
Quality Experience:
A Grounded Theory of Successful Agile Projects

Without Dedicated Testers

Lutz Prechelt
Freie Universität Berlin
14195 Berlin, Germany

prechelt@inf.fu-berlin.de

Holger Schmeisky
Freie Universität Berlin
14195 Berlin, Germany

holger.schmeisky@inf.fu-
berlin.de

Franz Zieris
Freie Universität Berlin
14195 Berlin, Germany

zieris@inf.fu-berlin.de

ABSTRACT
Context: While successful conventional software develop-
ment regularly employs separate testing staff, there are suc-
cessful agile teams with as well as without separate testers.
Question: How does successful agile development work with-
out separate testers? What are advantages and disadvan-
tages? Method: A case study, based on Grounded Theory
evaluation of interviews and direct observation of three agile
teams; one having separate testers, two without. All teams
perform long-term development of parts of e-business web
portals. Results: Teams without testers use a quality expe-
rience work mode centered around a tight field-use feedback
loop, driven by a feeling of responsibility, supported by test
automation, resulting in frequent deployments. Conclusion:
In the given domain, hand-overs to separate testers appear
to hamper the feedback loop more than they contribute to
quality, so working without testers is preferred. However,
Quality Experience is achievable only with modular archi-
tectures and in suitable domains.

CCS Concepts
•General and reference → Empirical studies;
•Software and its engineering → Agile software de-
velopment; Software testing and debugging;

Keywords
Agile Development, Software Quality Assurance, Industrial
Case Study, Grounded Theory Methodology, Testing

1. INTRODUCTION

1.1 Conventional: Testing is done by testers
In conventional, document-driven software development

processes, analytic quality assurance (QA) consumes a large
fraction of the overall effort. Testing, its most prevalent

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884789

activity, is taught in dozens of books and investigated in
a large body of scientific literature [5, Chapter 4], [11, 13].
Software organizations devote whole departments to testing,
consisting of people who work exclusively in a tester role,
perhaps even discriminating different subroles [12].

1.2 Observation: Agile testing is not always
done by testers

In contrast, in several companies we work with we no-
ticed a curious diversity: Some of the teams had members
or partner teams who exclusively were considered testers,
whereas other teams had not even a separate tester role. All
of these teams considered themselves to be agile teams (and
we thought so, too). All of these teams appeared to be (and
consider themselves) generally successful in their develop-
ment efforts. All of these teams worked in the same domain:
e-business web sites. This piqued our interest: Should not
the difference between teams with and teams without sepa-
rate testers be fundamental and visible in their success?

1.3 Agile: Should testing be done by testers?
Agile development methods, with their strong emphasis

on personal communication, shun departments and favor
multidisciplinary teams instead (“Build projects around mo-
tivated individuals.” [1]). They do recognize testing as a
function, but have no uniform attitude towards an explicit
tester role, let alone to the need for separate testing person-
nel : Extreme Programming (XP) defines a Tester role [3,
Chapter 10], although it is not necessarily filled by separate
people [3, p.50]. In contrast, the Scrum Guide states that
the Development Team (as opposed to the overall Scrum
Team) must be cross-functional and self-organizing [21, p.5]
and insists that all its members absolutely must have the
same job title of Developer [21, p.6]. There must be no
sub-teams “regardless of particular domains that need to be
addressed like testing or business analysis” [21, p.6]. In Kan-
ban, one or several forms of testing become natural stages
in the pipeline [4, Figure 8]. Kanban thinking starts from
whatever organization and roles are currently used and is
therefore agnostic on the separate-testers issue [2, Chapter
5]. Summing up, there is no unanimous preference for or
against separate testers in these sources.

1.4 Research questions and contribution
We ask two research questions:

RQ1: How is quality assured in agile teams that do not

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering

 1017

http://dx.doi.org/10.1145/2884781.2884789

employ separate testers?
RQ2: What are advantages and disadvantages of not em-
ploying separate testers?

Our main research contribution is the notion of Quality
Experience: A concept that explains how and when teams
are able to assure quality well without separate testers. This
is the first time we know of that the circumstances, na-
ture, and effects of agile quality assurance without separate
testers have been contrasted to quality assurance with sep-
arate testers concretely and with empirical evidence.

Our results suggest that a Quality Experience mode of
quality assurance has strong positive effects on business flex-
ibility and developer motivation. The mode can only be
reached under certain circumstances. If it can be reached,
hand-overs to separate testers would get in the way. If it
cannot be reached, working with separate testers is presum-
ably preferable for the well-known conventional reasons.

1.5 Structure of the article
Our study is a case study of three agile software develop-

ment teams with and without separate testers at two differ-
ent companies. We will now describe our research method-
ology (Sections 2.1, 2.3, 2.4), notation (Section 2.5), the
software domain (Section 2.2), and the teams (Sections 2.6
to 2.8), then report our various findings (Sections 3.1 to
3.8). We discuss limitations (Section 4) and related work
(Section 5) before we present our conclusions (Section 6).

2. CONTEXT AND METHOD

2.1 Method type
Our study applies case study methodology [27]. In the

terminology of Yin, ours is an exploratory, holistic, 3-case
study. Each case is one agile software team, selected by con-
venience sampling. Two of the teams (OnM, OffProf) are
from the same company1, the third (Pay) is from another.
Triangulation occurred mostly across the several team mem-
bers of each case. We largely follow the case study reporting
guidelines of Runeson and Höst [19], but as our article fo-
cuses on reporting a Grounded Theory, not a case study, we
apply them only loosely. We assume analytic generalization
to comparable cases, but of course no statistical generaliza-
tion [27].

2.2 Context: Domain
All three teams work in the same domain: The in-house

development of a single, large, mass-user web portal at a
company that makes money from direct payments of some
users of that portal. This domain has a number of proper-
ties that are relevant for the results of our study and that
all three teams have in common, for instance:
(1) There are millions of users.
(2) There are several large subgroups of different user types;
in particular paying users (customers) and non-paying users.
(3) Any individual customer accounts for only a small part of
the revenue stream and that part is usually further divided
into small pieces so that failures of individual transactions
are not overly expensive.
(4) The portal and its development are complex in multiple
respects such as functionality, scalability, access channels,

1The same-company similarity between OnM and OffProf is
hardly relevant for our purpose here.

payment channels, etc.
(5) Defects in individual services within the portal are crit-
ical for the business but not quickly catastrophic.
(6) New versions of parts of the software can in principle be
deployed immediately. The rollouts can be complete (to all
users) or partial (e.g. as A/B testing).

2.3 Method: Data collection
The data collection for our study was performed by Holger

Schmeisky, initially by passive observation, informal conver-
sation, and obtaining documents (round 1), then by formal,
semi-structured interviews (round 2), and finally by follow-
up steps using emails for clarification and a few additional
interviews (round 3).

