 114, 115, 117, 189
DC, 115, 118

DO, 115, 118, 154
DU, 114, 115, 117–119, 122
P, 114, 117–119
T, 116, 117
TB, 116, 118
TC, 116, 118, 119, 157, 160, 184
TU, 116, 160

findings, 125
forcing, 25, 25, 26, 27

G
gap in information, 117
gap in knowledge, 46, 110, 111, 113,

139, 147, 148, 210
agree_, 147–149
explain_, 112, 147–149, 210

gap of knowledge, 47
gibberish, 177
grounded theory, 26
grounding, 24, 25, 28, 39, 48, 53, 69

H
hard-to-verify, 131, 132
hypothesis, 46, 54, 56, 110, 111, 113,

128, 131–133, 136, 144, 159,
161

agree_, 133–135, 171, 186
amend_, 133–136
challenge_, 133, 134
disagree_, 133, 134
explain_, 134
propose_, 99, 102, 111, 133–136,

145, 158, 161, 162, 171, 185,
186, 202, 203

hypothesis type, 131–133
can-check, 132
doubted, 131, 133
hard-to-verify, 131, 132

I
illocution, 27, 31, 39, 49, 66, 152, 154,

197, 209
and intention, 38

Index 221

behavioristic ideal, 40
for activities, 198
indirect speech act, 63
of justifications, 204
primary and secondary, 63, 82,

199
illocutionary act, 38
immediate repetition, 203
implicit action announcement, 201
initiative verb, 49
intention, see illocution
interrupt

react to_, 194
issue type, 132

J
justification, 204
justification, 204
justify, 152
justify_design, 152

K
knowledge, 109
knowledge, 46, 48, 52–54, 56, 64, 66,

67, 79, 99, 111, 113, 114,
116, 117, 122, 130, 136, 144,
148, 151–154, 159, 160, 168,
207, 209

agree_, 102, 103, 120, 142, 148,
153, 155, 156, 158, 163, 202,
213

amend_, 154
ask_, 55, 66, 67, 81, 82, 103, 119,

120, 122, 124, 128, 129, 135,
140, 141, 144, 147, 148, 152–
154, 158, 159, 161–163, 185,
187, 188, 206

challenge_, 126, 153, 155–158, 161
disagree_, 153, 156–158
explain_, 30, 33, 53–56, 64, 66,

67, 71, 72, 74, 76, 79, 82, 85,
87–90, 96, 99, 102, 103, 111,
112, 114, 120, 121, 125, 133,

135, 136, 140–142, 147, 152–
163, 167, 174, 188, 199, 202,
204, 209

known, 127, 155

L
later repetition, 204
layers, 211
LO, 63, 66, 76, 102

M
me-too, 128
memo, 25
mumble, 47–49
mumble_sth, 49, 61, 62, 115, 124, 135,

142, 173, 177, 188

O
object, 46, 209
OE, 63, 64, 96
off topic, 47, 48

say_, 49, 177, 184
open coding, 25
OWP, 93–95, 97–99, 101
OWS, 97

P
P, 114, 117–119
P&P concepts, 37, 50, 57, 110, 152,

158, 161
pair coding, 26
paraphrasing, 134, 141, 142, 149, 162,

205, 206
PI, 63, 64, 96
primary characterizing attribute, 28,

35, 116, 128, 202, 209, see
also property

agreement type, 127, 128, 155,
157, 213

finding type, 114–119, 122, 154,
157, 160, 184, 189

hypothesis type, 131–133
proposal mode, 63, 64, 66, 76,

96, 102, 213

222 Index

standard of knowledge utter-
ance type, 139–141, 153, 163

strategy type, 93–95, 97–101
think aloud topic, 167–169

primary intention, 38
property, 25, 28, 90, 94, 132, 152, 161,

209, 212, see also primary
characterizing attribute

proposal mode, 63, 64, 66, 76, 96,
102, 213

LO, 63, 66, 76, 102
OE, 63, 64, 96
PI, 63, 64, 96

propose, 38, 41, 47–49, 56, 57, 64, 72,
81, 96, 98, 107, 126, 133,
201

propose_design, 53–56, 59–64, 66, 67,
71, 72, 75, 77, 79, 80, 84, 90,
91, 101, 115, 122, 123, 130,
152, 155, 156, 159, 166, 167,
172, 173, 202, 203, 206

propose_design/requirement/step/strate-
gy/todo, 111

propose_hypothesis, 99, 102, 111, 133–
136, 145, 158, 161, 162, 171,
185, 186, 202, 203

propose_requirement, 69–72
propose_step, 40, 56, 61, 63, 67, 75–82,

89, 90, 95, 100, 101, 105–
107, 115, 119, 123, 124, 126,
127, 130, 134, 143, 148, 149,
154, 159, 167, 171, 172, 184,
186, 187, 189, 200

propose_strategy, 56, 63, 90, 95–97,
99–102

propose_todo, 67, 87–90, 97, 99, 107
proposed_step, 80
propse_step, 174
PT, 139
PTd, 139
PTe, 140
PTo, 140, 153

