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Abstract

Context: Root-cause analysis is a data-driven technique for developing software process improvements in mature software organi-
zations. The search for individual process correlates of high defect densities, which we call defect insertion circumstance analysis
(DICA), is potentially both effective and cost-efficient as one approach to be used when attempting a general defect root cause anal-
ysis. In DICA, data from existing repositories (version archive, bug tracker) is evaluated largely automatically in order to determine
conditions (such as the people, roles, components, or time-periods involved) that correlate with higher-than-normal defect insertion
frequencies. Nevertheless, no reports of industrial use of DICA have been published. Objective: Determine the reasons why DICA
is not used more often by practitioners. Method: We use a single-case, typical-case, revelatory-type case study to evaluate in par-
allel the importance of six plausible reasons (R1 to R6). The case is based on 11 years of repository data from a small but mature
software company building a product in the high-end content management system domain and describes a four person-months
effort to make use of these data. Results: While DICA required non-negligible effort (R3) and some degree of inventiveness (R2),
the most relevant roadblock was insufficient reliability of the results (R6) combined with the difficulty of assessing this reliability
(R5). We identify three difficulties that led to this outcome. Conclusion: Current repository mining methods are too immature for
successful DICA. Gradual improvements are unlikely to help; different principles of operation will be required. Even with such
different techniques, issues with input data quality may continue to make good results difficult-to-have.

Keywords: mining software repositories, version archive, bug tracker, defect, root cause analysis, bug, bugfix

1. Introduction

Mining software repositories (MSR) is a set of techniques
that exploit the data stored in existing databases such as source
code version archives or issue tracking databases in order to ob-
tain relevant insights (general or specific) about software prod-
ucts or software development processes. One of the potentially
useful application areas when mining software repository data
is understanding defect insertion and defect removal processes.
More specifically, a process that we will call defect insertion
circumstance analysis (DICA) attempts to identify correlates of
defect insertions: when, where (contexts), and how they happen
and who makes them happen. Such insights can potentially be
used to make valuable process improvements.

The Case Study in the sense of Yin (2003) is a research
method most suitable when “a ‘how’ or ‘why’ question is be-
ing asked about a contemporary set of events over which the
investigator has little or no control”.

1.1. Research question
The present article is a case study aimed at the research

question formulated in the title: Why aren’t MSR techniques
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used for DICA more often than they are? The question is based
on the observation that, although the MSR community strives to
address and include practitioners, there are not many reports on
MSR usage from practitioners – which may be understandable
for some types of MSR but appears surprising for DICA.

We answer it by investigating a single, arguably common
(see below) case of industrial DICA as it occured in its real
context.

1.2. Research contribution
The answer we found for the research question is twofold:

First, there appears to be no affordable method for assessing
the reliability of the results obtained from a DICA. As a con-
sequence, practitioners find DICA to be too risky to be worth
its substantial effort. Second, the reliability of these results ap-
pears to be low. As a consequence, practitioners cannot expect
sound answers from a DICA and will hence not find it suffi-
ciently valuable.

Our article makes the following research contributions:

• It presents results of a 4-person-month DICA attempt for
a large 11-year industrial software repository performed
by practioners at software company Infopark. We are
not aware of any other such report from an explicitly de-
scribed industrial setting.
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• It sorts out, at least roughly, the relative contributions of
five different potential reasons (R2 to R6) for not using
DICA more often.

• It demonstrates the dominant weight of the two reasons
mentioned above. The second of these is known in the
MSR community and is being worked on, but the first,
although rather fundamental, does not currently receive
much attention at all.

1.3. Structure of this article

Section 2 introduces the domain of study. It introduces ter-
minology in 2.1, explains the basics of MSR in 2.2, describes
the procedure and potential benefits of DICA in 2.3, and dis-
cusses the research question’s foundation: whether DICA is in-
deed used rarely (2.4).

Section 3 explains the design of the case study. It intro-
duces the Infopark DICA case (3.1, 3.2), lists possible reasons
why DICA is performed rarely (3.3) which we will use as the
propositions to be investigated by the case study, describes the
sources of evidence and the forms of triangulation used during
the case study (3.4), and explains why a single-case study is
satisfactory in this particular situation (3.5).

Sections 4 to 7 describe the four major phases of Infopark’s
DICA attempt:

• establishing bugfix links,

• discriminating true defects from other “bugs”,

• mapping defect corrections to defect insertions, and fi-
nally

• performing the actual DICA.

Each of these sections describes what Infopark did, what prob-
lems it encountered, how it handled those problems, what re-
sults it obtained, and then inteprets these facts for the purposes
of the case study. Section 8 discusses threats to validity.

Section 9 discusses inhowfar the results should be viewed
as new when considering related work by other researchers and
Section 10 presents conclusions.

2. The domain of study: MSR and DICA

2.1. Terminology

We choose our terms such as to make the discussion in the
present article simpler; these definitions are not intended to be
fit for general purposes. In particular, we constrain our discus-
sion to phenomena observable on the level of program source
code, because that is the sort of information our data sources
provide.

Many of these terms talk about fuzzy phenomena so some
of the definitions are unavoidably vague. This fuzzyness is in
fact an important phenomenon in our case study, but resolving
it is not our goal, so we do not aim at making the definitions
maximally precise.

• A change is a set of additions, deletions, and modifica-
tions to existing software that are being checked into the
source code version archive together. It is represented by
the check-in transaction’s source code delta and its com-
mit message.

• A defect is a property of source code that triggers avoid-
able rework (possibly outside the observed timeframe).

• Rework is any modification performed on a section of
program source code that was written and checked in ear-
lier. In our analysis, the unit of rework is a single change
(check-in transaction). We call rework avoidable if the
need to make that change was in principle known at the
time of the original work. We call rework unavoidable
if that need arose only later or could (from the point of
view of the software developers) be known only later.

• An issue is a property of software that is addressed in
unavoidable rework. In practice, it is often difficult to
discriminate defect and issue, which turns out to be im-
portant in our study.

• Bug is a synonym for either a defect or an issue in every-
day software developer language and the discrimination
is often not made. A bugtracker entry is an entry in a
change request database and addresses either a defect or
an issue.

• A bugfix is rework (specifically: a change) that is in-
tended to partially or fully resolve the defect or issue de-
scribed by a bugtracker entry (even if that intention is not
achieved). A bugfix link is a pair of a bugtracker entry
and its corresponding bugfix.

• A defect correction is a bugfix whose bugtracker entry
describes a defect (rather than an issue).

• A defect insertion is a change that introduces one or more
defects into the software. Note that a defect correction
may introduce new defects as well.

2.2. Mining software repositories (MSR)

In mature software software processes, it will often be use-
ful to employ quantitative data obtained during process execu-
tion to optimize day-to-day project control and to spot general
improvement opportunities for the process as a whole (Haley,
1996). Such behavior is for instance suggested by the process
areas of CMMI levels 4 and 5 (CMMI Product Team, 2010), in
particular the Causal Analysis and Resolution level-5 process
area and its Determine Causes of Selected Outcomes goal. Un-
fortunately, obtaining and analyzing suitable data can be costly.
One attractive approach for overcoming this cost problem would
be using data that is collected anyway and automating its anal-
ysis (Cook et al., 1998). This approach has been followed for a
number of years by a community working on “mining software
repositories” (MSR) that formed after some initial works in

2



the 1990s (Graves and Mockus, 1998; Graves et al., 2000) and
holds a yearly workshop/conference called MSR since 20041.

MSR is defined as “analyz[ing] the rich data available in
software repositories to uncover interesting and actionable in-
formation about software systems and projects” (MSR 2014
call for papers) and the repositories in question are for instance
“source control systems, archived communications between project
personnel, and defect tracking systems” (MSR 2014 call for pa-
pers), requirements management databases, or project planning
databases.

Topics in MSR include general infrastructure tasks such as
data extraction and cleansing as well as many types of appli-
cations, for instance “characterization, classification, and pre-
diction of software defects”, “analysis of change patterns and
trends”, “prediction of future software qualities”, building “mod-
els for social and development processes”, “models of soft-
ware project evolution”, and reliability models, or supporting
“search-driven software development” (all from MSR 2014 call
for papers).

2.3. Defect insertion circumstance analysis (DICA)

Due to the huge fraction of work that software processes
tend to spend on avoidable rework (Haley, 1996; Shull et al.,
2002), defects are a natural area of huge interest for MSR re-
search. The specific goals may be formulated differently (such
as defect characterization versus defect prediction), but, at least
from a practitioner’s point of view, the goal is always similar:
Understand past problems in order to take efficient precautions
against future problems.

The CMMI Level 5 process area CAR (Causal Analysis
and Resolution) suggests that for mature software organiza-
tions, performing defect root cause analysis is a valuable step
for feeding process improvements. Such improvements are at-
tractive because of their constructive nature: Rather than con-
stantly spending large amounts of work on provoking failures
(testing) and then removing the corresponding defects, a much
smaller amount of work (sometimes only a one-time effort) is
spent on avoiding those defects in the first place.