In round 1, for each team, he shadowed one developer
for several days, performing direct observation and listening
to spontaneous explanations, taking notes along the way, to
obtain an overview of the domain, developer activites, and
team workflows. He also obtained a number of documents
from the development process that were used in intermediate
steps of the analysis, but not in this article.

The round-2 and round-3 interviews were audio-
recorded and transcribed. They were semi-structured, but
did not all follow the same structure. Rather, he modified
the questions as he went along and obtained more insight.
The first interviews were broad, asking about the company
(structure, business, culture), software (architecture, tech-
nology, tools), team organization (size, projects, roles), man-
ner of use of agile methods, nature of tasks and task assign-
ment, work planning, publication/release rules (including
emergency rules), defect repair process and culture, devi-
ations between intended process and actual process.
Later interviews reduced company-level questions and added
delivery-related ones e.g. regarding what the team consid-
ered to be the primary quality attribute(s), the use of au-
tomated testing, modes of defect detection, the sense of re-
sponsibility exhibited by the developers, and developer re-
sponsibilities beyond writing software (such as service mon-
itoring).

For each team, Holger interviewed one or more represen-
tatives of each relevant role, in particular (where applica-
ble) developer (marked D in our data references), product
owner (PO), Scrum master/coach (SM), tester (QA), team
lead2 (L), and higher-level manager (M). After round 2 and
initial data analysis, we presented our findings to all three
teams for validation.

In round 3, gaps and clarifications that came up dur-
ing the subsequent finer analysis were handled by email or
follow-up interviews with the same interviewee; those often
covered rather specific issues. After round 3 and the com-
plete data analysis, one member of team Pay validated our
complete writeup. We have since presented the results twice
(to about 50 practitioners from other companies, mostly
from the web portal domain); the only objections we re-
ceived (in the form of “yes, but. . . ” questions) were from
people working in different domains with additional con-
straints.

2.4 Method: Data analysis
Our data analysis used GTM, Grounded Theory Method-

ology [23], as follows: Theoretical Sensitivity [23, Section

2primarily a communication and coordination role

1018

II.6] was initially sharpened by data collection round 1.
Based on the data from round 2, Holger Schmeisky started
with Open Coding [23, II.5]. Lutz Prechelt later joined him
in this work in Pair Coding manner [20].
The Constant Comparison [23, II.1] turned out to be rela-
tively easy, as the various concepts had not much tendency
to overlap. The nodes of Figure 1 represent the respective
resulting concepts relevant for the outcomes of our study.

The edges of Figure 1 represent the relevant results of our
Axial Coding [23, II.7], also partially done in pair coding
mode. Source nodes represent strategies or context con-
ditions, target nodes represent consequences. Franz Zieris
checked the consistency of the Open and Axial Codes.

Selective Coding [23, II.8] chose Quality Experience as the
core category and the boldfaced nodes in Figure 1 represent
its immediate elements. Data collection round 3 served to
fulfill the requirements of Theoretical Sampling [23, II.11],
although we may not have achieved Theoretical Saturation
[23, II.11].

We stopped collecting data when we had understood all
important relationships between the factors we had uncov-
ered as shown in Figure 1. Further data collection might
have extended our theory (by uncovering further factors),
but all elements of the current one would remain valid.

2.5 Notation
When we refer to data from round 1, we will mark its type

as O for passive observation data or N for notes from infor-
mal conversation. A complete data reference will mention
team name, person role and number (if applicable), data file,
and, beginning line number (if the file is long), for instance
(TeamX.D2/O3-147).

For rounds 2 and 3, interviews are marked as I, and the
data references mention time (in minutes:seconds) rather
than line number. For instance (TeamX.PO/I1-13:22) refers
to a statement made after 13 minutes and 22 seconds in in-
terview 1 at team TeamX, which was an interview with the
Product Owner. Most interviews were in German and the
quotations are hence translated and may use diction uncom-
mon in English. Emails will be marked as E and again use
line numbers, as in (TeamX.QA2/E2-5). The companies did
not give permission to publish the raw data. To scrutinize
it, you will have to visit our research group.

2.6 Context: Team Pay (SoundCloud)
SoundCloud is a music sharing service: artists can present

themselves and upload their own music (3 hours for free,
more against payment); other users can browse this music,
listen to it, comment on it, and share it on social networks.
SoundCloud has about 10 million users and is usually among
the world’s top 200 web sites3. It supports web browsers,
iOS and Android apps, and community-built apps based on
the SoundCloud API.

The SoundCloud architecture started as a single Rails ap-
plication (now called mothership) but since 2011 has grad-
ually been split into separate services. New services are
realized in a variety of technologies. Any SoundCloud de-
velopment team consists of developers only (there are no ar-
chitects, testers, etc.) and most are vertical, i.e., in charge
of one functional area completely. SoundCloud has around
80 developers overall.

3http://www.alexa.com/siteinfo/soundcloud.com

Team Pay is responsible for the Buckster service that con-
tains all payments-related functionality such as user sub-
scriptions, fraud detection, and reporting. A few parts
of Buckster were still in the mothership during our study.
Team Pay consisted of two developers (previously three) and
one product owner4 and used a lightweight Kanban process,
without fixed iterations. The product owner assesses the
quality as follows: “As we have relatively few severe bugs, I
believe that we are doing a good job.” (Pay.PO/I5-15:10).

2.7 Context: Team OnM (IS24)
ImmobilienScout24 (or IS24 for short) is by far the largest

real-estate web portal in the German-language-area, with
about 1.5 million offerings and about 10 million monthly vis-
itors. Its core are real estate offerings (sale or rent; houses,
apartments, commercial property) but the portal also bro-
kers financing, insurance, and many other services.

IS24 has about 180 software developers organized in about
two dozen more-or-less cross-functional teams. Each team
uses some (typically Scrum-ish) flavor of agile process. The
portal software was originally a large, monolithic Java EE
application, built by a department-structured organization.
Much of the software has since been split into separately de-
ployed services, the remainder is called the core application.

Team OnM (full name “Online Marketing”) develops a
range of services with little end-user visibility such as search-
engine optimization, marketplace integration with partner
portals, landing pages for AdWord campaigns, visitor and
campaign analytics and reporting, and data export APIs.

The team with formerly seven developers had recently
been split into a sub-team oriented towards routine tasks
and another for new tasks; we talk only about the latter
here. It consists of four developers, a technically knowl-
edgeable product owner, and a technical lead and uses a
Kanban process without fixed iterations. When we asked
the product owner how happy they were with the quality of
their work, the answer was“Extremely happy.” (OnM.PO/I5-
12:52). He is particularly happy with their flexibility: “We
are more effective and more flexible [than we used to be].5

[We can handle very small] cycle times for requirements.”
(OnM.PO/I5-21:25).

