
On Understanding How to Introduce an Innovation to an Open Source Project

Christopher Oezbek, Lutz Prechelt
Freie Universität Berlin
Institut für Informatik

Takustr. 9, 14195 Berlin, Germany
{oezbek, prechelt}@inf.fu-berlin.de

Abstract

Position Paper
We propose to research the introduction of Software En-

gineering inventions into Open Source projects (1) to help
researchers with creating opportunities for evaluating their
tools, methods and process designs in real-life settings,
and (2) to help Open Source projects with improving their
processes based on state-of-the-art knowledge. Such re-
search will go beyond diffusion and dissemination of inven-
tions to active introduction, and thus increase the chances
of adoption. We will discuss the research approach, our
preliminary insights, limitations of the approach, and why
researchers interested in evaluating their own inventions
should be interested in this research.

1 Introduction

Most software engineering research produces technol-
ogy such as tools, methods, or processes to be applied dur-
ing the construction of software systems. It has been gradu-
ally understood that the empirical evaluation of such inven-
tions is necessary to judge research progress and generate
acceptance outside of academia [25, 28].

There are two classic scenarios for how to conduct such
empirical evaluations: First, there is the laboratory trial, of-
ten in the form of controlled experiments with student sub-
jects. Such studies are difficult to set up in such a way that
they are sufficiently impartial and realistic (in particular in
their choice of task) to be credible — but credibility is what
counts [19]. Controlled experiments with professional sub-
jects are harder to set up, but often hardly more credible.
Second, there is the industry trial, commonly performed as a
case study in cooperation with a company. While such stud-
ies are certainly realistic, they have problems too: Cost and
risk considerations make it hard to find industrial partners,
non-disclosure constraints make it hard to fully describe the

setting and results, and company idiosyncracies often make
it hard to understand generalizability.

For many (though not all) evaluation purposes, some re-
searchers consider observational studies in the context of
Open Source Software (OSS) projects to be a third ap-
proach and one with almost ideal properties in many re-
spects: Credibility can often be high, they are easy to ob-
serve, publication constraints hardly exist, risk considera-
tions are more relaxed, and corporate cost considerations
are replaced by (mere) group willingness hurdles.

Unfortunately, OSS projects are not interested in studies,
they are interested in developing software. So, performing
a study first requires to make the project adopt the invention
in its normal work. However, as anybody knows who has
ever tried to get any group of people to adopt an invention
(that is, to introduce the invention as an innovation), this is
rather difficult.

So, rather than letting a long row of researchers indi-
vidually attempt, fail, attempt, fail, get frustrated, and give
up, we suggest to make the adoption process itself the sub-
ject of research in order to provide these researchers with a
proven methodology for introducing an invention to an OSS
project.

Here the term introduction is used to signify the planned
initiation of an adoption process within an organization or
social system. Adoption then can be seen as the turning
point where inventions become innovations that are actively
used by individuals [7]. Introduction contrasts well with
diffusion, which carries more passive connotations, and dis-
semination, which does not go beyond distributing informa-
tion or resources related to an invention.

From the researcher’s point of view, combining active
introduction with OSS projects has several advantages. In
contrast to industry settings, the public visibility of most
of the working process, artifacts, and communication as
well as the openness for outsiders to contribute to these
projects allow the researcher to both capture and influence
the project to a much larger degree. In contrast to dis-
semination and diffusion, the researcher can (1) observe

mailto:oezbek@inf.fu-berlin.de
mailto:prechelt@inf.fu-berlin.de


the adoption and use of the invention as it happens rather
than performing post-hoc analysis, (2) tailor the invention
to the particularities of the project and repair problems that
often plague early versions of inventions on the spot, and
(3) choose the project such as to maximize the insights
gained.

From the point of view of the OSS community, such
research increases their chances for benefitting from soft-
ware engineering improvements, given the fact that conven-
tional approaches to managing software process improve-
ment such as CMMI [5], even approaches specialized to
OSS [8], do not explain how the actual introduction of
the improvements should be conducted, and traditional key
success mechanisms such as management commitment and
support [24] are unlikely to work.

The rest of the paper presents our research approach for
gaining insights into the introduction of inventions in OSS
projects as well as our preliminary results for the following
research questions:

1. How to select target projects suitable for introducing
software engineering inventions.

2. How to approach a project to offer an invention.

3. How to interpret reactions and make strategic and tac-
tical decisions based on them in the course of the adop-
tion process.