If successful, MSR-based DICA semi-automates a sizable
fraction of the root cause analysis work by answering questions
such as the following (among others):

• Are certain developers a strong source of defects (no mat-
ter whether this is due to lack of skill, lack of care, lack
of knowledge about the code they need to work on, fre-
quency of interruptions, difficulty of their tasks, or some
other reason)?

• Are particular modules of the product involved in defec-
tive changes overly often?

• Are particular kinds of design constructs conspicuously
often involved in defective changes?

1http://www.msrconf.org, all MSR calls for papers can be found here.
The references and quotations from this website are as of 2012-04-26.

• Do certain times of day or days of the week or weeks of
the year appear particularly defect-prone?

• Are certain phases during the release cycle particularly
defect-prone?

As a result, the organization performing the analysis for in-
stance

• might find that the defect insertion density rises pronouncedly
in a particular time stretch during each release process
(and then react by changing that process);

• might conclude that the high defect density produced by
certain developers is due to a clumsy design of these de-
velopers’ roles in the process (and then react by modify-
ing those roles);

• might determine the density of certain types of defect in a
particular module to be much higher than warranted (and
then react by reengineering that module).

Such results are only correlational in nature, not causational,
but may help narrowing down possible root causes or help to
improve the process even without knowing the actual root cause
of some effect.
The prodecure for performing DICA basically consists of the
following steps:

1. Identify all bugfix links.
2. Remove bugfix links that pertain to issues rather than de-

fects.
3. For each defect-correcting change, identify the correspond-

ing defect-inserting change (defect correction to defect
insertion mapping, DCDIM).

4. Tabulate the defect insertions appropriately in order to
answer the above questions (DICA proper).

By some initial investment, all four steps can in principle be
fully automated, only the interpretation of the step 4 results
should be manual.

Do not confuse DICA with defect prediction. Defect predic-
tion is a practice that belongs to the CMMI Level 4 process area
QPM (Quantitative Project Management). Defect prediction is
(mostly) about allocating resources for product cleanup and an-
alytical quality assurance (testing and reviews); defect predic-
tion models can make use of predictor factors not accessible for
intentional change. In contrast, DICA is about improving the
process itself and so has to focus on factors allowing direct in-
tervention. There is a lot of work (some quite successful) on
defect prediction (Hall et al., 2012), but little on DICA.

2.4. Is DICA really rare?

The MSR community has always considered itself as ori-
ented towards practical application of the techniques and wanted
to involve practitioners, not only researchers, expressed by the
explicit goal of the MSR conference to form and support a
“community of researchers and practitioners” (MSR 2005, 2006,
2007, and 2008 calls for papers). Alas, few practitioners ever
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spoke up at MSR which may explain why the above formula-
tion turned into “the science and practice” since the 2009 CfP.
However, the ambition of practical applicability is still there
as is shown by the call for “actionable information” mentioned
above as well as the fact that the CfP topic “Case studies on
extracting data from repositories of large long lived projects”
(MSR 2005 to 2009 calls for papers) defiantly turned into “[. . . ]
of large long-lived and/or industrial projects” since 2010.

More concretely, we will consider the proceedings of MSR
2011, 2012, and 2013. The proceedings of MSR 2011 contain
20 full-length papers and 6 short papers, plus a set of another
6 short papers all reporting mining results for the same set of
repositories (“the mining challenge”), but on various topics and
questions.

Of these 32 contributions, 9 are concerned largely or mostly
with defect data: three employ defect-related data in order to
study one particular pre-specified aspect, such as operating sys-
tem compatibility issues (Wang et al., 2011) characteristics of
the social networks involved in handling inter-project defects
(Canfora et al., 2011), or differences in defect-correction pro-
cesses between security defects and performance issues (Zaman
et al., 2011) One compares five text retrieval methods for the
task of mapping a bug description to a set of files it may pertain
to (Rao and Kak, 2011). One contribution evaluates the quality
of existing statistical models that explain bug-fixing time (Bhat-
tacharya and Neamtiu, 2011), and two evaluate methods for
predicting defect-proneness (Sadowski et al., 2011; Giger et al.,
2011). One article performs DICA (Eyolfson et al., 2011).

All of these come from academic researchers and almost
all of the data is from open source projects. Only two defect-
related contributions come from industrial participants. The
first comes from IBM research (researchers, not practitioners)
and evaluates which statistic is best tracked for understanding
trends of time to close bug reports (as a maintenance efficiency
measure): the mean or percentiles (Zeltyn et al., 2011). The
remaining one is the only one from practioners and comes from
Cisco. Its topic are the practical issues of establishing a set of
metrics (that aim at measuring overall software and software
process quality) throughout the company (Rotella and Chulani,
2011).

Similar numbers hold for MSR 2012; its number of DICA
studies is one: an academic short paper on open source data that
performs no validation of its results whatsoever (Asaduzzaman
et al., 2012). For MSR 2013, the number of DICA studies is
zero. As we see, (a) MSR contributions from practitioners ap-
pear quite rare and (b) there is more breadth in the research
questions than in the number of reported cases reported for the
same question – and this is both similar when looking at pre-
vious MSR years or other venues. We know of not one single
article reporting on DICA by practitioners.

This scarceness is in sharp contrast to the conclusions of
the first DICA use reported in the literature (Śliwerski et al.,
2005). The article studies Mozilla and Eclipse, finds that larger
changes are more defect-prone, finds that defect-proneness is
highest on Fridays, and proceeds to promise “a wide range of
applications” and also that the “findings can be generated auto-
matically for arbitrary projects.”. Which sounds both great and

easy.
So the question “Why does DICA not appear to be used in

practice?” is wide open. Our current article answers it.

3. Design and method of the case study

3.1. The case: DICA for Infopark CMS Fiona

Infopark was founded in 1994 and built the first version of
its main product CMS Fiona in 1997. CMS Fiona is a content
management system for large-scale, high-traffic web sites with
both static and dynamic parts. It provides strong consistency-
keeping mechanisms for static content.

The following properties of Infopark, CMS Fiona, and the
development process used are relevant for the current study:

a). In the CMS domain, feature requests are frequent and
there is no clear line between defects and issues. Conse-
quently, Infopark often treats the implementation of small
improvements to the functionality just like defects and
such improvements represent a substantial fraction of the
“bugfix” data. Because feature requests typically involve
more code than defect corrections, the data contains many
non-small bugfixes.

b). Infopark has always had low turnover of staff and is there-
fore able to follow intended processes and good practices
stably (as described by the subsequent items).

c). The commit message of a bugfix commit typically men-
tions the number of the corresponding bugtracker entry
and often vice versa, so bugfix links could be established
in sufficient density (high-enough recall) and with high
precision.

d). Bugfixes are committed separately, that is, any one bug-
fix commit typically addresses only a single bugtracker
entry, not several.

e). The first bugfix would sometimes not eliminate the prob-
lem in a satisfactory way but rather provide a quick cor-
rection of the failure only (preliminary fix); a second bug-
fix may then provide a cleaner and more complete solu-
tion later.

f). To keep the code in good shape, refactorings (in particu-
lar renames of member variables or methods) and other
reorganization and cleanup work are performed routinely,
also as part of bugfixes.

In spring 2011, Infopark assigned one of its software en-
gineers2 the task to find out whether and how the repository
data could be used to obtain useful insights about the Fiona
product and/or the process by which it is developed. The idea
was to pick low-hanging fruit and gain experience with mining
(specifically the Infopark repositories) underway. No specific
questions were imposed and any kind of insight was considered
potentially valuable.

2This person is the second author of this article, Alexander Pepper. He had
been working at Infopark for several years.
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Until the fall of 2011, Pepper spent more than 4 person
months on designing, preparing, debugging, executing, and in-
terpreting an MSR analysis. Infopark decided it wanted to un-
derstand how practical and useful DICA might be and so DICA
was set as the analysis goal3.

3.2. Infopark’s DICA quality criteria

Infopark considered incorrect conclusions to be a major risk
for DICA, as those might lead to fruitless process change effort
or even counterproductive process changes. Infopark decided
that the analysis methods must be such that, when searching
for phenomena of type X (such as “a time of day (hour) during
which the likelihood that a commit is defective is at least 33%
higher than on average”), at least half of all actual X phenomena
must be found (i.e. 50% DICA recall) and that at least four out
of any five candidate X phenomena thus found must be true X
rather than false positives (80% DICA precision).

High recall is needed to avoid acting on a view of reality
that is very incomplete and hence potentially not representative.
High precision is needed to avoid acting on something that is
just misleading analysis noise and not real at all.

3.3. Propositions: Possible reasons why DICA is rare

If DICA is rarely used by practitioners, any case of non-use
will be either because the use is not feasible for some reason (in-
cluding not knowing about DICA techniques at all) or because
the cost/benefit ratio appears unattractive. Note that the crucial
factor is not the true cost/benefit ratio but rather the expected
ratio as it is estimated when making the decision whether to
apply DICA or not.