2.8 Context: Team OffProf (IS24)
OffProf (full name “Offerings Professional”) is another

team within IS24, but with rather different character. Off-
Prof develops some functional areas of the ScoutManager,
a closed-group part of the portal used for creating adver-
tisements by private individuals and real-estate agents. The
ScoutManager is part of the core application, which is still
very large, with over 10,000 source files that form a single
Spring MVC application and several teams working on it.

The core application has a weekly release cycle as follows:
All core-related teams provide a development snapshot every
Tuesday at 10am, which is then tested by the separate QA
department, handed over to the operations department, and
deployed on Wednesday the next week (day 8 after submis-
sion); defect fixes can be inserted into an ongoing QA week,
but still normally need to wait for a deployment Wednesday.

4This team is smaller than the other two, but we encoun-
tered no team-size-related effects during our analysis.
5Square brackets indicate parts added or modified by the
authors to enhance clarity of quotes that otherwise lack con-
text.

1019

http://www.SoundCloud.com
http://www.alexa.com/siteinfo/soundcloud.com
http://www.ImmobilienScout24.de

Table 1: Overview of the investigated teams
Label Full name Company Team members Tasks Deployment

Pay Payment SoundCloud 2 Developers,
1 Product Owner

Back-end service for
all payment-related
functionality

Continuous

OnM Online Marketing ImmobilienScout24 4 Developers,
1 Product Owner,
1 Technical lead

Several services con-
cerning Online Mar-
keting and Analysis

Continuous

OffProf Offerings Professional ImmobilienScout24 6 Developers,
1 Tester,
1 Product Owner,
1 Scrum Master,
1 Team lead

Front-end function-
ality and services for
creating real-estate
advertisements in
closed-group portal

Weekly,
with an 8-day delay;
separate testers and
operators

Team OffProf’s tasks are mostly frontend-related. OffProf
consists of six developers, one tester, a non-technical prod-
uct owner, a Scrum master, and a team lead. The tester
and product owner are the only female participants in our
study. When we asked the product owner how good she
considered the quality of what they produce, the answer
was “Given that we’re in the legacy app: Really not bad.”
(OffProf.PO/I1-20:33), a fully positive (in German manner
of speaking), if not enthusiastic answer.
Refer to Table 1 for a quick reminder of these team descrip-
tions.

3. RESULTS

3.1 Quality Experience
The notion of Quality Experience is at the center of our

results, so we start our discussion from it. The term was
first used by OffProf’s Scrum master at one point: “I believe
when you first shove it into some pipeline and know it will
come back at some point if there are issues, then you have
a completely different quality experience.” (OffProf.SM/I4-
29:54). In this statement, which compares OffProf’s situ-
ation to that of a continuous delivery team, “quality ex-
perience” is a fuzzy notion and the Scrum master did not
elaborate. Yet during our analysis, we found that this was
a very appropriate term. We eventually refined the notion
into the following form, in harmony with the teams’ views
as well as the two respective process realities:

Quality Experience is a mode of quality assurance and
deployment in which the team
(1) feels fully responsible for the quality of their software;
(2) receives feedback about this quality, in particular the
quality of their recent changes, that is (2a) quick (available
early), (2b) direct (not be intermediated), and (2c) realistic
(coming from non-artificial settings); and
(3) rapidly repairs deficiencies when they occur.
These five elements of Quality Experience will be core con-
cepts in our discussion and the presentation of evidence.

Quality in this context is not just the absence of defects.
For all three teams, quality is a holistic attribute that cov-
ers most aspects of business value, from functional defects
and gaps over all kinds of attractiveness issues to operation
problems regarding deployability, scalability, monitorability,
and so on.

Of our three teams, Pay has clearly the strongest Quality
Experience, OnM a little less strong, and OffProf has a com-
paratively weak one. (Mnemonic: The team with the longest

name has the weakest Quality Experience.) Our discussion
will be arranged around the above-mentioned elements of
Quality Experience plus a number of influencing factors and
mostly talks about strengthening influences: How does one
factor increase the intensity or quality of another?

Unfortunately, most factors are related to most other fac-
tors somehow. We will constrain our discussion to those of
the factors and relationships that contribute the most to un-
derstanding Quality Experience6. The remainder is shown
in Figure 1.

In order to avoid forward references, the discussion will
roughly work its way from the top of the figure (Modular Ar-
chitecture) to the bottom (Frequent Deployments). We group
nodes and edges into subsections such as to simplify under-
standing and for clarity often mention the individual nodes
(e.g. Modular Architecture) or edges (e.g. Modular Architec-
ture −→ Empowered to Deploy) being discussed.

We will rely on data from teams Pay and OnM to describe
how a development situation with strong Quality Experience
comes to be and what it looks like; and on data from team
OffProf to describe what keeps strong Quality Experience
from arising and what such a situation looks like. The figure
pertains to the case of strong Quality Experience only and
this is also the main perspective of the text; the alternative
case at OffProf is described only for contrast.

3.2 Architectural precondition
Modular Architecture (see Figure 1)7

The fundamental precondition for an arrangement that en-
ables a strong Quality Experience appears to be a software
architecture that sufficiently decouples the work of one team
from that of another (here: separate web services commu-
nicating via HTTP). Without such Modular Architecture,
much additional beyond-team coordination effort is required
(OffProf.SM/I4-42:17), it is not always clear which team
owns a particular piece of code (OffProf.SM/I4-33:25), and
defect introduction frequency is higher.

Of our teams, OnM and Pay have high general qual-
ity, with zero known open defects (OnM.PO/I5-12:52),

6We do not expect them to be an appropriate set of factors
for other purposes. Also, expect many identifiable interme-
diate factors and additional relationships to be missing in
our discussion.
7This section talks about the Modular Architecture node.
Each section will list the relevant nodes at the beginning.
The node names should be considered identifiers, not expla-
nations.

1020

Feel
Responsible

Co-define
Requirements

High
Motivation

Quick
Feedback

Rapid
Repair

Direct
Feedback

Realistic
Feedback

Frequent
Deployments

Automated
Deployment

Automated
Tests

Empowered
To Deploy

Held
Respons ible

Modular
Architecture influence types

sociological psychological engineering

Figure 1: The major strengthening influences between some major factors in the causes-and-effects network
around Quality Experience. The boldfaced nodes in the center are the elements of Quality Experience. The
labeling of edges as sociological, psychological, or engineering influences exists to simplify interpretation only;
we make no claims in this regard. (The diagram is not a process diagram and the edges indicate neither data
flow nor control flow relationships.)

