
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015 1

A Multi-Site Joint Replication of a Design
Patterns Experiment using Moderator Variables

to Generalize across Contexts
Jonathan L. Krein, Lutz Prechelt, Member, IEEE, Natalia Juristo, Aziz Nanthaamornphong,

Jeffrey C. Carver, Senior Member, IEEE, Sira Vegas, Charles D. Knutson, Member, IEEE, Kevin D. Seppi,
and Dennis L. Eggett

Abstract—Context. Several empirical studies have explored the benefits of software design patterns, but their collective results are
highly inconsistent. Resolving the inconsistencies requires investigating moderators—i.e., variables that cause an effect to differ across
contexts. Objectives. Replicate a design patterns experiment at multiple sites and identify sufficient moderators to generalize the results
across prior studies. Methods. We perform a close replication of an experiment investigating the impact (in terms of time and quality) of
design patterns (Decorator and Abstract Factory) on software maintenance. The experiment was replicated once previously, with
divergent results. We execute our replication at four universities—spanning two continents and three countries—using a new method for
performing distributed replications based on closely coordinated, small-scale instances (“joint replication”). We perform two analyses: 1) a
post-hoc analysis of moderators, based on frequentist and Bayesian statistics; 2) an a priori analysis of the original hypotheses, based on
frequentist statistics. Results. The main effect differs across the previous instances of the experiment and across the sites in our
distributed replication. Our analysis of moderators (including developer experience and pattern knowledge) resolves the differences
sufficiently to allow for cross-context (and cross-study) conclusions. The final conclusions represent 126 participants from five universities
and twelve software companies, spanning two continents and at least four countries. Conclusions. The Decorator pattern is found to be
preferable to a simpler solution during maintenance, as long as the developer has at least some prior knowledge of the pattern. For
Abstract Factory, the simpler solution is found to be mostly equivalent to the pattern solution. Abstract Factory is shown to require a higher
level of knowledge and/or experience than Decorator for the pattern to be beneficial.

Index Terms—Design patterns, software maintenance, moderator variables, multi-site, joint replication, controlled experiment.

F

1 INTRODUCTION

SOFTWARE practitioners have ascribed numerous benefits
to the use of design patterns [1], [2], [3], [4], [5]. For

instance, by reducing code coupling, many patterns enable
developers to add functionality without modifying existing
code. Patterns also simplify communication by providing
standard terminology for complex concepts. Further, as

• J.L. Krein and C.D. Knutson, Department of Computer Science, Brigham
Young University, Provo, UT USA and Ironwood Experts, LLC, Alpine
UT USA. E-mail: jonathankrein@byu.net, knutson@cs.byu.edu.

• L. Prechelt, Institut für Informatik, Freie Universität Berlin, Germany.
E-mail: prechelt@inf.fu-berlin.de.

• N. Juristo, Computing School, Technical University of Madrid, Spain and
University of Oulu, Finland. E-mail: natalia@fi.upm.es.

• A. Nanthaamornphong, Department of Communication and Information
Technology, Prince of Songkla University, Phuket Campus, Thailand. E-
mail: aziz.n@phuket.psu.ac.th.

• J.C. Carver, Department of Computer Science, University of Alabama,
Tuscaloosa, AL USA. E-mail: carver@cs.ua.edu.

• S. Vegas, Computing School, Technical University of Madrid, Spain. E-
mail: svegas@fi.upm.es.

• K.D. Seppi, Department of Computer Science, Brigham Young University,
Provo, UT USA. E-mail: kseppi@byu.edu.

• D.L. Eggett, Department of Statistics, Brigham Young University, Provo,
UT USA. E-mail: theegg@stat.byu.edu.

Manuscript received. . . ; revised. . . ; accepted. . . . Date of publication. . . ; date
of current version. . . .
Recommended for acceptance by. . .
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org and reference IEEECS Log Number TSE-0000-00-0000.
Digital Object Identifier no. 00.0000/TSE.0000.0000000.

standardized representations, patterns can facilitate architec-
tural reuse, aid inexperienced developers, improve program
comprehension, and encourage best practices. Ultimately,
design patterns are thought to reduce development time,
increase software quality, and reduce maintenance costs—
but do they really? And if they do, then under what
circumstances are the various benefits realized?

Since Gamma et al.’s 1995 book [5], numerous empirical
studies have explored design pattern claims (e.g., [6], [7],
[8], [9], [10], [11]). However, these studies do not provide a
consistent answer. For example: Prechelt et al. [10] conclude
that sometimes software may still be easier to maintain even
if design patterns provide unnecessary flexibility. Conversely,
Wendorff reports that the “uncontrolled use of patterns”
caused, in their case, “severe maintenance problems” [11,
p. 77]. In general, we find support both for (e.g., [8], [9], [10])
and against (e.g., [6], [7], [11]) design patterns, for each of
several related attributes—modifiability, maintainability, un-
derstandability, quality, and so forth. In response to these and
other contradictory findings, the authors of a recent (2012)
systematic literature review conclude, “We could not identify
[aside from two marginal caveats] firm support for any of
the claims made for patterns in general” [12, p. 1213], [13].

Apparently, in the case of design patterns, contextual
variation drives complex tradeoffs. The study of design
patterns is thus confronted by a problem of generalizability—
i.e., the tendency of many effects to be unstable across

0000–0000/00/$00.00 c© 2015 IEEE Published by the IEEE Computer Society



2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

varying contexts, so that considerable knowledge of moderator
variables (moderators for short) is required before generaliz-
able statements can be made. By moderator, we mean any
explanatory variable that interacts with another explanatory
variable in predicting a response variable [14, p. 624], [15].1

Referring to this problem in sociology, Diesing notes, “We
cannot test one hypothesis about flatworms, or students,
or therapy patients. . . until we have learned many things
about the interacting factors affecting their behavior in an
experimental situation” [16, p. 338]. Moreover, “it has been
argued that the amount of progress in any discipline can
be indexed by the degree to which its theory and research
have considered the role of moderators” [14, p. 624]. Thus,
identifying moderators is critical to the research process, and
until we have done so, we cannot trust our conclusions. Also,
as Diesing notes, “replication is a test; but it is also part
of a larger search and discovery process” [16, pp. 337–338].
Thus, we should not be surprised to find disagreement in
early replications, but instead should view the situation as
an opportunity to explore moderators.