Splitting these possibilities up a bit more, we come up with
the following presumably comprehensive list of possible rea-
sons why DICA is not often used:

• R1. The practitioners do not know that MSR DICA tech-
niques exist.

• R2. The practitioners find the application of MSR DICA
techniques too difficult to be feasible (“too difficult”).

• R3. The practitioners find the absolute amount of work
involved in applying MSR DICA techniques too high to
make the step at all (“too laborious”).

• R4. The insights suggested by the DICA results are per-
ceived as uninteresting or as unusable for driving process
improvement steps (“not useful”).

• R5. The result data quality cannot be assessed well enough
to judge the suitability of the techniques (“unknown reli-
ability”).

3Infopark considers itself an agile organization and so does not apply the
CMMI. If it did, it would be roughly at CMMI Level 2, but, being a small or-
ganization, it would apply CMMI’s continuous representation rather than going
for the staged representation’s Level 3. Therefore, attempting a Level 5 practice
such as DICA is ambitious but is not an outrageous idea.

• R6. The result data quality cannot be made high enough
so that practitioners will invest into the resulting process
improvement steps with confidence (“insufficient relia-
bility”).

We will use these reasons as the propositions to be evaluated
by our case study; the goal being to shed light on the relative
importance of each. As R1 was not present in the Infopark case,
we have nothing to say about it. Our main contribution will be
analyzing the problem structure underlying R5 and R6.

The strength of the case study method lies in its ability to
help untangle multiple competing explanations of a phenomenon
(Yin, 2003, pp. ix-x). In this sense, R1 through R6 are compet-
ing explanations of the fact that so few uses of industrial DICA
appear to occur and our study describes how R5 and R6 are the
strongest ones of these.

3.4. Sources of evidence and use of triangulation

Two characteristics are key to provide case studies with this
untangling capability: First, using multiple sources of evidence
(rather than just one) in order to provide a broad evidence base
and hence reduce the influence of the limitations that any single
source of evidence is bound to have. Second, using triangula-
tion in order to make the analysis more robust. Triangulation
means using multiple perspectives of the same phenomenon to-
gether so that they either corroborate each other or ill-chosen
perspectives can be recognized as such and sorted out.

In the present case study, we directly or indirectly use many
sources of evidence, in particular

1. the context information as described in Section 3.1 and
beyond,

2. the quality postulates as described in Section 3.2,
3. the raw data of the version archive,
4. the raw data of the bugtracker,
5. the analysis steps taken during the DICA,
6. the issues encountered in taking those steps,
7. the results obtained from those steps,
8. some potential steps that were not actually taken,
9. the arguments made for deciding for a step or against a

potential step,
10. and finally Infopark’s interpretation of the steps’ results.

The decisions and the interpretations sometimes involve Pepper
only and sometimes other Infopark employees as well.

As for triangulation, Yin (2003) discusses four types, two
of which we apply in the study: We view some aspects of the
phenomenon under study (low use of DICA by practitioners) in
light of several of our sources of evidence; this constitutes data
triangulation, the most common form of triangulation in case
studies. Furthermore, as each of the reasons R1 through R6 is
an alternative and potentially comprehensive explanation of the
low DICA use, they can be interpreted as competing theories
of low DICA use. Therefore, whenever we consider more than
one of the propositions at once in the study, this constitutes a
straightforward form of theory triangulation.
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3.5. Why just a single case?

The present case study investigates just one single case. Ob-
viously, a case study’s convincingness can be higher (in particu-
lar with respect to the generalizability of its results) if it consid-
ers multiple cases. So why should the reader be satisfied with
only the Infopark case?

Yin (2003) lists five types of situation in which a single case
can be sufficient for a valuable and convincing result: (1) a crit-
ical case, (2) an extreme or unique case, (3) a typical or repre-
sentative case, (4) a revelatory case, (5) a longitudinal case.

Two of these apply here. First, we consider the Infopark
case not unusual and a suitable stand-in for a relevant class of
software organizations. In this constrained sense, our case is a
typical case. Too few industrial MSR studies have been pub-
lished to provide strong evidence for that claim – or against it.
Second, and more importantly, we know of no MSR study to
make the point that ours does (namely that assuring the reliabil-
ity of the DICA results is so hard in practical settings as to make
the approach worthless), so the Infopark case can be considered
a revelatory one as well.

3.6. Structure of the case presentation

We will now proceed to present the case itself as it unfolded
in four major steps or phases: (1) establishing bugfix links,
(2) discriminating defects from issues, (3) mapping defect cor-
rections to defect insertions (DCDIM), and finally (4) perform-
ing the actual DICA.

Each of these sections has two subsections. The first sub-
section4 is on the data level (case level) and describes what In-
fopark did, what problems they encountered in doing it, and
what results they obtained. The second is on the case study
level and interprets these facts in terms of the propositions and
case study goals.

4. Step 1: Establishing the bugfix links

4.1. Case: Steps, issues, results

A complete and accurate set of bugfix links is a major re-
quirement for the trustworthyness of subsequent DICA results,
as any error in the bugfix links will directly deteriorate the qual-
ity of those results. Consequently, Infopark spent more than
20% of the work time allocated for the DICA on preparing a
high-quality set of bugfix links.

That work, which is described in detail in a separate article
(Prechelt and Pepper, 2014), started at a version archive (CVS,
SVN, and Git) of 11 years of development (more than 45,000
commits) and a Bugzilla database from 8 years of development
(9,444 entries from 2003 to 2011, so the data reflects a mature
product stage only) in which 5,005 bugfix link candidates had
been identified, which refered to 4,499 different commits and
3,203 different Bugzilla entries. These candidates were found
by simply collecting all potential ID reference numbers found
anywhere in commit messages, bug entry descriptions, and bug

4Section 7 actually has seven such subsections.

entry comments and so are likely to be fairly complete but to
contain many false positives. As for the completeness, we sur-
veyed Infopark developers for the fraction of commits that are
bugfix commits and the fraction of those that have a correspond-
ing Bugzilla entry. The means of the answers suggested there
ought to be 5,072 bugfix links overall, so that our candidate
set might be up to 98.7% complete. The individual estimates
varied a lot, however, so the overall estimate should be consid-
ered rough. Also, theoretically any pair of commit and Bugzilla
entry is a potential bugfix link, so there are 425 million theoreti-
cal candidates, which makes an accurate determination of recall
impractical. Instead, our recall calculations are based on our set
of 5005 candidates and should thus also be considered rough.

Pepper devised a set of five filters to cut down the set of can-
didates to the best possible approximation of the actual bugfix
links:

• FB: reject overly frequent Bugzilla IDs (because no markup
was required for them: any integer was considered a po-
tential Bugzilla ID)

• FC: reject overly frequent commit IDs

• SB: reject small Bugzilla IDs

• TT: reject major timetravel (i.e., candidates where an ID
was mentioned before it was created, except allowing for
inter-server clock differences)

• LU: reject late updates of Bugzilla entries (that appear to
have happened unrealistically later after the correspond-
ing bufix commit)

Each of these has a single tuning parameter. Pepper used simple
diagnostic x/y plots of filter strength versus tuning parameter
to select a parameter value for each that appeared sufficiently
strong but not too strong.

A sixth criterion was used to immediately accept a candi-
date, rather than reject it:

• UD (“not unidirectional”): accept all bi-directional bug-
fix links (where the commit comment mentions the Bugzilla
ID and also the Bugzilla entry mentions the commit ID.)

He validated the individual filters by manually checking 2,500
of the candidate bugfix links that are particularly likely to be
wrong and ended up with 4,047 validated bugfix links as the
output of the tuned and validated filtering chain. The individ-
ual filters exhibited correct-filtering precision between 43% and
99%, but that applied only to those between 0.3% and 11% of
the candidates actually filtered out, resulting in individual re-
sults precision between 73% and 81% (because the raw candi-
date links already have 73% precision). The UD criterion has
99% results precision.

For the overall filtering chain, the bugfix link retrieval re-
sults precision was 93%, a very good result. The rough estimate
of retrieval recall came out at 65%, a sufficiently good result.
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4.2. Case study: Interpretation (R2, R3)

In terms of results step 1 worked out well, but the manual
validation of so many candidates made it a major effort, lending
some credibility to proposition R3 (“too laborious”). On the
other hand, this is a one-time effort only, so the weight of this
observation is modest.

However, designing the filtering chain was research-level
work (Prechelt and Pepper, 2014) and without at least the larger
part of it, even the bugfix link retrieval precision would not
have achieved the precision of 80% required for the overall
DICA. Other organizations might have shied away at this point,
which lends some credibility to proposition R2 (“too difficult”)
as well.