(Pay.PO/I5-15:10). OffProf is suffering from legacy code:
most of their code is in good shape, but some parts are rather
old and exhibit design decay. They are reasonably covered
by unit tests, but it is difficult to make changes to the parts
because they are hard to understand (OffProf.D/N11-34).

The lack of a sufficiently modular architecture is why team
OffProf does not get to high Quality Experience: The depen-
dencies across all teams working on the large core application
are so strong that a huge test suite is required for the contin-
uous integration8, a within-team tester is deemed necessary
who performs thorough functional and exploratory testing of
each substantial change (OffProf.QA1/I2-5:10), and the com-
pany does not dare deploying without the centralized QA
step: “It is often very hard for the [core application] teams
to work cleanly enough to prevent fixes during the QA phase.

8it takes 20 to 40 minutes to report green (OffProf.D/E3-34)

This is often not the team’s fault, but the system’s. [...]
There are too many dependencies, [...].” (OffProf.QA2/I5-
19:20).

Obviously, teams Pay and OnM are in a more comfort-
able situation. But what makes them abandon the idea of
separate testers?

3.3 Conscious empowerment decision
Empowered To Deploy
In our web portal domain, if the team is as competent as ours
are and the Modular Architecture precondition is fulfilled, it
appears that a company can essentially decide to make the
team obtain a strong Quality Experience by handing over
complete control over deployment (and monitoring) of their
part of the portal to the development team.

In our Pay and OnM cases, this hand-over was indeed a
conscious decision. The higher-level manager overseeing Pay

1021

puts it like this: “[We want] the team to own, end-to-end,
the stuff they produce so there are no external dependencies,
no external QA teams or anything that says you can release
or you cannot.” (Pay.M/I6-14:55).9 And the team lead of
OnM has clear expectations of his developers: “[The no-
tion of quality concerns] the whole thing being implemented.
End-to-end, [from planning and development] to operation,
including monitoring and so on.” (OnM.L/I4-31:03).

Modular Architecture −→ Empowered To Deploy
This development style is not possible for the legacy appli-
cation at either company: Both legacy applications, Sound-
Cloud’s mothership and IS24’s core application, require a
large amount of experience to handle deployment properly,
making it a task for specialized experts only: “But there
again the system throws a monkey wrench in the works, be-
cause it is not just push-a-button-and-be-live; rather, there
are a lot of manual steps in the production department.”
(OffProf.QA2/I5-53:35), (Pay.D2/E10-22).

3.4 The role of responsibility
Held Responsible
Feel Responsible
From the empowerment it is only a small step to a much-
widened sense of responsibility. For instance, most soft-
ware developers might subscribe to the following statement:
“Exactly. That is the basic idea [of the company culture]:
every developer is responsible for the code he develops.”
(Pay.D2/I1-47:01). But in our case, the developer making
the statement had in mind a wide meaning of “responsible”;
developers are not merely held responsible by the company,
they also inwardly feel fully responsible: “The most impor-
tant thing is [...]: Every developer is responsible for what
he is doing. And at no time he thinks he can just write the
code and rely on somebody else to fix it.” (Pay.D2/I1-57:35).
Another said “[We deploy,] therefore we are responsible for
our software to be fit.” (OnM.D2/I1-43:45), and the product
owner summarizes “In the end, we as a team are responsible
for what we release.” (OnM.PO/I5-4:52).

Team OnM had had a setting with a separate QA person
previously. D2 characterized it like this: “By this, we handed
over the responsibility. When we had that mode active, we
said [the tester] has to find this [. . .]. He needs to have
something, too, needs to be kept busy. We handed off re-
sponsibility.” (OnM.D2/I7-22:00). But once they switched,
they felt differently: “Working [without a separate Tester]
changed things. You have nobody to blame, because we did
it. That way, you take personal any error happening in the
field. That way, you bear more responsibility. Before, you
could duck away.” (OnM.D2/I8-57:45).

Held Responsible −→ Feel Responsible
In most of the statements we heard, these two aspects are
almost inseparable: As a result of the empowerment to de-
ploy, the company of course assigns the developers a more
comprehensive quality responsibility and the developers also
perceive their responsibility to have widened: “[The team]
are responsible for ensuring [everything works] and have the
means to do so.” (Pay.D1/I6-15:08).

The sense of responsibility has remarkable consequences.
For instance the Pay team self-organized into a round-robin
on-call duty for 24h monitoring of their payment service

9This was a group interview with Pay’s D1, D2, PO, and M.

(Pay.D2/I1-29:40), intervening in case of severe problems
even in the middle of the night (Pay.D2/I4-68:35). And the
team does not consider this extraordinary at all: “In most
cases it is not about getting woken up, but the implication
that people are not able to upgrade [their SoundCloud sub-
scription]. That is what we want to prevent. [. . .] I demand
of myself that the system is running.” (Pay.D2/I4-69:06).

Held Responsible −→ Automated Tests
This also leads to extra effort and care for ensuring the effec-
tiveness of the pre-deployment quality assurance, in particu-
lar the automated tests: “I know that when there is an error
I might be woken up at 2 in the morning. That is enough
motivation to say: I will [write] twice and thrice [as many
tests] and make sure I will not be woken up.” (Pay.D2/I1-
84:58).

Co-define Requirements
The developers substantially participated in the require-
ments definition, apparently based on (1) their increased
understanding of the domain as produced by more realistic
feedback from the field (as discussed below), (2) their gen-
erally high motivation (also discussed below), and (3) their
feeling of responsibility. Their participation reinforced the
motivation and the feeling of responsibility. Due to our re-
search question, we did not specifically investigate require-
ments definition processes, so the evidence for these rela-
tionships is spread out too far over our data to summarize it
neatly here with quotes, but for example the OnM product
owner told us he and the team now “partially work on the
requirements together” (OnM.PO/I5-9:09). In team Pay, not
only are developers “quite heavily involved in the planning of
the product” (Pay.PO/I5-11:44): If the PO asks for changes
that the developers do not immediately agree with, he has
to justify the decision: “They always challenge me: Do you
really need that? Did you look at the numbers?” (Pay.PO/I5-
10:09). Both teams consider this helpful (Pay.PO/I6-35:45),
(Pay.D2/I1-43:10), (OnM.PO/I5-12:35), (OnM.L/I4-31:03).

3.5 The role of feedback
All agile methods emphasize the motivational value and

practical importance of feedback for iterative software devel-
opment. In our setting, the feedback from monitoring field
use of the freshly deployed modified software plays the same
roles for creating Quality Experience. It primarily consists of
observing web analytics information such as type and num-
ber of HTTP responses, number of sales in total, incoming
traffic through web banners, etc. During our analysis, we
found three properties of field-usage feedback that are rele-
vant and beneficial: The feedback should be available early
(quick), not be intermediated (direct), and preferably come
from non-artificial settings (realistic).