R

react to_interrupt, 194
reactive verb, 49
read, 181, 182
read_sth, 185, 189
remember, 48, 49, 71
remember_requirement, 70–72, 111
remember_source of information, 209,

210
remind, 72
remind_requirement, 71, 72
requirement, 47, 56, 69–71, 73, 74

agree_, 70, 71
amend_, 72
challenge_, 70, 71
disagree_, 72
propose_, 69–72
remember_, 70–72, 111
remind_, 71, 72

requirements, 60, 69
responsibility

explain_, 152
RT, 140

S
say, 48, 49
say_off topic, 49, 177, 184
saying, 36
search, 181, 182
search_sth, 183–185, 194, 198
selective coding, 26
Session

BA1, 55, 59, 60, 63–65, 69, 70,
75, 78, 80, 83, 85, 95, 106,
117–119, 121–123, 128, 132,
136, 140–144, 149, 152, 158,
160–162, 168, 170–172, 183–
185, 202, 205

CA2, 59, 60, 63, 64, 66, 70, 75–
77, 87, 89, 95, 96, 99, 102,
106, 115, 117, 118, 125, 126,
132–134, 139, 140, 143, 152,
154, 156, 159, 160, 162, 163,
166, 172–174, 177, 187

Index 223

ZB7, 59, 79, 94, 95, 105, 126, 132,
133, 135, 147, 185, 209

shift, 202
show, 181, 182
show_sth, 184, 189–191
sketch, 181, 182
sketch_sth, 189, 191
something, 47, 181
source of information, 210

remember_, 209, 210
standard of knowledge, 46, 47, 52, 54,

110, 111, 113, 139, 141, 142,
147, 148, 151

agree_, 148, 149
ask_, 55, 141
attest_, 142
explain_, 61, 97, 102, 112, 113,

121, 128, 135, 139–145, 148,
149, 155, 156, 162, 163, 167,
172

standard of knowledge utterance
type, 139–141, 153, 163

AT, 140, 141, 163
PT, 139
PTd, 139
PTe, 140
PTo, 140, 153
RT, 140

state, 46, 47, 73, 83, 85, 105, 106
agree_, 97, 106
challenge_, 105–107
explain_, 56, 97, 105–107, 130,

209
step, 40, 46, 47, 56, 63, 67, 73–76, 79,

81–83, 85, 87–90, 93, 94, 96,
99–101, 105, 107, 130, 181

*_, 79, 130
agree_, 75–78, 127, 157
amend_, 63, 75–78, 82, 184, 204
ask_, 75, 79, 82, 103, 140
challenge_, 63, 75, 77, 80, 82, 172
decide_, 75, 78
disagree_, 33, 40, 75, 78, 82, 88,

105, 106, 155

explain_, 48
propose_, 40, 56, 61, 63, 67, 75–

82, 89, 90, 95, 100, 101, 105–
107, 115, 119, 123, 124, 126,
127, 130, 134, 143, 148, 149,
154, 159, 167, 171, 172, 184,
186, 187, 189, 200

proposed_, 80
propse_, 174

step with strategic character, 100
sth, 36, 47, 48, 181

do_, 168, 169, 172, 185, 187, 188,
190, 198

explore_, 171, 173, 185–187, 190,
198

mumble_, 49, 61, 62, 115, 124,
135, 142, 173, 177, 188

read_, 185, 189
search_, 183–185, 194, 198
show_, 184, 189–191
sketch_, 189, 191
verify_, 117, 169, 170, 185–187,

189–191, 194, 198
wait for_, 194
work alone_, 193
work in parallel_, 193
write_, 166, 168, 172, 173, 182,

183, 187, 191
stop, 48, 49
stop_activity, 169, 171, 173, 174
strategy, 35, 40, 47, 56, 63, 64, 67,

73, 74, 76, 79, 83, 85, 87, 89,
90, 93–96, 98–101, 105–107,
167, 208

agree_, 88, 96, 97, 99, 102, 103
amend_, 33, 63, 87, 88, 96–99
ask_, 95, 96, 99, 103
challenge_, 63, 96, 98, 99, 102
decide_, 96, 99, 102
disagree_, 88, 96, 98, 99
propose_, 56, 63, 90, 95–97, 99–