Given the contradictory results among design pattern
studies, identifying relevant moderators is prerequisite to
generalizing across contexts. Further, as Diesing explains [16,
pp. 335–339], explication of moderators requires empirical
replication. Thus, in this paper we present a joint replication
on design patterns, conducted at four sites, involving three
countries and two continents, the contextual breadth of
which is well-suited to the exploration of moderators.

By joint replication we mean a multi-site study, performed
by multiple research teams whose efforts are coordinated, yet
the researchers at each site act independently in performing
their own replication. Research teams explicitly communi-
cate about important aspects of the experiment, including
adopting a common definition of the experiment. However,
each team gathers participants, collects data, and performs
initial data analysis separately, after which the datasets are
then merged and analyzed together.2

A multi-site, joint replication of this sort has never been
done before in software engineering. In general, joint replica-
tion is a new type of method that adds to the conventional
research methods currently in use (e.g., see [18]). As we
show in this paper, it enables evaluation of moderators in
greater detail than previously possible. In fact, a key benefit
of joint replication is the contemporaneous collection of a
broad range of contextual data [17, p. 174].

For the joint replication, we closely replicate a seminal
experiment investigating the impact of design patterns
on software maintenance (abbreviated as “PatMain”). The
original PatMain study, performed in 1997 by Prechelt et
al. [10] and published in 2001, was the second controlled
experiment ever undertaken to study design patterns (the
first being “PatDoc” [19]). The experiment was replicated
once previously, in 2004 by Vokáč et al. [20], with divergent
results. In addition to being one of the first design pattern

1. See Section 2.4 for further explanation of the term moderator. Also
note, throughout the paper, we use the terms explanatory and response
instead of independent and dependent to refer to variables because, as we
show, the explanatory variables are not statistically independent (which
is precisely why we need to study moderators).

2. Joint replication is similar to multi-site randomized controlled
trials (RCTs) in social work research. For information on multi-site
RCT methods, see Solomon et al. [17, pp. 173–176].

studies, we chose PatMain because it is sufficiently small
scale in terms of participant time and it involves relatively
simple metrics that can be mostly collected automatically.

We conducted the joint replication as part of the 2011
Workshop on Replication in Empirical Software Engineering
Research (RESER) [21], [22], [23]. Initially eight research teams
expressed interest, of which four submitted data:

• Brigham Young University (BYU), Utah, USA
• Freie Universität Berlin (FUB), Germany
• The University of Alabama (UA), Alabama, USA
• Universidad Politécnica de Madrid (UPM), Spain

The four teams submitted brief reports to the workshop
describing their individual results [24], [25], [26], [27]. This
paper, which builds on those reports, contributes a combined
analysis of the four datasets, including the collection of
contextual data, analysis of moderators, assessment of the
original hypotheses, and synthesis of the results with the
prior two PatMain studies.

From this point forward, we refer to the original PatMain
study (by Prechelt et al.) as E orig, the first replication (by
Vokáč et al.) as E repl, and the joint replication (our work)
as E joint. To reference these experiments generically, we
use the term study, as in, “the three PatMain studies.” To
generically reference sub-replications of E joint (i.e., BYU,
FUB, UA, UPM), we use the term site, as in “the four E joint
sites.”

1.1 Objectives and Contributions
In this study we aimed to:

1) Replicate the PatMain experiment at multiple sites.
2) Assess the heterogeneity of the results.
3) Investigate potential moderators which may be inhibit-

ing generalizability of the results.
4) Address the original PatMain hypotheses.
5) Generalize the results across PatMain studies.

The primary objective of the study (relative to design
patterns) was to generalize across the PatMain series of
studies. In pursing this objective, we make three contribu-
tions to the literature. First, we identify industry-relevant
moderators (e.g., developer experience), each of which is
empirically/statistically shown to influence the effect of
design patterns. Second, we resolve significant contradictions
in the results across the three PatMain studies. Thus, the final
conclusions generalize across a broader set of contexts than
has previously been achieved in the study of design patterns.
Third, we distill the PatMain conclusions into a set of concise
statements, as well as a generalized figure, which can be
readily applied to future research and/or to practice.

We also make contributions to the literature with respect
to methodology. Thus, this study has produced two general
deliverables: 1) a set of practical findings relative to design
patterns (summarized above and discussed at length in
this paper), and 2) a new method for generalizing across
replications. Due to space constraints, we defer in-depth
discussion of the latter topic to a separate paper [28]. In the
present paper, we discuss methodology only to the extent
necessary to justify and show the novelty of the design
pattern results (in that they rest on a stronger-than-typical
empirical foundation—i.e., the joint replication is not just
another design patterns experiment).



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 3

1.2 Structure of this Article
In Section 2, we describe our research methods. In Section 3
we present results and discussion. In Section 4, we describe
threats to validity, and finally, in Section 5, we conclude.
All appendices are included in the supplemental materials for
this paper, which can be downloaded from the publisher’s website.
In addition to appendices, the supplemental materials also
include: a lab package for E orig (also available at [29]); raw
data for E repl (obtained from Marek Vokáč and included
with permission); and a lab package for E joint.

Since replicability and generalizability are key concerns
of this study, we include a considerable amount of sup-
plemental information in the appendices. The appendices
are provided to assist future replicators and/or to facilitate
transparency; none are necessary in order to understand the
conclusions and general validity of the study.

2 RESEARCH METHODS

In this section, we describe our research methods, including
the PatMain experiment, data and metrics, statistical models,
and moderator analysis.

2.1 The PatMain Experiment
In this section, we outline the three PatMain studies: E orig,
E repl, and E joint. We also describe the PatMain programs,
tasks, and hypotheses that were the same for all three studies.
To facilitate traceability, we reuse (as much as possible) the
terms, acronyms, and format of the prior two studies (E orig
and E repl).

2.1.1 The Original Study (E orig)
In this section, we describe E orig (by Prechelt et al. [10]).

Motivation and Research Question. Motivation for
E orig was twofold. First, the authors sought to empirically
validate design pattern claims, which at the time were only
anecdotally grounded. Second, they noticed a complexity
tradeoff: while design patterns provide flexibility, they can
make changes more difficult by complicating potential
solutions. To explore this tradeoff, the authors proposed
the following research question [10, p. 1135, paraphrased]:
For a given problem, if using a design pattern is “overkill” (i.e., the
pattern provides more functionality or flexibility than necessary),
will the resulting solution be more difficult to maintain than if a
simplified solution were implemented instead?