Quick Feedback
The most obvious of these three properties is avoiding de-
lay: The earlier a developer can receive feedback on code
written today, the smaller he or she can make the itera-
tions and the faster the learning (and hence the improve-
ment of the software) can progress. It is an implicit goal in
the business value thinking of the Pay product owner: “So
we sat down last week and analyzed what we need to start
and what we can do later and prioritize that. We ended
up with very little, so that we can already launch next week.”
(Pay.PO/I5-9:24). His higher-level manager even considers it

1022

the top priority: “Fast feedback is the most important thing.”
(Pay.M/I6-10:52).

Conversely, the lack of Quick Feedback (and Rapid Re-
pair, see below) is a top source of frustration for the OffProf
team: “It is so frustrating, we would be able to do so many
cool things if we had newer, modularized code. We cannot
be courageous. We have to consider ten times: ’Should I
put this live?’, because everything has to fit. Because we
always have to wait at least a week to react to an error.”
(OffProf.PO/I1-23:17).

Direct Feedback
The second property is related to the interpretability, action-
ability, and motivational value of the feedback: If developers
make observations themselves, they understand their mean-
ing well, can act right away, and can easily develop a sense
of urgency. Team OnM has direct access to feedback and
states: “It’s no use if somebody only tells us where something
is wrong. We want to see it ourselves.” (OnM.D2/N5-52).

If, in contrast, they receive the observation indirectly from
third parties (such as testers or an operations department),
many misunderstandings become possible, clarifications will
often be needed, processes become more complicated, and
the sense of urgency will be diminished. OffProf has this
problem with defect reports from the QA team: “[When a
bug comes in] there is the question, whether it is regular or
critical, I have to talk to the PO, they will enter it [in our
JIRA], we have to agree in the daily [stand-up meeting] who
takes care of this bug. Then we have to talk to the QA, how
she found it, because we did not find it, [our internal QA]
did not find it, but they found it.” (OffProf.D/I3-92:14).

Empowered To Deploy −→ Direct Feedback
In principle, any web portal team could be provided with
(and benefit from) direct feedback from live use. In practice,
however, if the feedback comes with enough delay, the per-
ceived value of this feedback is much lower and this appears
to be the reason why Pay and OnM make much more use of
direct feedback. OffProf also has (limited) access to direct
feedback, but it hardly motivates the team (OffProf.D/I3-
22:22) because it originates from changes they made more
than 8 days ago and it mixes effects of changes in the whole
legacy application, not just OffProf’s component. Pay and
OnM, in contrast, have invested in feedback automation and
had a large monitor in their team space that showed real-
time data from service operation (Pay/O4-27), (OnM.D2/I7-
5:12). Team Pay has even built a monitoring service that
will alert them by SMS during nighttimes and weekends in
case of various types of serious problems, not just server
outages (Pay.D2/I1-29:05).

Realistic Feedback
The third property reflects that internal testing cannot com-
pete with field use in terms of uncovering imperfections:
“When [changes] are finished: Get ’em out! Because only in
the wild we can see the errors that may occur.” (OnM.D2/I1-
69:28). This quote also nicely shows the desire for quick
feedback and the sense of urgency provided by direct feed-
back.

3.6 Rapid repairs of field defects
A second issue for the Empowerment To Deploy, besides

the architectural precondition, is staff capacity, because
without help from separate testers and an operations de-

partment, the available manpower is smaller. This is solved
by automation.

Automated Deployment
The smaller part of the automation contribution concerns
the deployment. As a response to their wish10 to deploy by
themselves, teams OnM and Pay both fully automated the
deployment process. OnM developed a graphical applica-
tion and the product owner now deploys with a mouse click
(OnM.D2/N11). For Pay, a developer deploys via rake de-

ploy production from the command line (Pay.D2/I4-7:40).
This reduces the wall-clock time required for a deployment
after testing, roughly one day at team OffProf (OffProf.D/I3-
103:49), down to a minute.

Automated Tests
The larger contribution comes from almost fully automated
testing. Deploying frequently clearly brings forward the
need for automated tests that check nearly all of what is
necessary to assure correctness. We have already seen the
serious attitude of the Pay team in this regard (Pay.D2/I1-
84:58). Their product owner, who comes from a background
of extensive manual testing, considers automated testing a
key ingredient for being able to build the service without
separate testers: “Payment is a sensitive topic and damage
can be high [. . .]. We initially worried whether we can han-
dle it with just a small team. In the end we covered it well
with these automated tests and it works fine.” (Pay.PO/I5-
23:55). Pay initially spent a lot of time on creating a suitably
balanced testing pyramid, adding new types of tests and
removing those that proved ineffective (Pay.D2/I1-76:53).
Team OnM similarly invested a lot of time into their test
code, mainly to make it run faster and easier to maintain
(OnM.L/I3-21:20).

Note that OffProf invested a lot of effort into automated
testing as well; for example 30 complex web tests are exe-
cuted with every continuous integration run, and 350 addi-
tional ones are run every 2 hours (OffProf.D/N2-30). But the
team has a hard time making these tests adequate: “[There]
is often discussion between [the QA] and the others about
what makes a good test. [But] as long as they cannot expe-
rience what it is like to go live immediately, [this discussion
is theoretical].” (OffProf.SM/I4-32:25).

Rapid Repair
Automated testing and deployment, together with the avail-
ability of quick, direct, realistic feedback lead to the most
strongly dependent node in our diagram, Rapid Repair, by
which we mean both a capability and a practice. It means
that whenever a defect slips through to deployment, it will
typically be online only for at most a few hours before it is
corrected: “The number of fixes taking more than one day is
vanishingly low. Normally directly fixed within one day and
live, too.” (OnM.L/I4-23:25). The directness of the feedback
is an important contributor to this speed (OnM.D2/I7-8:30).
At Pay, the repair speed is fast enough to give their PO a
sense of reassurance even on catastrophic failures: “In our
last issue, nothing [of one specific functionality] worked for
2 hours. But we saw that very quickly and could fix it really
fast. [. . .] I tend to be nervous about [an outage like this],

10We have not investigated much the history of how the Qual-
ity Experience situation was reached or created, but our
impression is that both organizations moved harmoniously,
without forcing anything on anyone.

1023

[. . .], but so far we were always very fast fixing them and I
get a lot more relaxed lately.” (Pay.PO/I5-16:35).

The capability of rapid repairs also contributes to high
motivation (our next topic), as we can see when we compare
the above statement to the depressed tone at OffProf when
they will comment on their repair interval in the coming sec-
tion: “And then it takes another 2 weeks. . . ” (OffProf.D/I3-
106:00).

