
Plat Forms: Contests as an Alternative Approach to
SE Empirical Studies in Industry

Lutz Prechelt, Ulrich Stärk
Freie Universität Berlin
Institut für Informatik

Takustr. 9, 14195 Berlin, Germany
Email: prechelt|ustaerk@inf.fu-berlin.de

Abstract—Plat Forms is a set of three studies that search
for process and product properties emerging from the use of
specific web development platforms. Its first key property is the
use of a contest format; this leads to easier, broader, and more
uniform data collection compared to on-site industrial studies. As
a second key property, the three instances do not merely serve
to extend or corroborate each others’ results, they also serve
as a time series for characterizing changes in the underlying
software development reality over the course of a few years – an
important aspect that has received little attention in empirical
software engineering research so far.

I. PLAT FORMS

Plat Forms is a set of three quasi-experiments1. Its goal
is to compare industrial development technologies (tools,
frameworks, components) using realistic teams and develop-
ment processes, but factoring out the complexity effects of
industrial-sized tasks and workplace effects. The key idea of
the Plat Forms research approach is to represent the study to
the outside world as a contest.

A. Description
The three Plat Forms studies were carried out in 2007,

2011, and 2012. The external form of each was that of a
contest. The abstract of the 2007 announcement [1] read as
follows:

“Plat Forms” is a competition in which top-
class teams of three programmers compete to im-
plement the same requirements for a web-based
system within 30 hours, each team using a different
technology platform (Java EE, .NET, PHP, Perl,
Python, or Ruby on Rails). The results will provide
new insights into the real (rather than purported)
pros, cons, and emergent properties of each plat-
form. The evaluation will analyze many aspects of
each solution, both external (usability, functionality,
reliability, performance, etc.) and internal (structure,
understandability, flexibility, etc.).

We asked for (and largely got) jelled teams of professionals
to apply for participation with the technology they mastered
best. The teams would work as volunteers; we had promised
only fun and fame, not fortunes2. 9 teams participated in 2007

1See http://www.plat-forms.org
2There was a small monetary price for the best team on each platform

eventually in 2007 and 2011.

(3 using Java, 3 Perl, 3 PHP), 16 teams in 2011 (4 Java, 1
JavaScript (non-competitively), 3 Perl, 4 PHP, 4 Ruby), and 8
teams in 2012 (1 Groovy, 3 Java, 1 .NET, 2 PHP, 1 Ruby; see
discussion in Section II-D).

All teams met in one place for two-and-a-half days (first
afternoon for setting up their own equipment, then two days
for the actual contest) and they all worked together in one or
two large rooms.

The task resembled an idealized, short prototyping project
performed at a customer’s site: The teams received a de-
tailed, clear, precise written specification of what they should
implement, including functional requirements, non-functional
requirements, complete must/should/may priorities, and a few
constraints [2]–[4]. A customer representative was available
to promptly answer any requirements question. The teams
worked in an unfamilar, yet largely interruption-free work-
place, each team sitting together closely. They were required
to release the code produced during the contest under an open
source software license and to provide run-time licenses for
all other software components they used.

The teams had full internet access and were allowed to
use any tool, document, software component, etc. available
anywhere and even feedback from external testers on their
publicly set-up intermediate solutions, but were not allowed
to employ additional design or implementation help beyond
their three members.

At the end of the two-day timeframe, each team supplied
us with

• a virtual machine running their solution,
• a source code distribution of their solution,
• their complete version archive,
• on the next day: a separate post-mortem questionnaire

from each team member regarding his3 experience with
the task and with the team’s development process, plus
some personal background information.

In addition, we collected some process information manually
by person-by-person activity type sampling with a fixed set of
candidate activity types at 15-minute intervals throughout the
work time.

After each contest, these data were analyzed over about 6
months by a team of three to five people.

3All team members were male.



B. Research Perspective and Design Considerations

The Plat Forms research questions is: Which characteristic
properties of product or process typically emerge from using
a specific web development platform that differ from those of
(some) other platforms?

We initially defined a platform as a programming language
plus the union of all web-related frameworks, tools, libraries,
and components available for it. (The definition later changed,
see the discussion in Section II-D.)

Despite the huge relevance of the web development domain
and the intense competition of several popular platforms, no
scientific empirical comparisons of web development plat-
forms exist. Other trustworthy and objective information is
also extremely scarce [5].

Therefore, we designed Plat Forms to be exploratory and
went to look for platform differences in all feasible directions
at once: Whenever any observable characteristic of process
or product would be similar within a platform yet meaning-
fully different (and again consistent) on another platform, we
would consider this a platform difference. The exact notion of
“similar” was not predefined: Some of the investigations (e.g.
of maintainability) would be qualitative, not quantitative and
even for the quantitative ones we could not hope for statistical
significance with only about 3 teams per group.