Experiment Design. E orig included four modestly-sized
(300–700 LOC), well-documented, C++ programs, implement-
ing five Gamma et al. [5] design patterns:

• Stock Ticker (ST): Observer
• Boolean Formulas (BO): Visitor, Composite
• Communication Channels (CO): Decorator
• Graphics Library (GR): Abstract Factory, Composite

Each program was implemented in two variants: one em-
ploying design patterns (PAT), the other using a simplified,
alternative design (ALT). The simplified design discarded
all patterns not required for the given program. Observer,
Visitor, Decorator, and Abstract Factory were completely
eliminated in the ALT variants; Composite was retained in
part in both the BO and GR programs. Participants were not
informed of the PAT/ALT distinction; they were only told,

“the experiment tests the usefulness of patterns” [10, p. 1135].
The experiment was administered on paper and included 2–3
tasks for each program. Some tasks required modifying code
(i.e., coding tasks); others tested comprehension of the code
(i.e., comprehension tasks).

The experiment began with a pre-test (PRE) involving two
of the four programs (one PAT, one ALT). A patterns training
course was then administered, followed by a post-test
(POST), involving the remaining two programs (again one
PAT, one ALT). Since design patterns were new at the time
of the experiment, the training course was a key incentive
to participate. The experiment lasted two days—pre-test in
the morning of day 1, training in the afternoon of day 1
and morning of day 2, post-test in the afternoon of day 2.
All participants received all four programs. Program and
variant orderings were alternated. Experience and pattern
knowledge were pre-surveyed to facilitate stratification of
the random assignment to groups.

This design resulted in six explanatory variables: program
(with levels ST, BO, CO, GR); task (with levels 1, 2, 3); variant
(with levels PAT, ALT); pattern knowledge (abbreviated
as patKnow, with levels PRE, POST); program order (with
levels first, second); and subjectID. The experiment assessed
two response variables: time (measured in minutes) and
correctness (i.e., quality of the solution, measured on a 4-point
scale: no fault, minor problem, not-so-minor problem, major
problem). Hypotheses addressed the impact of variant and
pattern knowledge (patknow) on time and correctness.

Participants. The 29 participants were all volunteers,
software professionals from the consultancy firm sd&m in
Munich, Germany. The median industry experience was 3.5
years (mean 4.1), including 2 years (mean 2.4) with object-
oriented programming. Fifteen (52%) of the participants had
prior industry experience with patterns.

2.1.2 The First Replication (E repl)

In this section, we describe E repl (by Vokáč et al. [20]).
Motivation and Research Question. The goal of E repl

was to increase “the experimental realism and, thereby, the
applicability of the results” [20, p. 150]. In particular, the
participants in the replication worked on computers rather
than on paper. Otherwise, the authors strove for a close
replication.

Experiment Design. The design of E repl involved four
key changes: 1) participants worked on computers, in a stan-
dardized environment, rather than on paper; 2) correctness
was assessed on a 5-point scale (requirements misunderstood,
wrong answer, right idea, almost correct, correct); 3) the
original programs were adjusted to facilitate compilation;
and 4) the participants were assigned by their consultancy
firms to participate, rather than being volunteers. Otherwise,
E repl closely duplicated E orig’s design; the patterns course
was even taught by the same instructor (Walter Tichy) using
the same materials.

Participants. The 44 participants included 39 software
professionals from 11 consultancy firms and 5 graduate
students. The median industry experience was 4 years
(mean 6.6), including 2 years (mean 2.4) with object-oriented
programming. Seventeen (39%) of the participants had prior
industry experience with patterns.



4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

2.1.3 The Joint Replication (E joint)

In this section, we describe our replication, E joint.
Motivation and Research Question. Three motivations

prompted E joint: 1) a joint replication had never been done
before in software engineering, so we anticipated significant
learning with respect to methodology; 2) we were interested
to see how homogeneous the results would be across sites;
and 3) we wanted to address the issue of contradictory results
among design pattern studies. In general, we wanted to test
a new method for performing distributed replications based
on closely coordinated, small-scale instances. Like E repl, we
maintain the original research question and hypotheses.

Experiment Design. We strove for a close replication. All
changes were either improvements carried over from E repl,
or they were administrative changes designed to encourage
participation and to facilitate consistency across sites.

Like E repl, the participants worked on computers, rather
than on paper. We administered the experiment via a web
portal, through which the participants downloaded source
code and uploaded solutions. The portal recorded work
times by tracking the time spent on each page. The portal
also managed experiment groups and administered the
questionnaires. For detailed information on the portal, see
Appendix A.

Using a web portal provided four benefits: 1) it lowered
the barrier to entry for replicators; 2) it facilitated uniformity
across sites; 3) it allowed participants to take the experiment
on their own time, thus reducing scheduling constraints; and
4) it allowed participants to work with their own tools in
their own environments. The downside was that we had less
control over what the participants did during the experiment
(e.g., take phone calls). However, few participants reported
interruptions or protocol deviations, and for those that did,
we apply data corrections, as described in Section 2.2.

Another change involved reducing the scope of the
experiment by eliminating the training course and the post-
test, thus reducing the experiment from four programs to
two. The purpose of the scope reduction was, as with the web
portal, to lower the barrier to participation. Thus we traded
breadth of protocol for increased coverage of contextual
variables and greater diversity in the population sample. Of
the four programs, we excluded ST and BO (ST because it is
the least complex and we wanted to make sure the results
would not be washed out by an overly simplistic task; BO
because the prior two studies both found the Visitor pattern
to be overly difficult.3)

Instead of assessing pattern knowledge via the training
course, we used a pre-questionnaire. As with the other ma-
terials of our replication, we adopted the pre-questionnaire

3. For example, of E repl, Vokáč et al. comment, “. . . Visitor was
so difficult that even after a course that gave the instructor excellent
feedback (grade better than 4 out 5), most subjects either ignored the
pattern or were confused by it.” [20, p. 172].