3.7 Motivation effects
High Motivation
Both the feeling of responsibility and the availability of
good feedback contributed to the high level of motivation we
found in the Pay and OnM teams. This motivation is visible
in many of the statements from those teams including the
“That is enough motivation to say: I will [write] twice and
thrice [as many tests]” (Pay.D2/I1-84:58) and “They always
challenge me” (Pay.PO/I5-10:09) from Section 3.4, or “Get
’em out” (OnM.D2/I1-69:28) from Section 3.5.

It is most impressively seen when contrasting it with the
frustrated and leaden feeling conveyed by the OffProf de-
velopers in face of their two-week waiting time for a re-
deployment in case of a mistake: “Especially bugs [in the
live system] are very annoying. [. . .] Sometimes I think
’What will our customers be thinking?’. But this is probably
a developer thing, to be so angry with oneself for overlook-
ing something. [. . .] And then it takes another 2 weeks. . . ”
(OffProf.D/I3-106:00).

Contrast this with the lighthearted feeling exhibited by
OnM.D2’s summary of what successful iterative develop-
ment is like: “We saw that we could achieve more. That we
were iterating faster and got our product out faster, creating
some leeway. We attempt to create free space for ourselves,
so we can develop new ideas and test them and less time is
occupied by routine stuff.” (OnM.D2/I1-59:19). The notion
of “routine stuff” refers in particular to lack of automation.

3.8 The consequence: frequent deployment
Frequent Deployments
Driven by the teams’ high motivation and the testing and
deployment automation, teams Pay and OnM have moved
to a finer-grained iteration style (OnM.D2/N12) and now
deploy new versions of their service(s) several times a week
(Pay.D2/N15-22), (OnM.D2/E12). This has three important
consequences.
(1) It makes the risk from not having separate testers bear-
able, because failures are short-lived: “The incremental roll-
out is very important. Not just from the planning perspec-
tive, but also from the code perspective, that you can just roll
back very quickly.” (Pay.D2/I1-40:00), also reported by OnM
(OnM.D1/N7-47). Also, debugging is simple when changes
are small (OnM.D2/I1-70:12), (Pay.D2/N15-23).
(2) It provides feedback more quickly and therefore makes
realistic feedback more easily available: “We always get ev-
erything out immediately, to get feedback.” (OnM.D2/I1-
70:08).
(3) It allows better strategies for achieving larger goals. For
instance it allowed team Pay to perform a risky migration
piecemeal, thus lowering risk immensely, without becoming
too slow (Pay.D2/I1-36:50).

Contrast this with how the OffProf team would like to
work, but cannot: “Now we have 1 week releases, it used
to be 2 weeks. This is very frustrating when you know the

other world, where things go faster; especially when A/B-
testing. [With several iterations,] that quickly adds up to
a month or two. The result is neither fast nor agile in
our view.” (OffProf.PO/I1-21:20). To cope with the slow-
ness, OffProf started to run multiple A/B tests concur-
rently, with multiple complex (yet provisional) changes to
the database schema, and struggled with the resulting com-
plexity (OffProf.SM/I4-23:35).

This work style is “[. . .] neither fast nor agile”, indeed.
Agile development should allow making and validating many
quick small steps in order to keep investments into wrong
ideas small and keep progress on good ideas fast and on
track. And by enabling Frequent Deployments, this is exactly
what the Quality Experience mode of quality assurance pro-
vides.

4. LIMITATIONS
We see three main limitations of our case study: First,

many of the constraints and behaviors uncovered in our
study are tightly bound to the domain as characterized in
Section 2.2, and we make no claim with respect to the gen-
eralizability of our results outside of this domain. Second,
even within the domain, the set of teams is too small to claim
generalizability on a quantitative level and so we make no
quantitative claims (statistical generalization) either. Third,
our characterization of the conditions under which the Qual-
ity Experience mode of quality assurance can be reached is
only coarse, in particular with respect to issues of company
culture, which was so unproblematic at SoundCloud and
IS24 that the topic never arose.

Other than that, however, we expect no problems with
the validity or generalizability of our results: We are con-
vinced that our interviewees were open and honest, and that
our interpretation of their statements is justified in both a
historical sense (for the past, in the given contexts11) and
an engineering sense (for the future, in new contexts).

We have investigated the Co-define Requirements topic
only superficially. It deserves a study of its own.

5. RELATED WORK

5.1 Agile testing with or without separate
testers

Much research into quality assurance in agile development
methods appears to take it for granted that agile teams work
with separate testers; for instance [6, 14, 24, 26]. Regarding
our research question whether agile testing should better be
done with or without separate testers, we found only two
studies that contribute substantially.

Guo et al. [8] analyzed the Windows Vista defect database
(not a fully agile context) and found that defects become less
likely to be fixed as the distance (whether geographical or
organizational) grows between assigner and assignee. The
highest fix ratios are found for bugs developers assign to
themselves, which is just what will happen most of the time
if there are no separate testers.

Mäntilä et al. [16] analyzed, in three business and en-
gineering software producing companies, which employee
groups find bugs and how likely these are fixed. They found

11As mentioned in Section 2.3, this was confirmed by the
teams after round 2 of our data collection. It was also con-
firmed for this whole article by Pay.D2.

1024

that in addition to the specialized testers, many groups find
defects, e.g. sales, technical support, managers, and external
end-users. The defects found by specialized testers tended
to be “unlikely to occur in real use” or had “only minor ef-
fects” [16, p.165]. We do not think this strongly applies to
OffProf, but nevertheless such a tendency suggests that Re-
alistic Feedback may be an efficient approach if the associated
risk is acceptable.

Olsson et al. [17] conducted a case study of 5 software
companies with different innovation cycles. They propose
a “stairway to heaven” model, that starts with traditional
long-cycle development (level “A”) and culminates in a con-
tinuous, fast-paced innovation experiment for product de-
velopment (level “E”). In this model, our teams Pay and
OnM are roughly on level “D”, where code changes are re-
leased in a continuous delivery fashion. The study identifies
several key factors for reaching higher levels, that appear
in our model as well [17, Table 1]: Modular architecture;
Comprehensive test automation; Deployment automation;
Early, realistic feedback from end-users. However, the focus
is more on organizational benefits and barriers for product
development, not on quality assurance and testers. The ar-
ticle (vaguely) mentions that even on level “D” there might
be cultural barriers against releasing inexhaustively-tested
software to customers which would mean Quality Experi-
ence is incompletely established, but the domain in this case
is different (SaaS products in finance/accounting).