In order to avoid the research becoming meaningless and
given this vague operationalization, we needed a high level
of comparability in the raw observation data to start from,
i.e. strong control of many variables. We hence designed
Plat Forms as a quasi-experiment: a trial with non-randomized
assignment of teams to platforms, but full control of the non-
team-related variables. Randomized assignment is obviously
infeasible: no team would be interested in participating if it
knew it would likely not use its prefered platform. It would
also shift the research question, as we would then get to see
effects from the learnability of different platforms rather than
effects from skilled routine use.

C. Discussion

If all goes well, the contest format will provide nice proper-
ties: low-threshold acquisition of companies to participate in
the research4; a high level of control; easy and organized data
collection; a large number of organizations in the resulting
data set; the capability to use far larger tasks than would be
possible in on-site field experiments that use task replication;
consequently broader analysis and results; the opportunity to
observe well-delineated team work as well as individual work.

The corresponding disadvantages are: observation of only
greenfield development and detachment from the complexities
induced by large existing products (with respect to both
product and process); few (if any) workplace-specific effects
will be visible; the danger of false positive results (fishing for
significance).

4The contest format makes it easy for the company to understand the size
of their investment, avoids disruptions of the on-site process, and reduces
secrecy concerns. Also, we found the lack of shyness to publicly demonstrate
their performance astonishingly low in our participant companies.

II. YEAR-BY-YEAR RESULTS AND INSIGHTS

The purpose of the present article is a discussion of the
Plat Forms research approach as such, not the platforms-
related results. Section II-A explains in global terms (that
apply to all three executions of the contest) our experience as
to the strong and the problematic aspects of the methodological
approach taken by Plat Forms.

The subsequent sections then go through the executions one
by one. Each section first mentions some results of the respec-
tive execution in terms of the Plat Forms research question
and then describes the resulting insights that prompted us to
make methodological adjustments for the next execution.

A. What Went Well or Not So Well

By and large, Plat Forms was a good success. On the
positive side: We had sufficiently many teams of sufficiently
similar quality and we managed to uncover a number of plat-
form differences, some of them in line with common prejudice,
others against it. It required some effort to obtain those teams,
but hugely less than starting an on-site collaboration with as
many companies.

On the negative side:
• Problem 1: We had two mishaps with the teams.

a.) In 2007, one Java team used immature technology
resulting in big problems and low productivity that did
not represent the Java platform. This team was in the
contest only because we had begged them to come after
we had been unable to raise a proper third Java team.
b.) In 2011, one Perl team was not a jelled team at
all; the members had found each other via a mailing
list and only during the contest recognized that nobody
of them was interested or skilled in HTML front-end
development – they were all server-side specialists. As
a result, the user-visible functionality they delivered was
close to zero although they had implemented the innards
for most requirements.
Both of these particular events could in principle have
been avoided, but it is difficult to prevent all types of
similar stumbles completely.

• Problem 2: The evaluation effort is higher than expected.
The techical heterogeneity involved due to the different
platforms makes even seemingly trivial tasks (such as
measuring lines-of-code consistently) laborious.

• Problem 3: Particular evaluations may even fail com-
pletely for technological reasons. In 2007 for instance, we
wanted to measure dynamic coupling based on method-
level who-calls-whom information collected by a runtime
profiler. But one profiler returned nonsensical results (e.g.
negative numbers of calls) and even though there was
a profiler expert in one of the teams we were clueless
how to resolve this and decided to abandon the whole
evaluation.

• Problem 4: Again due to the heterogeneity, evaluating
aspects that cannot be measured mechanically (e.g. main-
tainability) require enormous amounts of expertise.



The positive aspects mentioned above suggest the study
design model of Plat Forms (namely to collect data in a
contest context) will likely be useful for some other research
questions as well. As for the problems described subsequently:
While problems 2 to 4 are specific to studies that compare
several complex technologies, problem 1 will likely apply to
most studies using a contest format.

B. 2007 Insights

The first execution found a number of expected platform
differences (e.g., Java solutions tended to be larger (in terms of
LOC per implemented requirement) and Perl solutions tended
to be smaller than others) as well as a number of surprising
platform differences. For instance, the most complex of our
change scenarios for evaluating maintainability found the high-
ceremony approach of the Java teams to lead to the lowest
maintainability and the pragmatic approach used by the teams
on the ill-reputed Perl platform to exhibit the highest [6,
Section 13]. This difference appeared for cultural reasons, with
no technical necessity. Also, our robustness tests (which served
as a very rough assessment of likely security) neither found
Java as the most likely secure platform nor the ill-reputed PHP
as the least likely secure one. More detail is provided in a TSE
article [5] and full detail of both results and evalution methods
is given in a technical report [6].