Additionally, note that pattern difficulty (or complexity) is not the
same concept as that of “overkill” from the research question described
in Section 2.1.1. “Overkill” refers to a pattern’s complexity relative to the
problem it aims to solve, rather than to its absolute complexity. Thus,
although the Visitor pattern is structurally more complex than Decorator
and Abstract Factory, it is not necessarily more suited to answering
questions about overkill. By eliminating the visitor pattern we aimed to
tackle the question of overkill with respect to Decorator and Abstract
Factory first.

from the original experiment (where it had been used to
facilitate stratification of the random assignment to groups).
The pre-questionnaire required participants to estimate their
knowledge of 17 patterns on a 7-point ordinal scale: 1=never
heard of it, 2=have only heard of it, 3=understand it roughly, 4=
understand it well, 5=understand it well and have worked with
it once, 6=understand it well and have worked with it two or
three times, 7=understand it well and have worked with it many
times. Except for the Reactor pattern, which was originally
defined by Schmidt et al. [30, pp. 179–214], the 17 patterns
were all standard Gamma et al. [5] design patterns (for a
complete list, see Appendix G). Admittedly, if participants
are too homogeneous, a survey may fail to detect an effect
even when one exists. On the other hand, if participants are
initially too knowledgeable, a training course may also fail
to detect an effect. Thus both approaches have limitations.

Lutz Prechelt translated the materials of the original
experiment from German to English, which translation was
used at all four sites. Lutz also modified the questionnaires
to collect additional data. To test the translation, we ad-
ministered the experiment to three native English-speaking
computer science students not previously affiliated with the
study; the test participants had no problem understanding
the instructions and questionnaires. For discussion of how
the use of English may have impacted the sites differently,
see Appendix S (specifically the subsections on language
barriers and clarity of task instructions).

Other changes included: 1) The web portal offered three
language options: C++, Java, and C# (Martin Liesenberg and
Christian Bird provided the Java and C# translations of the
original C++ programs). Despite having three options, all
participants worked in Java. At BYU and UA they were in-
structed to do so; at FUB and UPM they did so by preference.
2) Although we did randomly assign participants to groups,
we did not stratify that random assignment; instead, we
controlled for developer experience and pattern knowledge
via covariates in the statistical analysis. Group assignments
were made by randomly assigning IDs to participants, which
IDs were generated by the web portal and corresponded to
the four treatment groups, as follows (group# = ID % 4):

• Group 0: GR-PAT, CO-ALT (14 participants)
• Group 1: CO-ALT, GR-PAT (12 participants)
• Group 2: GR-ALT, CO-PAT (12 participants)
• Group 3: CO-PAT, GR-ALT (15 participants)4

Our protocol preserves the variables from E orig except
for a few changes. Concerning explanatory variables: we
limit program to two levels (CO, GR); we assess pattern
knowledge (patknow) via a survey instead of a training course;
and we add explanatory variables to represent developer
experience (devExp) and site (BYU, FUB, UA, UPM). All other
explanatory variables (task, variant, order, and subjectID) are
as described previously for E orig. Concerning response vari-
ables: time is measured in seconds rather than minutes, and
correctness is measured on E repl’s 5-point scale (described
in Section 2.2). Additionally, despite the standardized web
portal, the four sub-replications still differed in a few minor
respects—e.g., BYU’s experiment spanned 3 weeks, whereas

4. Treatment groups are modestly imbalanced due to several no-shows
and eight cases of unusable data, as discussed in Section 2.2. For group
sizes listed by site, see the data file in the lab package.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 5

TABLE 1
Overview of the CO/GR programs, tasks, and hypotheses. For additional details, see Appendix D.

Program Description Tasks and Hypotheses (based on E orig’s published report)

Comm.
Channels
(CO)

Key
Pattern:
Decorator

Wrapper library for establishing connections
and transferring packets of data. Provides a
facade to a system library. Supports optional
logging, compression, and encryption. Not
very complex. Simple communication primi-
tives with similar interfaces.

PAT: ∼360 LOC, 6 classes. Uses a Decorator
scheme to add logging, compression, and
encryption functionality to a bare channel.

ALT: ∼310 LOC, 1 class. Uses flags and if-
sequences for turning functionality on and off;
the flags are set when creating a channel.

1: Enable error correction (which is already implemented in the underlying system library)
to be added to communication channels.

The ALT variant’s functionality is localized, so it will be easier to understand.
However, the PAT variant’s functionality is encapsulated, so it will be easier to
modify (e.g., to add a new primitive, simply add a new Decorator class). Since the
latter influence should be stronger, the PAT variant will be preferable, especially
at higher levels of pattern knowledge.

2: Determine under which conditions a reset() call will return the ‘impossible’ result; also,
create a channel that performs compression and encryption.

In the ALT variant, state changes are localized and so easier to track than in
the PAT variant. Further, creating a channel with the ALT variant requires one
statement, whereas PAT requires determining the correct nesting of Decorators.
The PAT groups will take longer and commit more errors.

Graphics
Library
(GR)

Key
Pattern:
Abstract
Factory

Library for creating, manipulating, and draw-
ing graphical objects on output devices. The
output device is selected in a central class
(generator). Object implementations depend
on the selected output device. Objects can be
grouped and manipulated like objects them-
selves. Data structure is partly recursive; more
complex than CO.

PAT: ∼650 LOC, 13 classes. Uses Abstract Fac-
tory for the generator classes, and Composite
for hierarchical object grouping.

ALT: ∼640 LOC, 11 classes. Uses a single
generator class with switch statements for the
different devices. Uses a quasi-Composite for
object grouping—allows one level of object
grouping, but no nested grouping.

1: Add a new output device.

PAT requires adding a new factory class and extending the factory selector method.
ALT requires enhancing the switch statements in all methods of the generator
class. Both variants require adding two concrete product classes. Since the volume
of changes is similar, the main difference should depend on comprehension. With
its localized switch statements, ALT will be easier to understand, at least for
participants with low pattern knowledge. Also, pattern knowledge will help
both groups deal with the Composite, though the PAT participants may profit
more since they also interact with Abstract Factory.

2: Determine whether a given sequence of statements will result in an x-shaped figure.

This is a comprehension test on Composite, where the key is to recognize that
references, and not copies of objects, are stored in an object group. The structure
of both variants is similar in the region of interest, so the ALT and PAT groups
will not significantly differ. However, the task will require less time at higher
levels of pattern knowledge for both variants, due to the Composite pattern.

UA’s was completed within 3 days. For a complete list of the
differences, see Appendix B.

Participants. The four sites independently solicited par-
ticipants. Participants were expected to have a good working
knowledge of C++, C#, or Java. Design pattern knowledge
was not strictly required. All four teams enlisted students.
The student demographic is useful in the case of PatMain
because both prior studies employed professionals.