5. Step 2: Discriminating defects from issues

The common software developer term “bug” (refering to
something described by a bugtracker entry) is misleading and
it would be a grave mistake to assume that what software de-
velopers call a “bug” is always a defect. If a DICA was applied
to “bugs” that in fact were issues, the results and subsequent
response actions would be random: By definition the rework
performed due to an issue was unavoidable and so neither peo-
ple nor process can be held responsible for not avoiding it. We
must apply DICA only to proper defects.

Unfortunately, at least in the domain of interactive systems
whose development is not contracted out, it is common not to
have a precise specification of the system’s intended behavior.
Instead, the role of a specification is filled by some combination
of general domain understanding, the behavior of previous ver-
sions of the product, general UI principles (consistency etc.),
general requests from customers, users, and product managers,
and customer-specific requests coming from particularly impor-
tant customers.

The latter would clearly be non-defect issues and some other
behaviors are so obviously unintended that they are clearly de-
fects. But there is a large fraction (perhaps a majority) of change
requests that lies in between and requires careful consideration
before labeling them as defect or non-defect. In such a setting
it is not surprising that the development team as a whole does
not possess a uniform concept of “defect”. As a result, the bug-
tracker data may not allow to discriminate defects from issues
reliably in order to analyse defects only.

Therefore, the present section investigates how the discrim-
ination of defects and issues would be done for the Infopark
data and how well it works. We find that it does not work well
enough.

5.1. Case: Steps, issues, results (difficulty A)

Pepper was aware of the “bug” bug and decided he needed
to assess its size. Each entry in Infopark’s Bugzilla bugtracker
contains a field severity with the following possible values: “1/Bug:
Critical”, “2/Bug: High”, “3/Bug: Normal”, “4/Bug: Low”,
“Request/Extension”. The latter value is intended to identify
issues, all others should only be used for defects. “Normal”
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Figure 1: Sample of Bugzilla entries by “severity”.

is the default value if the developer does not choose severity
explicitly.

Pepper drew a random sample of 60 bugfix links and in-
spected their respective Bugzilla entries manually: Given in-
sider knowledge about CMS Fiona’s functionality, application
domain, and bug reporting processes, which of the entries should
be considered a defect description rather than an issue descrip-
tion?

Except for the “critical” category, all severity categories
were polluted with incorrect entries as shown in Figure 1. The-
oretically, it should have been sufficient to ignore bugfix links
in the “Request/Extension” category. Practically, however, also
the “low” and “normal” categories contain more issues than ac-
ceptable: Their precision is only 75% and 64%, respectively,
so that the required 80% precision would be ruined before the
actual circumstance analysis has even started. Of course the
analysis results could in principle have better precision than
the analysis inputs. However, relying on such a healing effect
would be haphazard and Infopark was not keen on trying it.

By using only data of bugfix links marked “critical” and
“high”, the precision of selecting only defects would be in-
creased to 90%. However, the recall then is only 43%.

Neither of these is good enough: First, the precision of 90%
will subsequently be reduced by the fact that bugfixes for issues
are much larger on average than those for defects. When tracing
these fixes back to their “fix-inducing changes”, they will point
to a lot more different places, which will all be assumed to be
defect insertions, which will distort the results of the analysis
strongly.

Second, the recall of 43%, combined with the 65% recall of
the bugfix link search mean we get to see only 28% of all defect
fixes and run the danger of drawing a rather irrepresentative
picture: Infopark was aware that many important defects were
in fact flagged with the default severity, “normal”.

We call the difficulty of properly discriminating defects from
issues difficulty A. The resulting incomplete recall could be taken
as a reason for stopping the whole analysis and Infopark’s anal-
ysis attempt could have ended at this point. However, Infopark
decided to assume this problem could be solved in the long run
(e.g. by improving the definition of “bug” used by the devel-
opers and increasing their attention to setting a proper severity
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value) and to investigate what would then happen in the next
step, for which they now used only the fixes for bugtracker en-
tries marked “critical” or “high”.

5.2. Case study: Interpretation (R5, R6)

Difficulty A appears to be widespread: Using a refined bug/issue
differentiation, Herzig et al. (2013) report that between 38%
and 48% of the bugtracker entries were tagged wrongly across
five open source projects.

Linguistic techniques such as that reported by Antoniol et al.
(2008) (that rely on the text of the bugtracker entry rather than
its tag) can potentially help, but even if Pepper had been aware
of them, they are not readily applicable: They require a large
manually classified training set, have parameters that need tun-
ing, may produce high misclassification in a particular domain
and organization, and are not directly applicable for languages
where stemming is more complicated than in English (such as
German, which is used in most of the Infopark bugtracker en-
tries). What does this tell us about our propositions?

Propositions R5 (“unknown reliability”) and R6 (“insuffi-
cient reliability”) both talk about the quality of the DICA re-
sults. In contrast, the above problem is concerned with one as-
pect of the input data quality. Had Infopark indeed stopped the
analysis at this point, arguing that the low recall of proper de-
fects might distort the results too much, it would have supported
the claim that R5 is the main force underlying low DICA usage.

But Infopark acted differently: They postponed the decision
and tried to understand the DICA data quality issues more fully,
so that neither R5 nor R6 gain much credibility in this stage.

6. Step 3: Mapping defect corrections to defect insertions
(DCDIM)

Once the defect-related bugfix links have been isolated, the
next step is the DCDIM: mapping the defect correction (“bug
fix”) to the corresponding defect insertion (“bug commit”).

The basic approach of DCDIM is simple and consists of
four steps:

• S1: Consider which lines have been changed in a bugfix,

• S2: assume all of these lines (but only these lines) to be
defective,

• S3: trace backwards through the version history to iden-
tify for each of these lines the last commit that has changed
the line, and

• S4: treat each such commit to be a defect insertion.

Unfortunately, every single one of these steps has problems and
can go wrong:

• P1: The bugfix change may have touched other lines than
only the lines of the actual defect correction,

• P2: the defect correction itself may also have changed
more lines than just the defective ones, e.g. in order to
provide a cleaner fix5,

• P3: a line change in the history may leave the program
behavior unchanged,

• P4: the actual defect insertion may have been earlier and
the last change is in fact unrelated to the defect.

Furthermore, the method is inherently unable to pinpoint the
bugfix commit for many defects resulting from omission (as
opposed to commission), because newly inserted lines have no
version history that could be traced (P5).

6.1. Case: Steps, issues, results (naive set, improved set, diffi-
culty B)

The procedure implementing DCDIM is usually called SZZ
algorithm, after the authors of the article that introduced it (Śli-
werski et al., 2005). Infopark used it with several improve-
ments, including some of the improvements described by the
successor article of Kim et al. (2006). Specifically, they ignored
changes that modify only whitespace, they ignored changes that
modify only comments, they ignored changes that replace com-
plete (external) components with a new version (which typi-
cally involves hundreds of changes). Annotation graphs were
not applied because Infopark was not interested in a finer gran-
ularity than one file. The implementation of the procedure used
the MininGit6 software (a fork of CVSAnalY (Robles et al.,
2004)) with the HunkBlame extension.

Some of the above extensions were not yet present in that
software and also Pepper identified a number of defects in it,
so he extended and debugged the software and submitted those
changes back to the MininGit open source project – again a
substantial (and largely unexpected) effort.

The next issue was the quality of the DCDIM results: If
many defect corrections are non-minimal (P1), the results may
be full of false positives, i.e., have very low precision. Further-
more, if there are many defects of omission (P5), the results
might be very incomplete, i.e., have low recall.

A near-complete manual validation like for the bugfix links
was out of the question, because validating a candidate defect
correction/defect insertion pair involves program understanding
on a sometimes non-small scale and every time in a different
program context, which does not scale well.

Nevertheless Pepper decided that further progress was im-
possible with at least a small sample of manually validated
pairs. He developed the following approach for drawing such a
sample: Start from the set of 1,250 bugfix commits that relate
to a Bugzilla entry with severity “critical” or “high” (cf. Sec-
tion 5.1). These comprise 4,814 files changed. The medium

5With respect to P1 and P2, Herzig and Zeller (2013) report for five open
source projects that between 7% and 20% of the defect correction changes ad-
dress multiple concerns at once (“tangled changes”) rather than just the defect
correction concern. The additional concerns can be much larger in terms of the
number of lines changed, so P1 and P2 tend to be major issues.

6https://github.com/SoftwareIntrospectionLab/MininGit
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number of lines changed per file is 3; the medium number of
lines changed in a whole commit is 8. From the 4,814 file
changes, draw a stratified random sample of 100 file changes
as follows:
(a) 25 file changes from files with at most 3 lines changed;
(b) 25 file changes from files with more than 3 lines changed;
(c) 25 file changes from one file from a commit with at most 8
lines changed;
(d) 25 file changes from one file from a commit with more than
8 lines changed.