As for insights, problem 1a) mentioned above made us
recognize that having only three teams per platform was
too risky: If any team got into team-specific (rather than
platform-related) problems, the remaining two would be too
few to diagnose consistent platforms differences. We decided
to allow four teams per platform in subsequent executions of
Plat Forms in order to be able to exclude one from the analysis
in pathological situations.

C. 2011 Insights

The second instance of Plat Forms four years later had
some results that confirmed previous ones (e.g. the size-
related results), some that were new (e.g. Ruby, not present
in 2007, was the most productive platform), and some that
documented general trends (e.g. the robustness results had
improved throughout all platforms). Some of the new ones
were very interesting, e.g. the Ruby teams spent more time
writing automated tests than the teams of all other platforms,
while the Java teams spent more time testing manually than
the teams of all other platforms. More detail is provided in
[7].

The central insight was related to the very core of
Plat Forms, the definition of “platform”. Doubt had been
nagging already in 2007 and now it became undeniable: The
programming language is not a good criterion for classifying
web development platforms. Within each of the most popular
languages (Java, PHP), there were frameworks with very
different structure and different consequences for development
even in 2007 and this trend had continued to 2011. At the
same time, many web frameworks had continued to adopt
similar design ideas and philosophies across languages and

those ideas led to similar outcomes. For instance, one (and
only one) PHP team could keep up with the Ruby teams
in terms of productivity; this team (and only this) used the
Symfony framework, which is inspired by the ideas underlying
Ruby-on-Rails.

Summing up, Plat Forms 2011 showed that the original
design of the study had reached its limits and needed an
overhaul.

D. 2012 Approach

Our original approach for Plat Forms 2012 was to de-
emphasize the role of the web development frameworks by
asking for the implementation of a scalable RESTful web ser-
vice (using Amazon Web Service technology and without any
HTML front-end) rather than a complete web application. We
announced the contest in this form and came out essentially
empty-handed: Only 5 teams applied for participation; many
others stated they did not feel competent enough with the new
cloud technologies.

We canceled the contest and developed a different route
instead: Classify platforms by the structural properties of and
development styles suggested by the various frameworks. This
means that frameworks using different languages can end
up in the same platform (e.g. Groovy/Grails, PHP/Symfony,
and Ruby/Ruby-on-Rails all end up in a Rails-like class) and
frameworks using the same language can end up in different
platforms.

For this classification we scanned 476 different web de-
velopment frameworks, reviewed 156 of them, and analyzed
44 of those: we tabulated many key properties, selected those
few properties that have plausibly grave effects, and created
multiple different classifications (usually only binary). This
work is ongoing.

As a consequence, we dropped the requirement to have
three teams per language in the 2012 contest, which was lucky
because we received only 12 applications for participation, of
which only 8 eventually showed up in the contest (after 24
applications in 2011).5

The evaluation of the 2012 solutions has not progressed
far enough to present specific results, but despite the low
number of only 8 teams, many of the various binary framework
classifications will work out in the sense as to yield classes
with at least three representatives so as to allow evaluation.

III. THE TIME SERIES ASPECT OF PLAT FORMS

So far most families of studies in software engineering
repeat a study several times very similarly, each time varying
one important aspect (such as the specific set of subjects, the
general type of subjects, or the particular task to be solved)
in order to corroborate or differentiate existing findings to
broaden their generalizability. Plat Forms is also of this type:

5Despite many attempts to find out, we are still not sure how this so-
much-lower number came to be; it appears to be a combination of a too-short
repetition rhythm (only 12% of the 2011 teams applied in 2012, versus 33%
of the 2007 teams that had applied in 2011; all teams had reported they had
enjoyed the contest in both years) and simply bad luck.



One purpose of the 2011 contest was certainly corroborating
or invalidating the 2007 results.

However, Plat Forms adds another aspect: The changes of
the underlying software engineering reality over time. The
time series of studies spanned by Plat Forms’ subsequent
executions served to better understand the trends that have
changed web development overall between 2007 and 2012 as
well as how these trends are reflected in specific platforms.

At the level of detail possible in this short article, we have
already described (in Sections II-C and II-D above) what this
time series aspect did to Plat Forms in terms of Plat Forms’
research question.

From a more general research method perspective, the
platforms define the groups in a quasi-experiment and we find
(1) drift in the composition of each individual group as well
as (2) of the overall notion of what defines those groups.