The 53 participants were all solicited from software
engineering courses. All were computer science majors or
equivalent—including 27 undergraduate and 26 graduate
(MS or PhD) students. The median industry experience
was 0 years (mean 1.5). More than half of the participants
reported understanding (at least roughly) most of the pat-
terns surveyed. However, only one pattern (Observer) was
reported by a majority of participants as having ever been
used. For most of the participants, their implementation
experience with patterns was the result of coursework. Thus,
the participants had broad exposure to patterns, but little
practical (and almost no industry) experience with them.

Concerning sites, we find three notable differences: 1) the
BYU and FUB participants were mostly undergraduates,
whereas the UA and UPM participants were entirely gradu-
ate students; 2) the BYU participants reported having used
more programming languages than did those at any of
the other three sites; and 3) the UA and FUB participants
reported greater exposure to patterns than did the BYU and
UPM participants. For further details on these and other

demographics, see Appendix C.

2.1.4 The CO/GR Programs, Tasks, and Hypotheses
E orig and E repl both tested all four PatMain programs
(ST, BO, CO, GR). E joint, however, only tested CO and GR.
Accordingly, we only consider CO and GR from this point
forward. Table 1 summarizes the CO/GR programs, tasks,
and hypotheses, which were the same for all three studies.

2.2 Data and Metrics

In this section, we describe the joint dataset. We also provide
additional information about explanatory and response vari-
ables. Variables not appearing in this section are described
sufficiently above. For summary statistics on experiment
variables, see Appendix E.

2.2.1 Joint Dataset
Of the 61 participants to take the experiment, we had to
discard all data for 8. For a list of the affected participants,
see Appendix F. Problems included: failure to complete any
of the tasks and failure to adequately record breaks. Two
participants also submitted the same data for both programs,
and one quit after completing only the CO program. We
ended up with data from 52 participants for the CO program
and 51 for the GR program (53 total).

We provide an annotated copy of the joint dataset in the
lab package. We describe its schema in Appendix G and



6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

the annotation process in Appendix H. Annotation involved
scanning by column for outliers and by row for participants
who deviated from the instructions. Of the 91 fields in the
dataset, we exclude 53 from the statistical analysis. Some
fields we exclude because they represent meta- or qualitative
data. Others we exclude because, given only 53 participants,
we have to limit the number of parameters we estimate in the
statistical models (i.e., to avoid over-fitting, multicollinearity,
loss of precision, etc. [31]). We also need to reduce the
complexity of the models in order to enable theoretical
interpretation of the results, which interpretation is necessary
in order to generalize the findings across studies. For a list of
the unused variables, some of which may be useful in other
studies, see Appendix I.

Also note, E orig defined three tasks for CO, but only two
each for ST, BO, and GR. Consequently, the authors of E repl
combined CO tasks 2 and 3 to produce “a more symmetrical
experimental design” [20, p. 179]. This approach is reasonable
because CO tasks 2 and 3 are similar and address similar
hypotheses. Like E repl, we also combine CO tasks 2 and 3
by summing the task times and averaging the correctness
scores. From this point forward, we treat CO tasks 2 and 3 as a
single task, which we collectively refer to as “CO task 2”.

2.2.2 Developer Experience (devExp)
To include in our models all of the developer experience
variables we surveyed, we risk diluting statistical power [31,
p. 347]. Some of the variables are also highly correlated
(well above 0.7), thus leading to multicollinearity problems.
Discarding data is not ideal, so instead we take an aggregate
approach. By combining metrics, we conserve degrees of
freedom, avoid multicollinearity, and hopefully “average out”
measurement error [32].

To compose the aggregate metric, we average 4 compo-
nent metrics: programming languages used, lines of code
written, programming hours per week, and self-assessed pro-
gramming skill. Prior to averaging, we log transform/scale
each variable as needed to mitigate outliers and to prevent
any single metric from dominating the average. For a detailed
description of the process, see Appendix J. The result is a
continuous variable ranging from 1 to 7, scaled to match
the range of pattern knowledge (described below), where 7
represents high experience.

2.2.3 Pattern Knowledge (patKnow)
Participants estimated their knowledge of 17 design patterns
on a 7-point ordinal scale (for a description of the scale,
see Section 2.1.3). Like developer experience, and for the
same reasons, we average the pattern knowledge scores to
produce a single aggregate metric. Although averaging treats
the ordinal scale as an interval scale, it should reasonably
differentiate the participants.

In addition to the aggregate score, we also tried mea-
suring patKnow based on the participants’ knowledge of
individual patterns (i.e., using only the scores concerning the
Decorator and Abstract Factory patterns for the CO and GR
programs, respectively). However, using individual (rather
than aggregate) scores had little impact on the results (as
tested in a preliminary analysis of the BYU data [25]). Thus
we prefer to use a single, more general metric for pattern
knowledge since such a metric is both consistent across

programs and more easily comparable with the prior two
PatMain studies.

2.2.4 Time
The web portal’s page timings indicate that some participants
spent considerable time on the download pages. Since the
downloaded files were all less than 25 KB, the download
process should have been quick, even for slow Internet con-
nections. Further, the affected participants did not indicate
having taken any breaks. Thus, the affected participants likely
began working before proceeding to the task description
pages—e.g., unzipping files, loading code into IDEs, and
reading code.

If some participants performed lengthy tasks on the
download page that others performed only on the task
description page, then the only way to ensure consistent
measurement across participants is to sum the download,
work, and upload page timings. Moreover, since the true
download/upload times should be trivial compared to the
work times, and since all participants had to transfer files,
aggregating the download/upload times with the work times
should not mask or bias the results. Consequently, we sum
download, work, and upload page timings for all coding tasks (CO
and GR task 1s).

2.2.5 Correctness
To ensure consistency, we had all tasks graded by the same
two people, neither of whom were previously affiliated with
this study. The two graders were both graduate researchers
with professional experience in software development, in-
cluding one in software testing. For the coding tasks, the
graders worked together in a pair-programming style ar-
rangement. They initially reviewed the solutions for each
task, from which they decided to use (essentially) the same
5-point scale used in E repl:

1) Requirements misunderstood (0%)—the solution is com-
pletely wrong; it appears that the participant did not
understand the requirements.

2) Wrong answer (25%)—the participant appears to have
understood the requirements, but did not produce the
correct solution, even conceptually.

3) Right idea (50%)—the solution conceptually addresses
the requirements, but is incomplete or contains an error
and does not compile.