For these 100 file changes, DCDIM pointed out a correct
defect insertion commit only 14 times. 5 times it pointed to the
wrong commit, 81 times there was no defect in the modified
lines at this point (hunk) at all. This is a depressingly bad result
from the standard SZZ-based DCDIM procedure. It means that
from a straightforward application of DCDIM we should expect
a precision of only 14% – even after we have confined ourselves
to only the bug reports with severity “critical” and “high” in
order to improve precision! We will call the DCDIM results
obtained in such manner the naive set.

How does this low precision arise? The reasons are found
in the elements a), e), and f) of the development process men-
tioned in Section 3.1:

(1) False positive bugfix links that pertain to issues rather
than defects will tend to involve larger changes according to a)
and will hence usually result in several false positive DCDIM
results, not just one.

(2) A quick preliminary fix and its subsequent clean final
fix, which are common according to e), will refer to the same
Bugzilla ID and will thus produce two bugfix links. For the
later one, SZZ will incorrectly identify the preliminary fix to be
the defect introduction; another false positive. Also, the final
fix often involves structural modifications and hence touches
other parts of the same file or other files, leading to still more
(possibly many more) false positives.

(3) Local refactorings and cleanups done while fixing bugs
according to f) enlarge their bugfix commits and blur the identi-
fication of defect-inserting changes, leading to many false pos-
itives.

(4) Refactorings and cleanups done independently from bug-
fixes according to f) will sometimes modify lines containing
a defect and will make SZZ incorrectly report the refactoring
commit to be the defect-introducing commit, leading to further
false positives.

Of the 14 correct answers, however, only one came from
subset (b) and one other from subset (d) of the stratified sample;
the remaining 12 were all from the small bugfixes in (a) and (c).
When restricting the sample to bugfixes that modified at most 3
lines overall, it contains only 18 file changes and DCDIM finds
a correct defect insertion commit 9 times (50% precision).

So in order to obtain at least somewhat reliable DCDIM
results, Pepper applied the following heuristic: Apply DCDIM
only to bugfixes that modify at most 3 lines overall. We will call
the DCDIM results obtained in such manner the improved set.

When restricting the input for computing the naive set to
the input for computing the improved set, the input shrinks
from 1,250 to 395 commits (32%) and from 4,814 to 441 files

changed (9%). As a result of this drastic reduction of the candi-
date set, a reduction needed to improve the precision to at least
medium values, the local recall should not be expected to be
higher than those 32%.

At estimated 50% precision and 32% (or less) recall of the
DCDIM results, there is little ground for being optimistic about
the quality of subsequent DICA results. We call this inability
of the SZZ algorithm to perform sufficiently-correct DCDIM
difficulty B.

Normally, the resulting irrepresentativeness to be expected
would likely be taken as another reason for stopping the whole
analysis. However, since it did not involve a large amount of
additional work, Infopark decided to make the fourth step nev-
ertheless in order to understand the DICA problem space more
completely.

6.2. Case study: Interpretation (R2, R3, R5)

Many of our propositions get some exposure in this step.
First, as in step 1, substantial effort is involved: Some for

getting the software to work (and work properly), some more
for manual validation of a sample of results; several weeks over-
all. And while the software part is, again as in step 1, a one-time
effort, the validation may well need to be repeated for subse-
quent analysis of newer data, because the commit practices are
likely to change as a side-effect of the previous analysis. So
there is some support for proposition R3 (“too laborious”), but
at least Infopark did not find the effort prohibitive.

Second, coming up with the “improved set” filtering heuris-
tic was, again as in step 1, a non-trivial creative feat and without
it the results are clearly unacceptably bad, lending some credi-
bility to proposition R2 (“too difficult”) as well. However, both
of these arguments are vastly outweighed by the third one:

The bleak outlook resulting from the low precision and re-
call estimates for even the improved set strongly points to propo-
sition R5 (“unknown reliability”): It is totally unclear whether
the later DICA results can be trusted, so why should anybody
make such an MSR effort at all?

Note that not much effort is actually needed for a would-
be DICA user to come to this conclusion: DCDIM-checking
any small sample of bugfix links would suffice, because unless
the respective repository has much nicer characteristics than In-
fopark’s, the results will be so bad that little optimism will re-
main no matter how that sample is chosen. This means the ef-
fort (R3) and ingenuity (R2) involved in steps 1, 2, and half of
3 are not needed to decide that DICA is most likely not worth
pursuing (R5).

Pepper and Infopark, however, were persistent and stub-
bornly pursued a further evaluation nevertheless.

7. Step 4: Performing the actual DICA

Step 4 is the harvesting step: Formulate a defect insertion
circumstance question, aggregate the DCDIM data accordingly
to answer it (DICA), then decide on process change steps to
trigger as a consequence.
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For instance Infopark might ask whether there were week-
days on which there was “much higher” defect insertion prone-
ness than on others. If so, further investigation would try to
uncover why this was so and, once known, the process would
be changed to remove or control that cause.

7.1. Case: Decision how to proceed
Based on the discouraging DCDIM data quality results from

step 3, Infopark decided they must not trust any subsequent
DICA result blindly but rather needed some way of validating
its quality once more.

After some discussion7, Infopark decided to proceed as fol-
lows:

• They would pose a quantitative model of DICA and the
subsequent process change steps. The sole purpose of
that model would be to estimate the quality of the DICA
results with respect to suggesting valid (rather than ar-
bitrary) target areas for possible process changes. The
model will be described in Subsection 7.2.

• They understood that this model would be dubious, there
was no practical way of validating it, and it could hence
itself not be trusted.

• However, as no better source of information would be
available, they decided that, should the model indicate
the suggestion quality would be low (which is indeed
what happened), Infopark would consider the whole DICA
effort to be unhelpful and would stop it.

• Should the model indicate suggestion quality might be
high, decisions as to how to proceed would be made sub-
sequently.

The evaluation of suggestion quality based on the model will be
described in Subsections 7.3 to 7.7.

This approach means the initial DICA questions asked need
not be valuable or sophisticated – they only serve to decide
whether DICA results can be trustworthy at all. The first ques-
tions asked will thus be simple ones.

7.2. Case: The Good Highlights DICA quality model
Ideally, a DICA quality model should evaluate the cost/benefit

ratio of the process change steps eventually taken. As the uni-
verse of such steps is essentially unlimited and their benefits
are impossible to estimate, this goal was immediately found too
ambitious.

Infopark decided to settle for precision and recall once again:
A DICA was of good quality if and only if it would point out
(“highlight”) most of the right objects of interest (be it week-
days, developers, developer roles, or whatever was currently
being analyzed) and almost no wrong ones. Most of the right
ones meant at least 50% recall. Almost no wrong ones meant
not too much less than 90% precision. Then the subsequent

7Now no longer within Infopark alone but rather including the researcher,
Prechelt.

process improvement steps would presumably be worth their
while, otherwise they would not be or at least be considered too
risky in this regard.

There is still a problem though: In the DCDIM step, we
have defined the naive set and the improved set of results and
we have derived rough estimates of their quality. However, for
evaluating DICA results this is insufficient. Rather than global
quality estimates we need a specific, case-by-case ground truth
(exact or approximate).

Infopark decided to derive an approximate ground truth by
means of an assumption as follows. Define the true set to be the
correct result the DCDIM should have produced. This would
be the exact ground truth. Its precision would be 100% and it
should be used for validing the quality of a practical DCDIM.
Alas, the true set is not known. Now make the following as-
sumption: The highlighting validity of the naive set as mea-
sured by the improved set is about the same as the highlighting
validity of the improved set would be if we could measure it by
the true set. The assumption is certainly not true exactly, but
plausibly true approximately. It was the best approach anyone
could think of and Infopark was hence willing to accept it.

Based on this assumption, the quality evaluation procedure
works as follows: Postulate a cutoff parameter for the allowed
defect insertion density and measure precision and recall of
DCDIM when applied to highlighting the items that lie above
the cutoff. Infopark expected that “50% higher than the me-
dian” would usually be a sensible cutoff criterion but was will-
ing to accept a different cutoff if the data suggested it.

To summarize the idea:

• For applying DICA one would normally use the improved
set, not the naive set.

• However, there is insufficient trust in the DICA result
quality from even the improved set. Infopark needs to
build trust first or tear it down completely.

• Therefore, they apply DICA to the naive set and use the
improved set as stand-in for the ground truth for evaluat-
ing the result’s quality, assuming that this measurement
will come out at least roughly similar to the result of an
actual DICA applied to the improved set.

• If the indicated quality is low, Infopark will assume the
real quality is low, too, and will stop the DICA effort.

• If the indicated quality is high, the real quality is still
uncertain, so further investigation will be necessary.

7.3. Case: Results for components

In their first analysis, Pepper wanted to identify the subsys-
tems (components) of CMS Fiona that are most prone to defect
insertion8 as measured by the percentage of commits that insert
a defect.

8Note this can not simply be computed from the number of fixes, primarily
because one fix can correspond to several defective commits.
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Figure 2: Normalized defect insertion densities for the improved set (circles)
and the naive set (plus signs) for each component; ordered decreasingly. 1
represents the median of the respective set. Cutoff criterion: Identify all com-
ponents whose defect insertion density is higher than 6 medians.