102
strategy type, 93–95, 97–101

DPR, 93–95, 97, 99, 100

224 Index

EXS, 93, 94, 97, 99
OWP, 93–95, 97–99, 101
OWS, 97

T
T, 116, 117
TA1, 167, 168
TA10, 167, 168
TA11, 168
TA2, 167, 168
TA3, 167, 169
TA4, 167–169
TA5, 167, 169
TA6, 167–169
TA7, 167, 169
TA8, 167
TA9, 167
TB, 116, 118
TC, 116, 118, 119, 157, 160, 184
thematic shift, 202
theoretical coding, 25
theoretical sampling, 25, 26
theoretical saturation, 26
theoretical sensitivity, 25
theory, 24
Think, 33, 90, 98, 103, 111, 113, 145,

158, 160, 162, 165, 170, 181,
185, 187, 190, 191, 197, 198,
204, 205

think aloud, 48, 49, 56
think aloud topic, 167–169

TA1, 167, 168
TA10, 167, 168
TA11, 168
TA2, 167, 168
TA3, 167, 169
TA4, 167–169
TA5, 167, 169
TA6, 167–169
TA7, 167, 169
TA8, 167
TA9, 167

think aloud_activity, 56, 166, 167, 169–
175, 183–189

todo, 47, 56, 67, 73, 74, 79, 87–90, 209
agree_, 88
disagree_, 209
propose_, 67, 87–90, 97, 99, 107

topic, see episode
transcription markup, 31
TU, 116, 160

U
unchecked, 155, 157
understood, 128, 155
universal concepts, 111
utterance, 31, 39, 40

on activity, 165
reply, 49
segmentation, 200
transcription markup, 31
vs. the thing itself, 40

V
verb, 47, 49, 209

bivalent, 49
constructive, 49
initiative, 197
reactive, 198
unconstructive, 49

verify, 181, 182
verify_sth, 117, 169, 170, 185–187,

189–191, 194, 198

W
wait for_sth, 194
work alone_sth, 193
work in parallel_sth, 193
write, 181, 182
write_sth, 166, 168, 172, 173, 182,

183, 187, 191

Z
ZB7, 59, 79, 94, 95, 105, 126, 132, 133,

135, 147, 185, 209

U
nderstandingqP

airqP
rogra

m
m

in
g:qT

heqB
aseqLa

yer
S

tephan
qS

aling
erq•qLutzqP

rech
elt

StephanqSalingerq•qLutzqPrechelt

UnderstandingqPairqProgramming:

TheqBaseqLayer
Thereq hasq beenq andq stillq isq aq lotq ofq controversyq onq whetherq pairq
programmingqisqaqusefulqengineeringqtechniqueq–qasqifqthisqwouldq
notqstronglyqdependqonqtheqspecificqgoals,qtask,qandqtheqpair-sqpairq
programmingq skill.q Ratherq thanq providingq stillq moreq bottom-line,q
quantitativeq resultsq onq pairq programming,q aq researchq groupq atq
FreieqUniversitätqBerlinqsetqoutqtoqdecipher

–qwhatqisqtheqactualqprocessqofqpairqprogrammingqand

–qwhatqisqpairqprogrammingqskill.

Thisq bookq providesq aq setq ofq conceptsq thatq servesq asq theq
infrastructureq forq studiesq ofq pairq programmingq thatq focusq onq
qualitativeq dataq analysis.q q Itq promisesq toq connectq theq resultsq ofq
suchqstudiesqtoqoneqanother.

Theq bookq isq orientedq towardsq researchersq only,q notq towardsq
practitioners.

StephanqSalingerq•qLutzqPrechelt

UnderstandingqPairqProgramming:qTheqBaseqLayer

9 783732 281930

	Contents
	Introduction
	Introduction
	Pair programming
	What is pair programming?
	Is pair programming advantageous?

	Current understanding of pair programming
	The data used for this book
	Session BA1
	Session CA2
	Session ZB7

	Our research perspective
	Basic research perspective: Understanding programming
	Practitioner perspective: Using pair programming
	Overall research approach: Work in ``layers''
	Research method: Grounded Theory Methodology
	On using prior research results

	About this book
	What this book is
	What this book is not
	How to read this book
	How to start performing research based on this book

	Terminology and notation

	Overview of the base layer
	What are the base concepts?
	Concepts and concept classes
	HHI concepts vs. HCI/HEI concepts vs. supplementary concepts
	HHI concept class groupings