4) Almost correct (75%)—the solution conceptually ad-
dresses the requirements and compiles, but is incomplete
or contains a functional error.

5) Correct (100%)—the solution is completely correct; it
compiles and meets the stated requirements.

For the short-answer tasks, the graders chose a binary rubric
(incorrect=0%, correct=100%). They chose the binary rubric
because, in their words, “people did not appear to be guess-
ing; they seemed to either know the answer or not.” Each
grader then evaluated half of the participants, after which
they compared results to ensure consistency. The graders
graded holistically, considering everything a participant said,
rather than just searching for a specific answer.

2.3 Statistical Models
To address the original PatMain hypotheses, we use frequen-
tist models, which we designed prior to viewing the data. For



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 7

the post-hoc analysis of moderators, we use both frequentist
and Bayesian models.

We add Bayesian models to the moderator analysis
because the Bayesian approach provides several key ad-
vantages which allow us to form conclusions where the fre-
quentist models are otherwise inconclusive (see Section 2.3.1).
However, we do not use the Bayesian models to assess the
original PatMain hypotheses because, per our formulation,
they are specifically adapted to analysis of large interactions.
In other words, although they provide valuable information
about moderators where frequentist models fail, they are
unnecessarily inefficient when it comes to assessing the
original PatMain hypotheses. Moreover, we selected and
designed the Bayesian models directly in response to our
observations of the data. Thus, the Bayesian models suffer
from additional threats to conclusion validity (see Section 4.2).

Below, we explain why the Bayesian approach is ideal
for moderator analysis. We then describe the frequentist
and Bayesian models in detail. Finally, we explain how to
interpret the results for each type of model. Source code (R
and SAS) for all models is provided in the lab package.

2.3.1 Why Bayesian Models?
First, the Bayesian models allow us to directly compare probabilities
for competing hypotheses, which means we can form conclusions
even when statistical power is low. In frequentist statistics, a p-
value is the probability of obtaining data at least as extreme
as those observed, assuming a null hypothesis is true. In
contrast, Bayesian models yield posterior probabilities. A
posterior probability is the conditional probability that a
hypothesis is true, given the data. Being a probability about
the truth of a hypothesis, rather than about the likelihood of
the data, we can directly compare posterior probabilities to
determine which hypotheses are most likely [33].

The ability to compare probabilities is especially useful for
the moderator analysis, which requires modeling high-order
interactions. First, adding interactions to any model dampens
statistical power by spreading the data over more parame-
ters [31]. Second, the frequentist models yield insignificant,
but very large effect estimates for many of the interactions we
test. Thus, the frequentist results for the moderator analysis
are inconclusive; the data are simply too few relative to
the variance and model sizes. Conversely, using Bayesian
methods, even though the statistical power is minimal, we
can still identify likely moderators by comparing posterior
probabilities for the appropriate hypotheses.

Second, the Bayesian models provide samples from the joint
posterior distribution, which means we can use fewer parameters
to estimate the same set of interactions, thereby conserving
statistical power. We estimate the Bayesian models using
Gibbs sampling [33], which, as a Markov Chain Monte Carlo
(MCMC) sampling algorithm, generates samples from the
joint posterior distribution of all parameters in the model.
Given posterior samples, we can use marginalization to
compute, from a single high-order interaction, results for
all lower-order interactions and component terms [33]. Con-
versely, in mixed models analysis, lower-order interactions
and terms must be estimated by separate parameters [31].

Third, the Bayesian models are subject to a different set of
statistical assumptions, which means they provide validation for
the freqentist models (and vice versa) [31], [33], [34].

TABLE 2
Frequentist statistical models.

Explanatory
Model Program Response Variable Variables

CO time CO time ln (cont: ≥0)* see below
CO correctness CO correctness (cont: 0–100) see below
GR time GR time ln (cont: ≥0)* see below
GR correctness GR correctness (cont: 0–100) see below

Blocking Variable (random effect)
subjectID Accounts for multiple observations per participant.

Covariates (fixed effects)†
order Program order (cat: 1=first, 2=second)
task Program task (cat: 1=coding, 2=comprehension)
site Sub-replication (cat: BYU, FUB, UA, UPM)
devExp Developer experience (cont: 1–7)
patKnow Pattern knowledge (cont: 1–7)
time ln* or In a given model, we use whichever variable

correctness is not the response variable. Controls for
correlations between time and correctness.‡

Main Effect and Interactions (fixed effects)
variant Program variant (cat: PAT, ALT)

patKnow×variant, variant× task,
patKnow× task, patKnow×variant× task

cont = continuous variable; cat = categorical variable.
*Normalized via log transformation.
†We tested one other covariate, representing java familiarity, but

found it to have almost no impact. See Appendix K for details.
‡E.g., achieving higher correctness simply by working longer.

2.3.2 Frequentist Models
Table 2 summarizes the frequentist models. For this analysis,
we use linear mixed models [35], an extension of multiple linear
regression, which adds the ability to represent blocking (or
grouping) variables as random effects. Because the CO and
GR programs differ, we analyze their results in separate
models. We also run separate models for each response
variable. To control for participants who achieve higher
correctness simply by working longer, we include time as
a covariate in the correctness models (and vice versa). Also,
like E orig and E repl, we model (via interaction effects) the
impact that patKnow has on variant, which is necessary to
address the original hypotheses.

To normalize the data, we log transform time—after
which the data conform to the standard assumptions of
mixed models analysis, including normality, multicollinearity,
and heteroscedasticity. For a detailed assessment of model
assumptions, see Appendix L. To maximize statistical power,
we tune each model using a standard covariate pruning
technique; the technique is essentially backward stepwise
regression, but modified to avoid fishing for significance [31,
p. 345]. For specific details, see Appendix M. All p-values are
two-sided.

2.3.3 Bayesian Models
For the Bayesian analysis, we construct additive-effects
models as shown by Felt [34, ch. 4]. By additive-effects, we
mean models in which the explanatory variables are assumed
to have linear (i.e., additive) influences on the response
variables. Due to space constraints, we summarize only the
Bayesian models below. For a primer on Bayesian analysis,
as well as a detailed walkthrough of our models, see [28].