Figure 2 shows the outcome. Looking at the plus-labeled
data (which is what one would see in practice), Pepper decided
that the expected cutoff at 1.5 times the median was not sensi-
ble. Sensible ones appeared to be 5, 6, or 7. He picked 6. The
ideal result (based on the circles) now identified components 1
and 2, whereas the practical result (based on the plusses) iden-
tified components 1, 3, and 4. This is a recall of 50% and a
precision of 33%; clearly insufficient.

Further analysis provides some insights how this low qual-
ity comes to be: Qualitatively, any line segment pointing up
rather than down signals a confusion in the rank order (in our
case: at 3 and 7). Such confusion can reach farther than to
the next entry (in our case: 4 is still wrong compared to 2).
Quantitatively, one can summarize the difference between the
two curves that threatens precision and recall by a coefficient
of variation (CV): Compute the ratio of each circle-value to
the corresponding plus-value. For the set of ratios, compute
mean m and standard deviation s. Then CV = s/m. Ideally, the
CV should be zero. Practically, we obtain a CV of 0.66, which
means the average(!) error is two thirds as large as the value
itself; not a high similarity. CV s of 0.2 or less may not have
much impact on precision and recall, but variation beyond 0.3
or so will often cause mistakes.

7.4. Case: Results for subcomponents

Pepper repeated the same analysis for modules (subcompo-
nents) of one area of what appears (according to the plusses!)
to be the top-defect-prone component: CMHTMLGUI.

Figure 3 shows the outcome. Now using the standard “50%
above the median” cutoff criterion, the ideal result identifies
components 1 and 2, the practical result finds 1 and 6 instead; a
recall of 50% and a precision of 50%; also clearly insufficient.

Given the many huge estimation errors, the result could
have been worse. The CV is 0.50.

7.5. Case: Results for developers

Now Pepper asked, again in the same manner, which devel-
opers’ commits are most often defect-inserting.
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Figure 3: Normalized defect insertion densities for the improved set (circles)
and the naive set (plus signs) for a set of subcomponents; ordered decreasingly.
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Figure 4: Normalized defect insertion densities for the improved set (circles)
and the naive set (plus signs) for those ten developers with the highest values
plus the rest combined as “other”; ordered decreasingly. Names are replaced
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Figure 4 shows the outcome. The standard “50% above the
median” cutoff criterion (cutoff 1.5), finds only developer 1 as
both the ideal and the practical9 result (recall 100%, precision
100%); in principle a perfect and hence encouraging outcome.
However, this outcome is a lucky strike: At cutoff 1.4 we would
have found 1, 4, 5, 9 instead of the correct 1, 2 (recall 50%,
precision 33%); at cutoff 1.3 we would have found 1, 4, 5, 9
instead of the correct 1, 2, 3, 4, 5 (recall 60%, precision 75%).
This variation stems from the many rank confusions in this pair
of lines. Overall, the developer analysis did also not increase
Infopark’s trust in DICA result quality. The CV is 0.36.

7.6. Case: Results for weekdays
Next is a similar analysis for the density of defect insertions

per day of the week. The result is shown in Figure 5, this time
in natural order, not sorted order.

Here, the standard cutoff at 1.5 does not point out any day at
all as the distribution is rather smooth, so the DICA result is not

9The value of developer 4 is 1.496. Its larger-looking position is an artifact
of the plotting software.
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Figure 6: Normalized defect insertion densities for the improved set (circles)
and the naive set (plus signs) for the 24 hours of the day; in natural order. 1
represents the median of the respective set. The cutoff is at 1.4 medians.

wrong, but it isn’t helpful either. Therefore, Pepper just went
for the top two days instead, the practical result finds the high-
est day correctly (Tuesday), but the second-highest wrongly
(Wednesday instead of Thursday, yielding a precision and re-
call of 50%); a semi-satisfactory result at best. The CV is 0.46.

7.7. Case: Results for times of day

Finally10, Pepper also repeated the previous analysis for the
different hours of the day as shown in Figure 6.

The default cutoff at 1.5 would again flag out nothing, but
just barely so. We therefore lower it to 1.4. Now the practical
result suggests hour 15 to be dangerous, which is correct, but
misses the also correct hours 14, 16, and the most important one
of all, 20 (recall 25%, precision 100%). At cutoff 1.3 we would
have found 10, 13, 14, 15, 17, 18 instead of the correct 14, 15,
16, 20 (recall 75%, precision 33%). Both of these results are
insufficient. The CV is rather high at 1.45.

10Additional analyses of interest would have investigated developer roles and
developer/component relationships. As the previous results were not encourag-
ing and these new ones would have involved additional manual data preparation
work, Infopark dropped them.

7.8. Case study: Interpretation (R2, R5, R6, difficulty C)

The invention of the Good Highlights model may seem to
suggest support for R2 (“too difficult”), as it required a good
understanding of evaluation methodology. However, we must
consider that this whole validation business should not have
been needed in the first place: Had all gone well, a high qual-
ity of the hand-validated DCDIM results would have indicated
(already in step 3!) that the DICA results should be trusted. So
the invention of the Good Highlights model does in fact support
R5 (“unknown reliability”) even more than R2.

The actual DICA results point in a similar direction: For
none of the five subanalyses the results were convincingly good;
quite on the contrary – most of them were clearly bad. This
gives support to R6 (“insufficient reliability”): Current DICA
techniques do not appear to be up to the task, at least for the In-
fopark repository11. Had the results been better, this would not
have helped much either, because then Infopark would not have
known whether they should trust the Good Highlights model;
the results could just as well have been invalid and hence mis-
leading. We call this inability to validate the quality of the
DICA results difficulty C. It provides additional support for R5
(“unknown reliability”).

8. Threats to validity

8.1. External Validity

The results of our analysis are strongly dependent on the
development process underlying the repository. The problem
from mixing defects and issues (difficulty A, step 2) will be
smaller if the organization applies a suitable definition of defect
more consistently. It could also be larger, though, if a category
for feature requests is not used at all in the bugtracker.

We think that Infopark is reasonably typical of most of the
software world in this respect, with the possible exception of
large software organizations where the bugtracker is maintained
by dedicated staff, in which case the problem should be smaller.

The low quality of the DCDIM (difficulty B, step 3) will be
smaller if bugfixes are smaller and bigger if they are larger.

This depends a lot on the nature of the software product, its
development stage, and on development style. We think that
at least for long-running web application developments the In-
fopark repository is again reasonably typical. There appears
to be a trend towards better isolation of bugfixes and smaller
commits in general in organizations as they start using Git as
their versioning systems, because Git provides strong support
for taking apart a mixed set of changes that have been per-
formed to a set of files into multiple separate commits. This
should help making the problem smaller over time, but will take
a long time to ripple first through the software organizations and
then through the repositories within those organizations.

Beyond these considerations, the case for R5 and R6 as the
dominating reasons for not using DICA is even stronger than it

11Repositories more amenable to successful DICA are likely to exist, but we
do not expect them to be common.
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appears above, for the following reason: The bugfix link deter-
mination (step 1) created 7% false positives. In normal prac-
tice, the 7% false positives would make it harder to obtain valid
DICA results. In the Infopark case, due to the extensive man-
ual validation performed, the identity of most of the false pos-
itives is known. Infopark of course eliminated those from the
dataset to make the subsequent analysis more reliable, which
even strengthens the relevance of the negative overall outcome.

8.2. Construct Validity
Our research question concerns decison-making about us-

ing or not using DICA. The study directly reports on the actual
decision-making as it has occured at Infopark. No proxy mea-
surements are needed and hence threats to construct validity do
not exist.

8.3. Internal Validity
The accuracy and completeness of our report relies mostly

on the computerized record of the MSR activities and results
themselves and only at a few points on Pepper’s memory and
manual work notes. These few points were all salient and im-
portant to him at the time so a relevant distortion appears un-
likely. The appropriateness of our conclusions given our report
can fully be judged by the reader.

As for the validity of the difficulty A finding: The sample
used for checking the defect/issue discrimination (Section 5.1)
was rather small, so that the results are coarse-grained and em-
body substantial sampling error. However, this sampling error
is too small to change the difficulty A conclusion; in particu-
lar, the 32% recall figure has a 98-percent confidence interval
ranging from 19% to only 46%.

9. Related Work

Successful DICA requires overcoming difficulties A (dis-
crimination of defects from issues in the bug tracker in step 2),
B (reliable DCDIM in step 3), and C (establishing the trustwor-
thiness of the DCDIM in step 4). Reading the DCDIM/DICA
literature, it quickly becomes clear that A receives not much at-
tention12 and C receives almost none at all– which also threat-
ens to invalidate any intended contributions to B.

We will therefore review the literature and report weaker
aspects such as the definition of “bug” that is used or the efforts
made to validate DCDIM results. We mark up the discussion
with letters A, B, C to indicate which of the difficulties it per-
tains to.