4. How to phase out involvement and exit the project.

5. How to obtain evaluation result data during and after
the introduction.

2 Research approach

To develop an understanding of the introduction of
inventions, we will perform a series of iterative case-
studies [27] using action-research methodology [2], i.e., a
circular, collaborative process of planning, acting and re-
flecting. These studies will be performed with three differ-
ent inventions of different type and with a variety of dif-
ferent Open Source projects. We will not introduce sev-
eral process improvements in the same project [9] in or-
der to avoid synergies or cannibalization between improve-
ments [11].
Inside each case we will gather qualitative data on
action-reaction relationships and recurring patterns (using
Grounded Theory data analysis methodology [6]) to obtain
an understanding of the key interactions during an introduc-
tion effort.

We will work on minimizing risk toward the project and
on protecting the autonomy of the subjects [4] by creating

an atmosphere of collaboration, involvement and partici-
pation between project and researcher, and protecting pri-
vacy and confidentiality [3, 13]. Even though Open Source
projects are very robust against negative influence from the
outside, similar precautions must be taken by researchers
who evaluate their inventions in projects to ensure proper
ethical conduct.

3 How to choose a host project?

Choosing an appropriate Open Source project when eval-
uating a software engineering invention is important to es-
tablish a case that is (a) typical enough to generalize to other
projects, (b) suitable for the given invention, and (c) has po-
tential for interesting interaction regarding the introduction.

In particular, the project should be Open Source not
only by license but also by development style: The project
members need to be distributed rather than co-located at a
single company site, communication must be public and
preferably archived, it must be possible for external new-
comers to join the project, and basic processes and tools
(such as release process, issue tracker and version reposi-
tory) should be established. The distribution, observabil-
ity, and openness ensure that the researcher can study the
use of the invention at all, while the presence of basic pro-
cesses and tools indicates that the project probably fulfills
basic professional software engineering standards so that
study results may generalize to other software development
projects. Fortunately, with the existence of project hosts
such as SourceForge these tools and processes are now stan-
dard.

Regarding the size of the project a viable middle ground
must be found between too small and too large. Small
projects with less than three to four developers usually have
little interaction, communication overhead, tool usage, and
process inefficiencies or are still in the process of establish-
ing basic process patterns. They are thus rather unsuitable
for all but the most basic software engineering inventions.
Large projects with more than fifty developers on the other
hand have quite the opposite problem: They usually have
well established processes, so that the “not invented here”-
syndrome, explicit opposition, tedious consensus finding,
low perceived benefit against the established processes, and
high communication overhead might make it impossible for
a single researcher to be heard. Accordingly, we suggested
to chose a middle-sized project: five to fifty developers
of whom at least five have been active during the last few
months.

As a last project property, we believe it useful to target
a project that has shown an affinity for change (or at least
no opposition to it) in the past. In many cases this property
will correlate with the openness of the project to accept new
members, but it is still beneficial to study the history of in-

2



ventions adopted by the project; a typical example might be
the transition from the CVS version control system to the
newer and clearly superior SVN.

To acquire a project somewhat randomly yet within the
limitations given above, a project news announcement site
like Freshmeat, which aggregates projects independently of
their hosting, or a project listing site like SWiK can be used.
Both of these example sites offer the option to visit a project
at random from the listing. While SWiK shows all projects
that relate to Open Source, Freshmeat’s notable limitation
is its requirement for projects to run under an Open Source
operating system; purely Windows-based OSS projects are
not listed.

4 How to approach Open Source projects?

Some knowledge exists in the literature about how to ap-
proach an OSS project [10, 26]. Firstly, the concept of “gift
culture”[21] suggests that the respect for the external par-
ticipant and influence s/he carries are correlated to his/her
contribution to the project. This raises the question whether
the invention itself will be seen as a gift if disseminated to
the project. A case study on the effects of offering a source
code gift that requires further effort to integrate into the
code-base of the project appears to indicate the following:
Unless the gift is directly useful for the project and imme-
diately comprehensible to the participants, chances are low
that it will be accepted [20]. Thus, we hypothesize that the
researcher should expect to spend a considerable amount
of work generating these benefits until the invention is ac-
cepted and adopted.

Secondly, the researcher needs to decide whether to ap-
proach the project by contacting the maintainer and project
leaders, individual developers, or by addressing the project
community as a whole. Our working hypothesis is that the
type of approach should be correlated closely with (a) the
degree of independence of each member’s adoption deci-
sion, and (b) the benefit structure of the invention. We will
now explain these factors.