Whereas Felt uses a single variance parameter, we include
four in each model, one for each task. We estimate the task



8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

variances separately because some of the tasks require more
time than others and longer tasks typically manifest greater
variance. Additionally, we represent all explanatory variables
as categorical effects. Doing so avoids linearity assumptions
and, in that regard, provides validation for the frequentist
models. As a drawback, using categorical effects necessitates
more parameters in the models than would be needed to
represent simple linear relationships. However, given the
exploratory purpose of the Bayesian models, we do not want
to rely on linearity assumptions in this case.

We divide each continuous variable’s range into two
parts, low and high, representing roughly the bottom and top
halves of the data, respectively. For a complete list of the
divisions, see Appendix N. Note that we could use more than
two levels per variable, thus allowing the models to fit more
complex relationships. However, adding additional levels
causes a multiplicative increase in the number of parameters
required to model interactions, which ultimately spreads
the data too thin to obtain useful results. In fact, with even
three levels per variable, most of the interactions involve
at least one level that is completely unrepresented in the
data. Conversely, with two levels per variable, all levels of
all interactions are adequately represented.

Like the frequentist analysis, we run separate models
for each response variable. However, because the Bayesian
models allow us to easily estimate separate variances for
each task, we model the CO and GR programs together.
Since time is skewed high and cannot be negative, we model
it as a gamma distribution; since correctness is a percentage,
we model it as a beta distribution. The data conform to the
assumptions inherent in the type of models we construct,
including multicollinearity and heteroscedasticity. For a
detailed assessment of model assumptions, see Appendix L.

For each response variable, time and correctness, we run 6
models (denoted T1–T6 and C1–C6, respectively). All models
include the same set of variables, matching those for the
frequentist analysis (shown in Table 2), plus an additional
variable representing program. Each model also includes one
interaction effect. If a variable is included in the interaction,
then it is not included elsewhere in the model.5 The models
only differ by which variables are included in the interaction.
Table 3 shows, for each model, the interaction being tested.

Concerning prior distributions, we enlisted a qualified
external researcher to estimate all priors using data from
E orig. We gave our helper only two constraints (both
suggestions of Felt [34]): First, we instructed him to center all
priors—with the exception of the variances and base offset—
at zero, thus assuming no effect by default (i.e., the null
hypothesis). Second, we instructed him to select broad priors
in order to minimize their impact on the results. Broad priors
are ideal for post-hoc analysis, for which the objective is to
generate data-driven hypotheses [34]. For a list of the exact
priors, see Appendix O.

2.3.4 Results Interpretation—Frequentist vs. Bayesian
In frequentist statistics, p-values are significant when small—
i.e., to reject a null hypothesis, the data must be unlikely

5. Unlike frequentist statistics, Bayesian estimates for low-order
interactions and terms can be computed via marginalization from high-
order interactions. Thus, a variable need not be modeled both within an
interaction and as a standalone effect.

TABLE 3
Bayesian model interactions.

Model(s) Interaction

T1, C1 program×variant× task×site
T2, C2 program×variant× task×patKnow
T3, C3 program×variant× task×devExp
T4 program×variant× task×correctness

C4 program×variant× task× time
T5, C5 program×variant× task
T6, C6 program×variant

under the assumption of that hypothesis. For posterior
probabilities, however, large values are significant—e.g., 0.95
represents a 95% chance that the associated hypothesis is
true, given the data. Further, we typically require very small
margins of error in frequentist statistics (e.g., α = 0.05); oth-
erwise the results are inconclusive. Conversely, for posterior
probabilities, significance depends on the context of the
problem. For example, in our analysis, a posterior probability
of 0.75 means we expect the associated hypothesis to hold
in 75% of similar cases. Under such an interpretation, even
relatively low probabilities can be meaningful.

2.4 Moderator Analysis

In this section, we define what we mean by moderator, de-
scribe how we identify candidate moderators for qualitative
and/or quantitative assessment, and explain how we map
continuous moderators to general categories for comparison
across studies.

2.4.1 What is a Moderator?
By moderator, we mean any explanatory variable that interacts
with another explanatory variable in predicting a response
variable [14, p. 624], [15]. For one variable to “moderate”
another does not mean that it dampens the other’s effect—
rather, it means that an interaction exists, such that the latter’s
effect varies in response to the former. If unaccounted for, the
variance induced by a moderator can mask the effect of the
variable with which it interacts. Further, if disjoint subsets
of a moderator’s range are represented in two different
studies, then the two studies can produce inconsistent or
even contradictory results.

Additionally, when we say moderator, we are referring to
a phenomenon inherent in nature—i.e., one variable moderates
another’s effect on some outcome independent of whether either is
experimentally measured or statistically modeled. Any variable
(or more loosely, factor or influence), previously known or
unknown, measured or not, can be a moderator. Our goal was
to discover the most influential moderators (among those
that interact with the main effect), sufficient to explain cross-
site variance and to produce generalized conclusions. Thus,
we investigated as many potential moderators as possible,
including several that were not measured as part of the experiment.

2.4.2 Identifying Candidate Moderators
To identify candidate moderators for analysis, we used a
relaxed, grounded-theory process involving coding, memo-
ing, and the forming of categories (similar to that described
by Charmaz [36]). For source data we used the workshop



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 9

reports and datasets from the four sub-replications of E joint,
the reports from E orig and E repl, and email conversations
between E joint researchers discussing their experiences.
The process yielded a list of candidate variables, from which
we selected for analysis those that met the following two
criteria: 1) the variable seemed theoretically meaningful, and
2) we had data available that could reasonably represent the
variable. Many of the variables we identified were not considered
prior to this analysis, so they do not appear in Table 2.

The variables selected for analysis include: student vs.
professional status, devExp, patKnow, motivation, task diffi-
culty, correctness/time, program order, perceived time limits,
cultural variation, IDE preferences, language barriers, clarity
of task instructions, and compilation/testing expectations.
We recognize that correctness and time are response variables,
not moderators. However, in their role as covariates (see
Table 2), they can reveal insights about moderators, so we
include them in the analysis. For measured variables, we
statistically assess the extent to which each moderates the
main effect. For other variables, we glean what we can from
qualitative data. We document all variables explored, even
those that turned out to be innocuous.

Lastly, since moderator analysis is post-hoc, it inflates the
chances of a type 1 error—i.e., testing relationships that were
not specified a priori increases the risk of incorrectly conclud-
ing an effect exists. Thus, our conclusions relative to moderators
are data-driven conjectures which must be further investigated.