Google and Facebook, two software companies that are ar-
guably successful in their software development, also found
that going without separate testers improved their software
development. Google, when they still had separate testers,
recognized that testing turned into a bottleneck and time-
to-deployment became too long [25]. They replaced spe-
cialized manual testers with software engineers that would
support the actual developers of the respective functionality
when writing automated tests. Devising the tests, however,
is the developers’ responsibility (Held Responsible), not the
testers’. As a result, the developers took more responsibility
for quality overall (Feel Responsible).

At Facebook [7], whose business more closely resembles
that of our companies, we find many of the phenomena en-
countered in our study: Developers, rather than separate
testers, are put into the QA role, so that they can be Held
Responsible more completely and will therefore also Feel Re-
sponsible. Facebook perceives this to be successful: “Per-
sonal responsibility by the engineers who wrote the code
can replace quality assurances obtained by a separate test-
ing organization.” [7, p.12]. Facebook strives for Frequent
Deployments to reduce risk. Deployment is basically weekly,
not as frequent as with Pay and OnM, and, due to Face-
book’s size, without making the developers Empowered to
Deploy; instead, there is internal beta testing by employ-
ees. Developers must be available for corrections when their
new code is rolled out. Functionality is often rolled out to
only small fractions of all users first to obtain Quick Feed-
back and Realistic Feedback: “Testing on real users at scale
is possible, and provides the most precise and immediate
feedback” [7, p.12].

Results from psychology also suggest that working with-
out separate testers might enable software developers to
work better. Shanteau [22] states that experts in a domain
are able to build up expertise and make good decisions when:
(1) Feedback is available (corresponding to Direct Feedback

in our study); (2) Tasks are repetitive, providing frequent
opportunity for learning (Frequent Deployments); (3) Some
errors are expected and acceptable (Rapid Repair); (4) A
problem is decomposable (Modular Architecture).

5.2 On phenomena similar to Quality Experi-
ence

None of the relationships shown in Figure 1 are flabber-
gastingly new, quite on the contrary: Each is known to the
agile community at least in principle. For instance, in the
terminology of the four-level scale of Agile Fluency [15], our
teams Pay and OnM are on their way from a two-star team
(“Deliver on the market’s cadence”) to a three-star team
(“Optimize value”).

Our contribution is collecting all of the relationships in a
single model and providing evidence: We tell the story of two
teams that exemplify the relationships shown and a third to
corroborate that they indeed hinge on the influencing factors
as we claim.

Many scientific and practitioner sources talk about a few
of the relationships. One that talks about most of them is
the Poppendiecks’ book “Lean Software Development: An
Agile Toolkit” [18], which describes 22 thinking tools for de-
signers of agile development processes, grouped under 7 lean
principles. The similarities are best explained by mapping
our concepts to similar ones in the book:

• Several concepts map to various topics under thinking
tool 1 “Seeing Waste” [18, pp.4-8]: Automated Deploy-
ment, Automated Tests, and Frequent Deployments to
“Waiting”; Direct Feedback to “Motion”; Rapid Repair
to “Defects”.

• Direct Feedback, Quick Feedback, and Realistic Feed-
back pertain to thinking tool 3 “Feedback” [18, pp.22-
27], from principle 2“Amplify Learning”, but are much
more refined.

• Empowered To Deploy maps to principle 5 “Empower
the Team”, thinking tool 13 “Self-Determination” [18,
pp.99-103].

• High Motivation also comes under principle 5, in think-
ing tool 14 “Motivation” [18, pp.108-109], specifi-
cally as the motivation building blocks “Competence”
(via the availability of feedback), “Progress” (via the
deployment-feedback cycle plus Rapid Repair), and
“Belonging” (via Co-define Requirements, which again
is a part of tool 13 “Self-Determination”).

• Automated Tests maps to principle 6 “Build Integrity
In”, thinking tool 20 “Testing” [18, pp.145-149].

• Frequent Deployments, as the key outcome of Quality
Experience, maps to principle 4 “Deliver as Fast as
Possible” [18, pp.69-92] and is also a core topic of at
least three currently-popular streams of lean thinking:
Kanban [2], Continuous Delivery [9], and DevOps [10].

A few of our concepts do not occur prominently in the
book: Neither Modular Architecture nor responsibility are
explicit topics; the terms modularity or responsibility do
not even appear in the index.

Conversely, some other Lean concepts can be glimpsed in
our story without having a separate node in the diagram.
For instance the complaint ending in “[It] quickly adds up

1025

to a month or two” (OffProf.PO/I1-21:20) from Section 3.8
amounts (in its original form) to a “Value Stream Map”,
Lean thinking tool 2 [18, pp.9-13], and it echoes the prob-
lem of cycle time discussed in thinking tool 11 “Queueing
Theory” [18, pp.77-83].

6. CONCLUSIONS
So what are the answers to our two initial research ques-

tions? Regarding RQ1 (How is quality assured in ag-
ile teams without separate testers?), our answer could be
phrased as “By creating a strong Quality Experience as de-
fined in Section 3.1”. In this work mode, the developers man-
age to fulfill the responsibilities of the conventional tester
role by identifying aspects that are to be covered by efficient
automated testing and others that are evaluated implicitly
by the end-users. The risk of the latter is minimized by the
developers being able to react independently and quickly in
case of problems, such that the benefits of having realistic
and direct end-user feedback prevail. Figure 1 summarizes
the most important factors and relationships of and around
Quality Experience.

The design justification, if you will, of a style of software
development that enables Quality Experience can be sum-
marized as follows:
(1) Hand-overs slow down the improvement cycle, so let us
get rid of them and empower the development team to test
and deploy all by themselves.
(2) An unwillingness to perform routine manual tasks will
drive the team towards high degrees of test automation and
deployment automation. This speeds up the iteration cycle
further.
(3) With automated testing and deployment, small changes
can be deployed very quickly, so we can risk to simply leave
the arbitration of some aspects to the end-users instead of
attempting to evaluate them in-house.
(4) The result is a strong feeling of responsibility as well as
high motivation at the developers, a rapid stream of deploy-
ments, and minimal damage in case of field-failures (and
hence modest risk); a highly desirable development situa-
tion.

The teams themselves emphasized point 3 as the key rea-
son why it is appropriate for them to work without separate
testers (OnM.D2/I9-17:00), (Pay.D2/I1-1:23:22).

So can you just kick out your testers and all will be well?
From a management point of view, the following constraints
need to be obeyed to realize Quality Experience:
(1) Teams must be assigned a holistic responsibility for a
preferably vertical part of the web portal (service(s) or func-
tional area(s)). Management may perceive some power loss.
(2) To accept this responsibility, the team must have suf-
ficient freedom to decide and control all relevant aspects
of their work, from participating in the definition of re-
quirements down to operational monitoring. In particular,
technology, architecture, and operation setup must allow for
rapid and frequent deployment of new software versions. If
this is not already the case, management must be willing to
invest.
(3) The developers need to have sufficient common ground
with the users of their software in order to interpret the feed-
back correctly.
(4) Occasional, short-lived field defects must be perceived as
acceptable. Management must not be timid.