	What is the base layer?
	Key decisions for the base layer
	Primarily rely on verbalization
	Model illocutionary acts
	Let segmentation emerge
	Crave for behavioristic interpretation
	Model the discourse world, not the activity world
	Model dialog episodes
	Design the concepts to reflect relevant phenomena

	The HHI concepts:Human/human interaction
	Objects and verbs of the HHI concepts
	The structure and meaning of concept names
	The objects
	The verbs
	The existing object/verb combinations
	Types of verbs
	The notion of ``knowledge''
	propose vs. explain
	explain vs. think aloud
	disagree+propose vs. challenge

	Product-oriented concepts: design
	Topic of design concepts
	design concepts and their properties
	Types and intentions of proposals
	Referring to editing steps
	Proposals with rationale
	decide vs. agree
	amend vs. a new propose
	amend or challenge one's own proposal
	Indicating agreement vs. indicating attentiveness
	Short negations
	Proposal-less questions
	Restricted disagreement

	Discrimination from similar concepts
	propose_design vs. ask_knowledge
	*_design vs. explain_knowledge/explain_finding
	propose_design vs. propose_step/propose_todo

	Product-oriented concepts: requirement
	Topic of requirement concepts
	requirement concepts and their properties
	remember_requirement
	propose_requirement
	agree_requirement and challenge_requirement

	Discrimination from similar concepts

	Process-oriented concepts: step
	Topic of step concepts
	step concepts and their properties
	propose_step with rationale
	Purpose of making propose_step utterances
	Reserving time
	Imprecise proposals
	decide_step vs. agree_step
	amend, challenge, or disagree one's own proposal
	Indicating agreement vs. indicating attentiveness
	ask_step

	Discrimination from similar concepts
	*_step vs. explain_knowledge/explain_finding
	propose_step vs. propose_design
	propose_step vs. ask_knowledge
	ask_step vs. ask_knowledge
	ask_step vs. ask_design
	disagree_step vs. explain_knowledge/explain_finding
	amend_step vs. explain_knowledge/explain_finding

	Process-oriented concepts: completion
	Topic of completion concepts
	completion concepts and their properties
	Short evaluations
	Indirect evaluations
	Evaluation of quality

	Discrimination from similar concepts

	Process-oriented concepts: todo
	Topic of todo concepts
	todo concepts and their properties
	Discrimination from similar concepts
	propose_todo vs. propose_step
	propose_todo vs. explain_knowledge/explain_finding
	propose_todo vs. amend_design/propose_design

	Process-oriented concepts: strategy
	Topic and typology of strategy concepts
	OWP: Organizing Work Packages
	DPR: Determining Procedure Rules
	EXS: Expanding a step into a strategy
	Extensional vs. intensional representation
	Range
	Mixed types

	strategy concepts and their properties
	Proposal mode
	Proposals with alternatives
	decide_strategy vs. agree_strategy
	Secondary issues
	Forms of amend_strategy
	Distinguishing proposals: amend, challenge, propose
	ask_strategy
	agree_strategy
	disagree_strategy

	Discrimination from similar concepts
	*_strategy vs. explain_knowledge/explain_finding
	propose_strategy vs. propose_todo
	propose_strategy vs. propose_step
	Recycled strategies
	step with forward reference
	steps aiming at advantage
	Multi-part proposals not forming a strategy
	The creative act is invisible
	Lowly creative acts

	propose_strategy vs. propose_design
	agree_strategy vs. agree_knowledge
	ask_strategy vs. ask_knowledge
	ask_strategy vs. ask_step

	Process-oriented concepts: state
	Topic of state concepts
	state concepts and their properties
	Short agree utterances
	Lack of reference to a strategy
	Partial disagreement

	Discrimination from similar concepts
	explain_state vs. explain_completion
	explain_state vs. explain_finding

	Universal concepts: What is ``knowledge''?
	On knowledge
	The base concepts' notion of knowledge
	Priority rules for assigning knowledge concepts

	Universal concepts: finding
	Topic and typology of finding concepts
	finding type P: perceived event
	finding type D: discovered issue
	finding type T: thought
	Priority rules for checking finding types
	finding type indicators and examples

	finding concepts and their properties
	Aggregation of utterances
	Repeated statements
	Thinking aloud
	Revoking and replacing findings
	``Additional'' findings
	Justifications of proposals
	Justifications of findings
	disagree_finding, challenge_finding
	Reasons for agreement
	Doubt
	ask_finding?