In Diffusion of Innovations, Rogers distinguishes
three types of innovation-decisions: optional innovation-
decisions, which each member of the project can make
individually and independently, collective innovation-
decisions, which require consensus within the project, and
authority innovation-decisions, which are made by a small
influential group within the project [22].

As an example, consider the adoption of a practice such
as “mandatory peer review before committing patches to
version control”. Such an improvement usually starts as
a collective innovation-decision to improve code quality,
since a general consensus is needed that every member of
the project will submit his or her patch first to a mailing-
list for inspection, and thus the whole community should

be addressed to promote the adoption. Additionally, it
also involves an optional innovation-decision by each mem-
ber to participate in the review of patches sent by others,
and thus can be supported by the researcher by talking to
individual developers. As an example of the third kind
of innovation-decision and its implications for how to ap-
proach the project, consider the introduction of a feature
freeze1 two weeks prior to a release. This decision can be
driven by the project leaders and maintainers in an authori-
tative fashion and supported technically by creating a local
branch for the release in the version control system. Individ-
ual members can undermine the decision, but they need not
take specific action to make it a reality. Thus, the researcher
should communicate directly to the project leaders.

The second important property of the invention that af-
fects the approach is the benefit structure of the invention
offered by the researcher, i.e., the return on investment or
relative advantage [22] for each project member in con-
trast to the return on investment for the whole project. The
documentation of the project, for instance, does not pro-
vide a high return on time spent for the experienced devel-
oper who writes it, yet the information is highly useful for
new developers (where they might provide large returns for
the project). Inventors often understand the increasing re-
turns [1] promised by their invention but tend to overlook
that (a) individual project members driving the introduction
might not benefit from the improvement sufficiently to com-
pensate for the effort they spend on it and (b) the benefits
might be hard to measure or only visible in the long-run.

We hypothesize that the researcher should start the ap-
proach with those project members who can gain imme-
diate benefits. Instead of asking other project members to
perform tasks with a negative bottom line in terms of their
personal benefit, those tasks should be performed by the re-
searcher initially. Later on, when the benefits become visi-
ble and affect individuals in the project, the researcher will
have a much better chance to involve project members and
withdraw from these activities.

5 How to interpret reactions and make
strategic and tactical decisions?

When introducing inventions and novelties of any kind
into a social system, the researcher should expect rejec-
tion, adoption, and reinvention as ultimate reactions to oc-
cur both on the individual and group level [22].

Rejection is the decision not to adopt an innovation. It
might occur both actively, i.e. after considering the adop-
tion or even conducting a trial, or passively, i.e. without any
consideration at all [22]. Passive rejection, i.e. not getting

1In a software release process, a feature freeze is the point from which
onwards no new features must be introduced; only defect corrections and
documentation are allowed to be performed.

3

http://www.freshmeat.net
http://swik.net


a response at all, is not uncommon even if the researcher
explicitly expresses interest in joining the project [26].

Reinvention occurs if members of the project take up
the invention and recast or reuse it in unexpected and un-
intended ways. Reinventions might prove highly beneficial
for the researcher, as they may point to new fields of appli-
cation for the invention.

Of course, there is still a lot of room for interaction be-
tween the project member, researcher and technology until
these ultimate reactions are made. Social science literature
provides various models for such discourse such as the the-
ory of fields [12] or network-actor theory [17]. We have
chosen to follow the innovation model developed by Den-
ning and Dunham [7]. In this view, the innovation process
starts with (1) the sensing of possibilities for change and
(2) a vision of what might result from the change. (3) Of-
fering this vision to the affected people (or other units of
adoption) and receiving their feedback allows the idea to be
shaped into something that can be (4) executed and imple-
mented in concrete terms resulting in a product, process or
social improvement. It is only after the invention has been
(5) adopted by the desired target population and (6) sus-
tained as a successful novelty that a successful introduction
of innovation has occurred. In the setting discussed here,
the first two stages will more focus on the tailoring of the
existing problem, vision and invention rather than the gen-
eration of new ideas and implementation.

6 How and when to phase out involvement
and leave?

Our current working hypothesis is that the researcher can
leave a project when s/he has successfully established the
innovation as self-sustaining, or if the adoption has failed
and no clean-up work remains to be done. In successful
cases, withdrawal from the project should be gradual rather
than abrupt or it may endanger the success and cause harm
to the project. Leaving a project after a failed introduction
on the other hand obliges the researcher to clean up, say,
revert changes to the code-base or reinstate previous infra-
structure before a (gradual) withdrawal is in order.