B: The original authors of the SZZ algorithm, Śliwerski
et al. (2005), were well aware that not all of the changes the
algorithm points out are defect insertions; they therefore called
the outputs “fix-inducing changes” instead. Unfortunately, this
term is still misleading: If the output of the algorithm is incor-
rect (not a rare case as we have seen), the particular changes
found did not “induce” the bugfix. A: If the bugfix addresses

12There is more attention to A in the defect prediction literature recently but
little in the DICA literature.

an issue (rather than a defect), which by definition involves un-
avoidable rework, it is inappropriate even a-priori to say that
any change has induced it. The SZZ article does not address
this problem.

A: Kim et al. (2007) (which is about defect prediction, not
DICA) features the term “fault” in the title, uses “bug” and
“fault” interchangeably, but defines neither of them explicitly.
Later on, the article says that faults are considered to be the re-
sult of cognitive breakdowns, which means the term is intended
to mean defect only, not issue. Nevertheless, no filtering is per-
formed to eliminate issues from the data. B: The original arti-
cle Śliwerski et al. (2005) performs DICA using a well-devised
array of criteria to accumulate evidence that a certain change
might be fix-inducing – and then it just hopes for the best; no
manual validation of the output is performed at all and no dis-
cussion of threats to validity is given.

A: The successor article Kim et al. (2006) also provides
no definition of defect. B: It introduces a number of improve-
ments and uses two example repsitories (from the Columba and
Eclipse projects) for assessing their impact. The authors boldly
assume that any difference observed in the algorithm’s output
when introducing an improvement will only reflect improved
precision (i.e. reducing the number of false positives) and im-
proved recall (i.e. reducing the number of false negatives) but
will never worsen them, so they do not manually validate these
outputs. They introduce the improvements one by one and add
a manual assessment as the final step. However, the manual
assessment only addresses whether the fix really addresses a
defect, but not whether the algorithm output is indeed a cor-
responding defect insertion. They report about 95% precision
of the defect correction data. The “threats to validity” section
does not mention the correctness of identified bug-introducing
changes.

A: Eyolfson et al. (2011) do not provide a definition of de-
fect either but is more explicit about it: The article uses the term
“bug-introducing commit” and says in Section 2 “Despite our
terminology, a bug-introducing commit is not necessarily bad
code; it is possible that the later fix is adaptive or perfective,
updating the code to work with changes in third-party code, or
reflecting a change in requirements”. (The same wording re-
mains in Eyolfson et al. (2013).) B: It also uses SZZ for DICA,
but performs manual verification only to make sure fixes are
really fixes, not to verify defect insertions13. The “threats to
validity” section mentions the importance of validating bug-
introductions, but does not address it.

A: Williams and Spacco (2008) use the pair of terms “fix-
inducing change” and “bug-fixing commit”, but do not provide
definitions or discuss the defect/issue discrimination explicitly.
B: The article applies SZZ and does perform a proper manual
validation of the identified defect insertions for a sample of 25
defect corrections from the Eclipse project. It finds that the 25
corrections consisted of only 50 lines overall, that 43 of those
actually were defect corrections (86%) and that 33 of the cor-

13There is a statement “A brief manual inspection of bug-introducing com-
mits did not reveal any anomalies.” (and the same wording remains in Eyolfson
et al. (2013).) but no elaboration whatsoever regarding that inspection itself.
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responding fix-inducing lines were defect insertions. We read
this to mean that precision was approximately 66% (the article
is not explicit about this). This is a much better DCDIM preci-
sion than that found by Infopark. The difference rests on three
pillars: An absent (and hence flawless) step 1, an absent (and
hence flawless) step 2, and a project with mostly very small
bugfixes. Despite these advantages, precision is insufficient by
Infopark’s standards and without steps 1 and 2 there is not even
a procedure for achieving whatever level of recall.

All of the DICA articles stop at pure DCDIM or shortly
thereafter; none of them discusses the validity of conclusions
from a DICA as in step 4.

10. Conclusions

We will first summarize the findings from the four steps of
our DICA case in order to answer the research question (Sec-
tion 10.1). We then reframe the contents of the case as a “nor-
mal” MSR application study (Section 10.2), comment on the
state of affairs in previous MSR research (Section 10.3), and
summarize what future work appears to be needed (Section 10.4).

10.1. Regarding the Research Question
• Step 1 of establishing the bugfix links (Section 4) pro-

duced good results, yet involved a lot of work, so it might
be perceived to support proposition R3 (“too laborious”).
However, most of that work is a one-time effort. It is
fully reusable not just within Infopark but even beyond,
so it does not provide a strong argument and overall step
1 does not supply much insight into our research question
at all.

• Step 2 of discriminating defects from issues (Section 5)
highlighted difficulty A: Defects and issues are very of-
ten not held apart sufficiently well in the bug tracker, so
that DCDIM results will be polluted with mappings from
non-defect changes and DICA results may hence become
misleading. This lends a lot of credibility to R6 (“insuf-
ficient reliability”).

• Step 3 of mapping defect corrections to defect insertions
(DCDIM, Section 6) highlighted difficulty B: Even when
avoiding difficulty A, the mapping is far too unreliable to
make correct DICA conclusions likely; again a strong ar-
gument in favor of proposition R6. One part of the reason
is non-minimal defect corrections, so that organizations
that strictly keep their corrections minimal might obtain
better results14, but even when avoiding this issue also
(by using only very small corrections: the improved set),

14Note that the high quality of the Infopark data with respect to bugfix links
(Prechelt and Pepper, 2014) suggests that the non-minimal corrections are not
simply a sign of low development discipline. Rather, we conjecture the effect
emerges from application domain and business context (e.g. in the form of time
pressure when fixing critical defects for the high-end enterprise customers) and
organizational context (e.g. because co-located development is easier to coor-
dinate than open-source development so that larger commits create problems
only rarely).

the precision was only 50% due to additional changes that
often happen between defect insertion and defect correc-
tion and that mislead the SZZ algorithm. This perfor-
mance is clearly too low and gives still more weight to
R6 (“insufficient reliability”).

• Step 4 of performing the actual DICA (Section 7) adds an
additional dimension: Even if the DCDIM results would
have been better, Infopark would not have known whether
they should trust the DICA results as there is no practical
way of validating them (as opposed to the small-sample
approach to validating DCDIM results). This is a fun-
damental problem that would disappear only with near-
perfect DCDIM results and introduces R5 (“unknown re-
liability”) as the second major and valid reason why DICA
is rarely used.

Overall, the low reliability (R6) achieved for the DICA re-
sults, reinforced by the lack of a practical assessment method
for that reliability (R5), are clearly the dominant reasons why
Infopark dropped its DICA initiative and we see little reason
why many other organizations should come to a different con-
clusion.

10.2. Regarding the (Quality of) DICA Results

If (and only if!) one is willing to take the Good Highlights
model (Section 7.2) seriously, one can reinterpret the improved-
set results of step 4 as the presumably valid results of a DICA
and their comparison to the naive-set results as a DICA validity
assessment. These results can then be summarized as follows:

• In our simulated decision-making for responsive action
after a defect insertion circumstance analysis (Section 7),
the quality requirements formulated by Infopark (≥ 50%
recall, ≥ 80% precision, Section 3.2) could not be achieved.
The results suggest Infopark may have been successful
for identifying problematic developers – but only by sheer
luck (Section 7.5). They were unsuccessful for identify-
ing problematic components (33% precision, Section 7.3),
subcomponents (50% precision, Section 7.4), weekdays
(50% precision, Section 7.6), and times of day (either
only 25% recall or only 33% precision, Section 7.7).

• For instance, had Infopark taken the naive analysis results
seriously, it would have missed the valuable insight that
work should rather end before 8 pm (Figure 6) and would
instead have searched for sources of problems in devel-
oper Otto’s work, although those are just analysis arti-
facts and in fact Otto’s commits are just fine (Figure 4).

• On the side, the analysis appears to corroborate the (equally
uncertain) result of Eyolfson et al. (2011) that there is
no generally problematic day of the week; rather, this is
likely project-specific (Section 7.6).

• Also on the side (but interestingly), the analysis contra-
dicts another result of Eyolfson et al. (2011), which had
found late-night commits to be the most defect-prone in
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Linux and PostgresQL data. In contrast, Infopark devel-
opers appear particularly careful in those few cases when
they work so late at all and as a result the nightly commits
have a lower probability of having defects than daytime
commits (Section 7.7).

Before you quote these results, please make sure you are aware
of the leap of faith involved in adopting the Good Highlights
model on which they are based.

One main outcome of our work is the insight that we have
no practical procedure for assessing the correctness of the re-
sults of realistic DICA uses: Defect prediction research has
reasonable-quality ground truth available simply by waiting for
the defects to surface. Verification of DICA results, in contrast,
would require the (manual) validation of all DCDIM results,
which, as discussed in Section 6, is impractical.