	Discrimination from similar concepts
	finding vs. other universal concepts
	explain_finding vs. propose_design
	explain_finding vs. *_step
	explain_finding vs. explain_completion or explain_state

	Universal concepts: hypothesis
	Topic of hypothesis concepts
	Uncertain knowledge
	Hard-to-verify assumptions
	Readily verifiable conjectures
	Issue types addressed by hypotheses

	hypothesis concepts and their properties
	propose_hypothesis
	agree_hypothesis, disagree_hypothesis, challenge_hypothesis
	Conditional agreement
	Revoking or replacing one's own hypothesis
	amend_hypothesis: One hypothesis or several?
	Justification of hypotheses
	Justification by hypotheses

	Discrimination from similar concepts
	propose_hypothesis vs. explain_finding

	Universal concepts: standard of knowledge
	Topic of standard of knowledge concepts
	PT: Preparing knowledge transfer
	RT: Refusing knowledge transfer
	AT: Acknowledging knowledge transfer

	standard of knowledge concepts and their properties
	ask_standard of knowledge
	AT with paraphrasing
	standard of knowledge in the making
	explain_standard of knowledge may be findings
	Limited-knowledge proposals
	Implicit statements
	Backward-looking statements
	Signaling ongoing thinking

	Discrimination from similar concepts
	explain_standard of knowledge vs. ask_knowledge
	explain_standard of knowledge vs. agree_finding or disagree_finding
	explain_standard of knowledge vs. explain_finding
	explain_standard of knowledge vs. agree/disagree for a proposal
	explain_standard of knowledge vs. propose_hypothesis

	Universal concepts: gap in knowledge
	Topic of gap in knowledge concepts
	gap in knowledge concepts and their properties
	explain_gap in knowledge

	Discrimination from similar concepts
	explain_gap in knowledge vs. explain_standard of knowledge
	agree_gap in knowledge vs. agree_standard of knowledge
	explain_gap in knowledge vs. propose_step

	Universal concepts: knowledge
	Topic of knowledge concepts
	knowledge concepts and their properties
	Evaluations and judgments
	Unprompted knowledge transfer
	Rhetorical questions
	Aggregation of utterances
	amend_knowledge?
	``Different'' answers
	Modes of agreement
	Indicating agreement vs. indicating attentiveness
	Opposition and controversy
	Disagreeing by agreeing to the opposite
	Opinions
	Limited conviction
	ask_knowledge is not always that
	Questions including possible answers
	Statement or question?

	Discrimination from similar concepts
	explain_knowledge vs. propose_step
	explain_knowledge vs. propose_design
	explain_knowledge vs. explain_finding
	explain_knowledge vs. amend_finding, challenge_finding, disagree_finding
	explain_knowledge vs. agree_design/disagree_design
	ask_knowledge vs. propose_hypothesis
	ask_knowledge vs. explain_finding
	explain_knowledge vs. explain_standard of knowledge
	ask_knowledge vs. explain_standard of knowledge
	agree_knowledge vs. explain_standard of knowledge

	Universal concepts: activity
	The notion of facade concept class
	Topic of activity concepts
	activity concepts and their properties
	Granularity of think aloud_activity
	think aloud_activity phenomena leading to questions
	HCI/HEI activities resulting from an utterance
	Disconnect of HCI/HEI activity and verbalization
	The partner commenting on activity vs. on verbalizations
	challenge_activity
	agree_activity, disagree_activity
	Comments before the fact
	Comments after the end
	amend_activity vs. challenge_activity
	stop_activity
	Interjections leading to activity change
	think aloud_activity by the ``observer''
	Self-criticism

	Universal concepts: Miscellaneous
	mumble_sth
	say_off topic

	Other concepts
	The HCI/HEI concepts
	write_sth
	search_sth
	explore_sth
	verify_sth
	read_sth
	sketch_sth
	show_sth
	do_sth
	On drivers, observers, and co-action

	Supplementary concepts
	become_driver
	work in parallel_sth
	work alone_sth
	wait for_sth
	react to_interrupt

	Using the base concepts
	Guidelines for annotating
	How to pick appropriate HHI concepts
	How to pick appropriate HCI/HEI concepts
	What to consider as context
	When to use double HHI annotations
	How to segment utterances
	How to handle specific phenomena
	How to annotate implicit announcements
	How to annotate thematic shifts
	How to annotate repetitions
	How to annotate incomplete agreement or disagreement
	How to annotate self-corrections
	How to annotate justifications

	Method hints
	Step back
	Paraphrase
	Peek into the future

	Guidelines for modifying the base concept set
	What makes a good concept set
	When to shift a boundary
	When to add a new property value
	When to add a concept and which

	Guidelines for creating new concept sets
	The idea of layers
	Granularity
	Properties and property values
	Forming ``nice'' layers
	Go!

	Bibliography
	Index