Regarding RQ2 (advantages/disadvantages), the only

disadvantage of a Quality Experience work mode appears to
be that integration testing beyond the team level becomes
harder (Pay.D1/I3-69:43). Quality Experience and testers
can probably be combined if the process manages to avoid
frictions from hand-overs. A limitation is that the above
constraints cannot always be fulfilled. If development is too
closely coupled with that of other teams or if deployment
takes too long, a strong Quality Experience will not occur
and it may be difficult to change this. Company or team
culture might also get in the way.

If, on the other hand, the constraints can be fulfilled, there
appear to be only advantages: teams are highly motivated
and focused, development effort goes down (less coordina-
tion overhead, higher degree of automation), and presum-
ably even deficiency-related losses go down, because those
deficiencies are repaired much more quickly in the field than
before. This is why we consider Quality Experience a desir-
able work mode and why we consider distilling its ingredients
and relationships as shown in Figure 1 a worthwhile research
contribution. Note, however, that our claim is strictly bound
by the limitations described in Section 4, in particular the
web portal domain.

If any further evidence of desirability is needed, here is
some. Despite the high effort that will be required, IS24
and team OffProf have been working for some time now to
refactor their part of the core application into the Modular
Architecture that will allow the team to step over into Qual-
ity Experience as well: “[A while ago,] we formed a team
of three developers that work exclusively on modularizing the
[ad-creation] workflows. Based on these learnings, we will
attack the next areas then.” (OffProf.D/E3-42).

Acknowledgment
We thank SoundCloud and ImmobilienScout24 for allowing
us in and thank all members of the three teams for talking
to us.

7. REFERENCES
[1] Manifesto for Agile Software Development.

http://www.agilemanifesto.org, 2001.

[2] D. J. Anderson. Kanban: Successful Evolutionary
Change for Your Technology Business. Blue Hole
Press, 2010.

[3] K. Beck and C. Andres. Extreme Programming
Explained: Embrace Change, Second Edition.
Addison-Wesley Professional, 2004.

[4] J. Boeg. Priming Kanban. InfoQ/Trifork, 2nd edition,
2012.

[5] P. Bourque and R. E. Fairley, editors. Guide to the
Software Engineering Body of Knowledge (SWEBoK
V3.0). IEEE Computer Society, 2014.

[6] L. Crispin and J. Gregory. Agile testing: A practical
guide for testers and agile teams. Pearson Education,
2009.

[7] D. Feitelson, E. Frachtenberg, and K. Beck.
Development and Deployment at Facebook. IEEE
Internet Computing, 17(4):8–17, 2013.

[8] P. J. Guo, T. Zimmermann, N. Nagappan, and
B. Murphy. Characterizing and predicting which bugs
get fixed: An empirical study of Microsoft Windows.
In Proc. 32nd ACM/IEEE Int’l. Conf. on Software

1026

http://www.agilemanifesto.org

Engineering, volume 1 of ISCE ’10, pages 495–504,
New York, NY, USA, 2010. ACM.

[9] J. Humble and D. Farley. Continuous Delivery.
Addison-Wesley, 2011.

[10] M. Hüttermann. DevOps for Developers. Apress, 2012.

[11] IEEE Computer Society. 7th IEEE Int’l. Conf. on
Software Testing, Verification and Validation (ICST),
2014.

[12] Int’l. Software Testing Qualifications Board (ISTQB).
Advanced level in a nutshell. Available online:
http://www.istqb.org/certification-path-root/
advanced-level/advanced-level-in-a-nutshell.html,
2014.

[13] J. of Software Testing, Verification and Reliability.
Wiley, 2015.

[14] V. Kettunen, J. Kasurinen, O. Taipale, and
K. Smolander. A study on agility and testing
processes in software organizations. In Proc. 19th Int’l.
Symposium on Software Testing and Analysis, ISSTA
’10, pages 231–240, New York, NY, USA, 2010. ACM.

[15] D. Larsen and J. Shore. Your Path through Agile
Fluency. Available online:
http://martinfowler.com/articles/agileFluency.html,
2012.

[16] M. V. Mäntylä, J. Itkonen, and J. Iivonen. Who tested
my software? Testing as an organizationally
cross-cutting activity. Software Quality Journal,
20(1):145–172, 2012.

[17] H. H. Olsson, J. Bosch, and H. Alahyari. Towards
R&D as innovation experiment systems: A framework
for moving beyond agile software development. In
IASTED Multiconferences - Proc. of the IASTED
Int’l. Conf. on

Software Engineering, SE 2013, pages 798–805. ACTA
Press, 2013.

[18] M. Poppendieck and T. Poppendieck. Lean Software
Development: An Agile Toolkit. Addison-Wesley, 2003.

[19] P. Runeson and M. Höst. Guidelines for conducting
and reporting case study research in software
engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[20] S. Salinger, L. Plonka, and L. Prechelt. A coding
scheme development methodology using grounded
theory for qualitative analysis of pair programming.
Human Technology: An Interdisciplinary Journal on
Humans in ICT Environments, 4(1):9–25, 2008.

[21] K. Schwaber and J. Sutherland. The Scrum guide.
Technical report, scrum.org, July 2013.

[22] J. Shanteau. Competence in experts: The role of task
characteristics. Organizational behavior and human
decision processes, 53(2):252–266, 1992.

[23] A. L. Strauss and J. M. Corbin. Basics of Qualitative
Research: Grounded Theory Procedures and
Techniques. SAGE, 1990.

[24] D. Talby, O. Hazzan, Y. Dubinsky, and A. Keren.
Agile software testing in a large-scale project. IEEE
Software, 23(4):30–37, 2006.

[25] J. Whittaker, J. Arbon, and J. Carollo. How Google
Tests Software. Addison-Wesley, 2012.

[26] L. Williams, E. M. Maximilien, and M. Vouk.
Test-driven development as a defect-reduction
practice. In Proc. 14th Int’l. Symposium on Software
Reliability Engineering, ISSRE ’03, pages 34–45,
Washington, DC, USA, 2003. IEEE Computer Society.

[27] R. K. Yin. Case Study Research: Design and Methods.
Sage, 2003.

1027

http://www.istqb.org/certification-path-root/advanced-level/advanced-level-in-a-nutshell.html
http://www.istqb.org/certification-path-root/advanced-level/advanced-level-in-a-nutshell.html
http://martinfowler.com/articles/agileFluency.html