10.3. Regarding the Related Work

The MSR community has been very inventive to find ways
in which repository data could be used. Much less work, at least
of the DCDIM type, has yet carefully assessed whether practi-
cal application is realistic in terms of the quality of available
input data or whether the analysis results will be sufficiently
reliable even then.

In particular, our discussion in Section 9 showed that MSR
works in the DCDIM realm often

• do not introduce (let alone operationalize) a suitable no-
tion of defect,

• perform rather little validation of the DCDIM results found,
and

• hardly discuss the difficulties involved in validating DICA
(or even only DCDIM) results.

10.4. Regarding Further Work

Three obstacles stand in the way of reliable DICA results:
(1) Imperfect bug tracker entry type metadata (which leads to
confusion of defects with issues),
(2) non-minimal defect corrections, and
(3) additional changes between defect insertion time and defect
correction time that happen to happen at subsequently defect-
corrected locations. The latter two both lead to low DCDIM
reliability.

Further research should investigate how processes and tools
need to be designed in order to minimize (1) and (2). Mini-
mizing (2) requires a lot of discipline on the process level, but
the hunk-picking functionality of “git add” interactive mode in
the Git versioning system is a good start for the tool support.
A better DCDIM technique than the simple line-change track-
ing performed by the SZZ method will be needed to overcome
(3). The (yet immature) dependency-based analysis approach
proposed by Sinha et al. (2010) is probably a good start here.

Acknowledgment

We thank Thomas Witt and the development team at In-
fopark for their help towards understanding the repository data.
We thank Stephan Salinger for helpful comments on a draft of
the article.

References

Antoniol, G., Ayari, K., Di Penta, M., Khomh, F., Guéhéneuc, Y.G., 2008. Is it a
bug or an enhancement?: A text-based approach to classify change requests,
in: Proc. 2008 Conf. of the Center for Advanced Studies on Collaborative
Research: meeting of minds (CASCON ’08), ACM. Article 23.

Asaduzzaman, M., Bullock, M.C., Roy, C.K., Schneider, K.A., 2012. Bug
introducing changes: A case study with android, in: Proc. 9th Working Conf.
on Mining Software Repositories, IEEE. pp. 116–119.

Bhattacharya, P., Neamtiu, I., 2011. Bug-fix time prediction models: Can we
do better?, in: 8th Working Conf. on Mining Software Repositories, ACM.

Canfora, G., Cerulo, L., Cimitile, M., Di Penta, M., 2011. Social interactions
around cross-system bug fixings: The case of FreeBSD and OpenBSD, in:
8th Working Conf. on Mining Software Repositories, ACM.

CMMI Product Team, 2010. CMMI for Development, Version 1.3. Technical
Report CMU/SEI-2010-TR-033. Software Engineering Institute, Carnegie
Mellon University. Pittsburgh, PA.

Cook, J.E., Votta, L.G., Wolf, A.L., 1998. Cost-effective analysis of in-place
software processes. IEEE Trans. on Software Engineering 24, 650–663.
doi:http://doi.ieeecomputersociety.org/10.1109/32.707700.

Eyolfson, J., Tan, L., Lam, P., 2011. Do time of day and developer experi-
ence affect commit bugginess?, in: Proceeding of the 8th Working Con-
ference on Mining Software Repositories, ACM, New York, NY, USA. pp.
S. 153–162. URL: http://doi.acm.org/10.1145/1985441.1985464,
doi:http://doi.acm.org/10.1145/1985441.1985464.

Eyolfson, J., Tan, L., Lam, P., 2013. Correlations between bugginess and time-
based commit characteristics. Empirical Software Engineering 19, online–
first. doi:10.1007/s10664-013-9245-0.

Giger, E., Pinzger, M., Gall, H.C., 2011. Comparing fine-grained source code
changes and code churn for bug prediction, in: Proceeding of the 8th work-
ing conference on Mining software repositories, ACM, New York, NY, USA.
pp. 83–92. URL: http://doi.acm.org/10.1145/1985441.1985456,
doi:http://doi.acm.org/10.1145/1985441.1985456.

Graves, T.L., Karr, A.F., Marron, J., Siy, H., 2000. Predicting fault incidence
using software change history. IEEE Transactions on Software Engineering
26, 653–661. doi:http://doi.ieeecomputersociety.org/10.1109/
32.859533.

Graves, T.L., Mockus, A., 1998. Inferring change effort from configuration
management databases, in: Proc. 5th Int’l. Symposium on Software Metrics
(METRICS), IEEE CS Press. pp. 267–273.

Haley, T.J., 1996. Software process improvement at Raytheon. IEEE Software
13, 33–41. URL: http://doi.ieeecomputersociety.org/10.1109/
52.542292.

Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S., 2012. A systematic
literature review on fault prediction performance in software engineering.
IEEE Transactions on Software Engineering 38, 1276–1304. doi:10.1109/
TSE.2011.103.

Herzig, K., Just, S., Zeller, A., 2013. It’s not a bug, it’s a feature: how misclas-
sification impacts bug prediction, in: Proc. 2013 Int’l. Conf. on Software
Engineering (ICSE ’13), IEEE Press. pp. 392–401.

Herzig, K., Zeller, A., 2013. The impact of tangled code changes, in: Proc.
10th Working Conf. on Mining Software Repositories, IEEE. pp. 121–130.

Kim, S., Zimmermann, T., Pan, K., Whitehead, Jr., E., 2006. Au-
tomatic identification of bug-introducing changes, in: Proceedings of
the 21st IEEE International Conference on Automated Software Engi-
neering, IEEE Computer Society, Washington, DC, USA. pp. S. 81–
90. URL: http://portal.acm.org/citation.cfm?id=1169218.

1169308, doi:10.1109/ASE.2006.23.
Kim, S., Zimmermann, T., Whitehead, Jr., E., Zeller, A., 2007. Predicting faults

from cached history, in: Proceedings of the 29th International Conference
on Software Engineering, IEEE Computer Society, Washington, DC, USA.
pp. S. 489–498. URL: http://dx.doi.org/10.1109/ICSE.2007.66,
doi:10.1109/ICSE.2007.66.

15

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/32.707700
http://doi.acm.org/10.1145/1985441.1985464
http://dx.doi.org/http://doi.acm.org/10.1145/1985441.1985464
http://dx.doi.org/10.1007/s10664-013-9245-0
http://doi.acm.org/10.1145/1985441.1985456
http://dx.doi.org/http://doi.acm.org/10.1145/1985441.1985456
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/32.859533
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/32.859533
http://doi.ieeecomputersociety.org/10.1109/52.542292
http://doi.ieeecomputersociety.org/10.1109/52.542292
http://dx.doi.org/10.1109/TSE.2011.103
http://dx.doi.org/10.1109/TSE.2011.103
http://portal.acm.org/citation.cfm?id=1169218.1169308
http://portal.acm.org/citation.cfm?id=1169218.1169308
http://dx.doi.org/10.1109/ASE.2006.23
http://dx.doi.org/10.1109/ICSE.2007.66
http://dx.doi.org/10.1109/ICSE.2007.66


Prechelt, L., Pepper, A., 2014. Reliable bugfix links via bidirectional ref-
erences and tuned heuristics. Automated Software Engineering (sub-
mitted for review) URL: ftp://ftp.mi.fu-berlin.de/pub/reports/
tr-b-14-01.pdf.

Rao, S., Kak, A., 2011. Retrieval from software libraries for bug localization:
A comparative study of generic and composite text models, in: 8th Working
Conf. on Mining Software Repositories, ACM.

Robles, G., Koch, S., González-Barahona, J.M., 2004. Remote analysis and
measurement of libre software systems by means of the CVSAnalY tool, in:
Proceedings of the 2nd ICSE Workshop on Remote Analysis and Measure-
ment of Software Systems, IEEE Computer Society, Washington, DC, USA.
pp. 51–55. doi:10.1.1.58.6959.

Rotella, P., Chulani, S., 2011. Implementing quality metrics and goals at the
corporate level, in: 8th Working Conf. on Mining Software Repositories,
ACM.

Sadowski, C., Lewis, C., Lin, Z., Zhu, X., Whitehead, Jr., E., 2011. An empir-
ical analysis of the FixCache algorithm, in: Proceeding of the 8th Working
Conference on Mining Software Repositories, ACM, New York, NY, USA.
pp. 219–222.

Shull, F., Basili, V., Boehm, B., Brown, A.W., Costa, P., Lindvall, M., Port, D.,
Rus, I., Tesoriero, R., Zelkowitz, M., 2002. What we have learned about
fighting defects, in: Proc. of the 8th IEEE Symposium on Software Metrics,
pp. 249–258. doi:10.1109/METRIC.2002.1011343.

Sinha, V.S., Sinha, S., Rao, S., 2010. Buginnings: Identifying the origins of
a bug, in: Proc. of the 3rd India Software Engineering Conf. (ISEC ’10),
ACM press. pp. 3–12.
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