Both of these kinds of drift make research more compli-
cated: (1) The within-group drift makes it harder to corroborate
previous results as it will often be unclear whether diverging
results in a later sub-study are contradicting the previous result
or merely describe a change of the underlying reality.

(2) The drift of the group-defining notion either
• makes it harder to design an appropriate next instance of

a study family at all (if the notion is kept as it was)
• or makes it necessary to re-evaluate the data of the

previous instances (if the new notion can sensibly be
applied to the old study instances)

• or breaks the coherence of the study family (if the
new notion cannot sensibly be applied to the old study
instances).

IV. CONCLUSION

We offer three take-home messages from our discussion of
the Plat Forms example.

A. Consider Contests as a Data Collection Approach

Phrasing a study as a contest is a trick that can be applied
to many more research questions than only ours. When ap-
plied successfully, the contest format drastically reduces data-
collection effort compared to on-site data collection within
organizations, while keeping many properties of technologies
and processes used. At the same time, it allows to broaden the
set of organizations that go into the dataset far beyond what
would otherwise be feasible.

The price paid for these advantages consists of ripping the
work out of its normal context of products and workplace.

B. Non-Randomized Experiments Can be Superior

Software engineering researchers are used to thinking
of non-randomized-but-otherwise-controlled experiments (also
known as quasi-experiments) as a poor man’s replacement of
“proper” controlled experiments.

Plat Forms demonstrates that this is not always an appro-
priate view: Whenever sociological phenomena are relevant
for the practices observed in a study (and they usually are),
the self-assignment of individuals to certain groups will be a

relevant influence in practice and should therefore not always
be suppressed in an empirical study.

Rather, the people who develop a preference for a certain
group (such as a specific web development platform) will often
have different talents, preferences, and attitudes than people
developing a preference for a different group6 Over time,
being a member of this group will also make them develop
different skills and reinforce attitudes and existing behavioral
differences as exemplified by the Java/Perl maintainability
difference mentioned in Section II-B. A quasi-experiment can
capture and reflect such effects; a randomized experiment will
suppress them.

C. Drift is Important

Finally, we suggest that software engineering research
should pay more attention to the fact that the software world
is constantly changing. Physicists can safely assume that the
same laws and relationships hold in the physical universe today
that held two decades ago — we should not. It would often
be more helpful if our studies aimed at rough estimations of
a trend rather than precise snapshots of a transient status quo.

ACKNOWLEDGMENTS

Plat Forms 2007 would not have been feasible without
the help from Heise Zeitschriftenverlag and Richard Seibt
and Eduard Heilmayr of the OSBF. Plat Forms 2011 and
2012 were supported by a DFG research grant. Additional
sponsoring came from Accenture, ICANS, Immobilien Scout,
LF.net, Microsoft, Optaros, and Zend.

REFERENCES

[1] L. Prechelt, “Plat Forms – a contest: The web development platform
comparison,” Freie Universität Berlin, Institut für Informatik, Germany,
Technical Report TR-B-06-11, October 2006.

[2] ——, “Plat Forms 2007 task: PbT,” Freie Universität Berlin, Institut für
Informatik, Germany, Technical Report TR-B-07-03, January 2007.

[3] U. Stärk and L. Prechelt, “Plat Forms 2011 task: CaP,” Freie Universität
Berlin, Institut für Informatik, Germany, Technical Report TR-B-11-10,
January 2011.

[4] ——, “Plat Forms 2012 task: Cafman,” Freie Universität Berlin, Institut
für Informatik, Germany, Technical Report TR-B-12-08, October 2012.

[5] L. Prechelt, “Plat Forms: A web development platform comparison by
an exploratory experiment searching for emergent platform properties,”
IEEE Transactions on Software Engineering, vol. 37, no. 1, pp. 95–108,
January/February 2011.

[6] ——, “Plat Forms 2007: The web development platform
comparison — evaluation and results,” Freie Universität Berlin,
Institut für Informatik, Germany, Technical Report TR-B-
07-10, April 2007, www.plat-forms.org. [Online]. Available:
http://www.plat-forms.org/2007/documents/platformsTR.pdf

[7] U. Stärk, L. Prechelt, and I. Jolevski, “Plat Forms 2011: Finding emergent
properties of web application development platforms,” in Proc. 6th Int’l.
Symposium on Empirical Software Engineering and Measurement. ACM
Press, 2012.

6If you do not believe this, take the rather entertaining test at http://alvar.
a-blast.org/plat forms/ and look at all teams before you decide. With respect
to the above argument, the test is tongue-in-cheek but makes the point well:
People can recognize developers’ platform preferences far better than allowed
by chance.