7 How to obtain evaluation results?

The actual evaluation of the invention under investiga-
tion is highly dependent on the nature of the invention itself
and on the particular evaluation research goal. For some in-
ventions the successful adoption itself can be a sufficient
success, while others can only be judged by comparing
product, process, or usage metrics to their baseline values
prior to introduction. A third kind of invention might re-
quire the developers to be surveyed about their experience
with the new technology.

Independent of these three basic approaches, the re-
searcher will probably gain the most practical, albeit quali-
tative, insights for improving and assessing the invention by
communicating with the project during the introduction. A
researcher using the action research perspective may view
this as the primary result.

8 Chances, limitations and conclusion

In the end, the question remains whether the experiences
gained with introducing software engineering inventions in
OSS projects can be applied to other settings (external val-
idity). These might include differences in project sizes,
application domains, software architectures, non-volunteer
personnel, management, distribution and work-place set-
ting, prior experience with software engineering methods,
etc. The most common target setting is a revenue-dependent
corporate environment. The following arguments argue
why evaluation results from OSS projects may transfer to
such environments: 1) Open Source developers are noto-
rious for being critical of academic results, (2) availabil-
ity of management championship and extrinsic motivations
(like pay) can often spur adoption and use, and (3) full-time
employees will benefit more from economies of scale and
learning effects than part-time OSS developers.

The most notable limiting factor of our research ap-
proach is the restriction on the type of invention feasible
for investigation. The diffusion of innovation literature lists
several attributes of invention that will affect their rate of
success for being introduced: (1) The compatibility of the
invention with existing technology, values, and beliefs2,
(2) the intellectual and technical complexity, (3) the observ-
ability of the resulting effects of the invention, (4) the possi-
bility to experiment with the invention (trialability) before
committing to it, and (5) the uncertainty about the inven-
tion [22]. Halloran and Scherlis hypothesize more specifi-
cally with regards to OSS projects that these tend to distin-
guish sharply between trusted and untrusted contributions
(“walled server” metaphor) and that inventions need to pre-
serve this distinction to be applicable to OSS projects [15]).
This limits the approach as follow: while successful intro-
duction suggests a valuable invention, failed introduction
may be the result of specific properties of the OSS project
(such as the walled-server) and may not say much about the
real qualities of the invention.

As a second limitation we note that in contrast to field-
work and ethnographic studies conducted with companies
(see for instance [18]), it will be difficult to study the actual
working processes and practices of each project participant
since only the intermediates and process results, say, bug re-
ports, CVS commits, and mailing list discussions are visible

2For instance, OSS projects may reject tools that are not licensed as
Open Source software themselves.

4



to the researcher. To gather information about the actual us-
age of tools on the computers of the project members, these
need to be instrumented appropriately [23, 16].

A third limitation of the approach concerns the speed at
which adoption can occur. Open Source projects are to a
large extent driven by volunteers who invest less than 10
hours per week and coordinate using asynchronous elec-
tronic means over different time zones [14]. The time scale
of change should thus be expected to be much slower than in
a commercial setting where employees work regular work-
ing hours and frequently interact synchronously.

Summing up, we have proposed to study the introduction
of software engineering inventions to help researchers eval-
uate tools, methods, and processes developed in academic
settings, and have offered our preliminary results. While the
research community can benefit from access to real life set-
tings and the possibility to “feed back the community”, the
Open Source community is introduced to state-of-the-art in-
ventions tailored to their specific problems by the inventors.

References

[1] W. B. Arthur. Increasing Returns and Path Dependence in
the Economy. University of Michigan Press, 1994.

[2] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen. Action
research. Commun. ACM, 42(1):94–97, 1999.

[3] M. Bakardjieva and A. Feenberg. Involving the virtual sub-
ject. Ethics and Information Technology, 2(4):233–240,
2001.

[4] J. Cassell. Ethical principles for conducting fieldwork.
American Anthropologist, 82(1):28–41, March 1980.

[5] CMMI Product Team. Cmmi for development, version 1.2.
Technical Report CMU/SEI-2006-TR-008, Software Engi-
neering Institute, 2006.

[6] J. M. Corbin and A. Strauss. Grounded theory research: Pro-
cedures, canons, and evaluative criteria. Qualitative Sociol-
ogy, 13(1):3–21, Mar. 1990.

[7] P. J. Denning and R. Dunham. Innovation as language ac-
tion. Commun. ACM, 49(5):47–52, 2006.

[8] S. Dietze. Modell und Optimierungsansatz für Open Source
Softwareentwicklungsprozesse. Doktorarbeit, Universität
Potsdam, 2004.

[9] G. W. Downs and L. B. Mohr. Conceptual issues in study of
innovation. Administrative Science Quarterly, 21(4):700–
714, 1976.

[10] N. Ducheneaut. Socialization in an open source software
community: A socio-technical analysis. Computer Sup-
ported Cooperative Work (CSCW), V14(4):323–368, Aug.
2005.

[11] M. L. Fennell. Synergy, influence, and information in the
adoption of administrative innovations. Academy Of Man-
agement Journal, 27(1):113–129, 1984.

[12] N. Fligstein. Social skill and the theory of fields. Sociologi-
cal Theory, 19(2):105–125, July 2001.

[13] M. S. Frankel and S. Siang. Ethical and legal aspects of hu-
man subjects research on the internet. Published by AAAS
online , June 1999.

[14] R. A. Ghosh, B. Krieger, R. Glott, G. Robles, and T. Wich-
mann. Free/Libre and Open Source Software: Survey and
Study – FLOSS. Final Report, International Institute of Info-
nomics University of Maastricht, The Netherlands; Berlecon
Research GmbH Berlin, Germany, June 2002.

[15] T. J. Halloran and W. L. Scherlis. High Quality and Open
Source Software Practices. In J. Feller, B. Fitzgerald,
F. Hecker, S. Hissam, K. Lakhani, and A. van der Hoek, ed-
itors, Meeting Challenges and Surviving Success: The 2nd
Workshop on Open Source Software Engineering, pages 26
– 28. ACM, 2002.

[16] P. M. Johnson, H. Kou, J. Agustin, C. Chan, C. Moore,
J. Miglani, S. Zhen, and W. E. J. Doane. Beyond the per-
sonal software process: metrics collection and analysis for
the differently disciplined. In ICSE ’03: Proceedings of
the 25th International Conference on Software Engineering,
pages 641–646, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[17] J. Law. Notes on the theory of the actor-network: Ordering,
strategy and heterogeneity. Systems Practice, 5(4):379–393,
1992.

[18] T. C. Lethbridge and J. Singer. Experiences conducting stud-
ies of the work practices of software engineers. In H. Er-
dogmus and O. Tanir, editors, Advances in Software Engi-
neering: Comprehension, Evaluation, and Evolution, pages
53–76. Springer, 2001.

[19] D. E. Perry, A. A. Porter, and L. G. Votta. Empirical stud-
ies of software engineering: a roadmap. In Proceedings of
the conference on The future of Software engineering, pages
345–355. ACM Press, 2000.

[20] L. Quintela Garcı́a. Die Kontaktaufnahme mit Open Source
Software-Projekten. Eine Fallstudie. Bachelor thesis, Freie
Universität Berlin, 2006.

[21] E. S. Raymond. The Cathedral and the Bazaar. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1999.

[22] E. M. Rogers. Diffusion of Innovations. Free Press, New
York, 5th edition, August 2003.

[23] F. Schlesinger and S. Jekutsch. ElectroCodeoGram: An
environment for studying programming. In Workshop on
Ethnographies of Code, Infolab21, Lancaster University,
UK, March 2006.

[24] D. Stelzer and W. Mellis. Success factors of organizational
change in software process improvement. Software Process:
Improvement and Practice, 4(4):227–250, 1998.

[25] W. F. Tichy, P. Lukowicz, L. Prechelt, and E. A. Heinz. Ex-
perimental evaluation in computer science: A quantitative
study. Journal of Systems and Software, 28(1):9–18, Jan.
1995.

[26] G. von Krogh, S. Spaeth, and K. Lakhani. Community,
joining, and specialization in open source software innova-
tion: A case study. Research Policy, 32:1217–1241(25), July
2003.

[27] R. K. Yin. Case Study Research: Design and Methods.
Applied Social Research Methods. Sage Publications, Inc.,
1988.

[28] M. V. Zelkowitz and D. R. Wallace. Experimental models
for validating technology. Computer, 31(5):23–31, 1998.

5

http://www.aaas.org/spp/sfrl/projects/intres/main.htm

	Introduction
	Research approach
	How to choose a host project?
	How to approach Open Source projects?
	How to interpret reactions and make strategic and tactical decisions?
	How and when to phase out involvement and leave?
	How to obtain evaluation results?
	Chances, limitations and conclusion