2.4.3 Moderator Categories (low/high)
Some of the moderators we explore are continuous variables.
However, in the results discussion, we generalize them in
terms of low and high categories. For the frequentist models,
which are linear, low and high correspond to the min and
max values found in the data for the given variable. We use
min/max data values rather than the limits of the variables’
scales in order to avoid extrapolation (e.g., in the case of
patKnow, high=5.412 rather than 7). For the Bayesian models,
which make no linearity assumptions, the terms low and high
roughly correspond to the bottom and top halves of the data
for each variable, as described in Section 2.3.3.

Concerning pattern knowledge, low and high correspond
to the prior two studies’ designations of PRE and POST—
meaning before and after the patterns training course. By
making this comparison, we are not asserting that PRE and
POST map directly onto E joint’s categories of low and high—
especially since the participants’ prior pattern knowledge
differed across all three studies. Instead, assuming a linear
effect, we expect the transition from PRE to POST to be
comparable to that from low to high.

3 RESULTS AND DISCUSSION

In this section, we assess the heterogeneity of the results
for E joint, investigate candidate moderators, and address
the original hypotheses. To facilitate future meta-analysis,
we provide a concise listing of all statistical results in
Appendices Y and Z.

3.1 Assessment of Heterogeneity
In this section, we show that E joint manifests the problem
of generalizability—i.e., the main effect varies across sites.

●

CO Task 1, Unfiltered

5
6

7
8

9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s) ●

CO Task 1, Filtered

5
6

7
8

9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s)

(a) Unfiltered data

●

CO Task 1, Unfiltered

5
6

7
8

9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s) ●

CO Task 1, Filtered

5
6

7
8

9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s)

(b) Filtered data

Fig. 1. Time data for CO task 1, showing ALT versus PAT displayed by
site. Max whisker range is 1.5 IQR.

TABLE 4
Frequentist model p-values for site and variant. p-values less than or

equal to 0.05 are bolded.

Unfiltered Filtered
Model site variant site variant

CO time <0.001 0.925 <0.001 0.019*
CO correctness 0.003 0.095 0.008 0.523
GR time 0.019 0.016 <0.001 0.025
GR correctness NS 0.322 NS 0.245

NS = not significant—i.e., the exact value is not available since the
variable was removed during model tuning due to lack of
significance. For a description of model tuning, see Appendix M.

*Min p-value for variant within the patKnow×variant interaction.

We demonstrate this problem via both the frequentist and the
Bayesian models. We also explore data filtering as a method
to mitigate the problem. The purpose of this section is to
validate that moderator analysis is needed to make sense of
E joint’s dataset.

3.1.1 Heterogeneity in E joint
Fig. 1a depicts the main effect, program variant, compared
across the four sites (before filtering). Notice that the sites
significantly differ—in two cases PAT takes more time
than ALT, in another case no effect can be seen, and in
the remaining case the effect is reversed. We find similar
divergences on all tasks, for both time and correctness (the
remaining plots are shown in Appendix Q). Thus, with respect
to variant, the results do not generalize well across the four sites.

In the (unfiltered) frequentist models, this problem shows
up as site being considerably more significant than variant
(see Table 4). Similarly, in the Bayesian models, we find (for
all tasks) that the effect of variant is more significant at indi-
vidual sites than when generalized across sites (uT1,C1:46–
54,791–826).6 For example, on CO task 2, the marginal

6. We use references of this form to map specific assertions back to
the Bayesian probabilities on which they are based. The references are
necessary because the Bayesian analysis produces more data than we
have room to list in the main paper. The references provide an audit trail,
as well as a more complete working example for future replicators. The
paper is written such that the references can be ignored. The reference
notation is as follows: u and f signify unfiltered versus filtered data—i.e.,
Tables 59 and 60 in Appendix Z. T# and C# indicate a specific time or
correctness model—i.e., one of the models T1–T6 or C1–C6, which are
represented as columns in the tables. Lastly, a colon indicates a list of
row numbers—e.g., uT1:12 signifies Table 59 (unfiltered data), column
T1, row 12. Abbreviations resulting from this notation include: uT1, uC1,
f T1, f C1, uT2, uC2, f T2, f C2, uT3, uC3, f T3, f C3, etc.



10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

(i.e., generalized) probability that PAT took longer than
ALT is only 0.58—compared to, for example, 0.86 at UPM
(uT1:51,807).

Clearly, cross-site variance is inhibiting isolation of the
main effect—otherwise, aggregating data across sites would
yield an increase in statistical significance. Thus, in addition
to being a replication of PatMain, E joint evokes the broader
problem of generalizability that confronts the PatMain series
of studies. Moreover, E joint reproduces that problem within
the context of a single, controlled experiment. Thus, much
of the variance observed across sites can reasonably be at-
tributed to meaningful variables rather than to experimental
artifacts. This setup is ideal for studying moderators.

3.1.2 Heterogeneity in E repl and E orig
E repl, which involved participants from 11 companies,
encountered problems with variance similar to E joint. As
Marek Vokáč describes, “[Our participants] came from some
of the major (even international) consultancy companies, and
they were paid quite well for their efforts” (email, Oct. 14,
2012). Nevertheless, the analysis required “an expert from
the statistics section of the Math faculty” because “the ‘usual’
methods were not enough to extract a good signal from
the fairly noisy data” (email, Oct. 16, 2012). Conversely, all
of E orig’s participants came from a single company, and
variance was not a significant concern in that case.

3.1.3 Filtering to Reduce Heterogeneity
E repl used two types of data filtering to reduce variance,
which we refer to as observation and participant filtering.
Observation filtering—i.e., discarding all data points with a
correctness score below 75% (time models only)—is too course
grained to effectively reduce cross-site variance in E joint (for
further details, see Appendix P). Participant filtering, how-
ever, does account for at least some of the cross-site variance.

Concerning participant filtering in E repl, “Four subjects
had consistently low-quality solutions. Inspection. . . revealed
that their C++ proficiency was so low that it would signif-
icantly mask any other effect” [20, p. 162]. Consequently,
Vokáč et al. discarded all data for these participants, con-
cluding that no bias was introduced since the PAT and ALT
variants were equally affected. However, Vokáč et al. did not
specify a process for identifying underqualified participants.

Therefore, to filter participants in E joint, we determined
a filtering threshold based on the participants’ average
task correctness. By averaging across tasks, we were able
to factor out variant, such that the choice of threshold would
not bias the final results. At a threshold of 25 percentage
points (unanimously selected by 4 independent reviewers),
10 participants were excluded (6 UA, 3 BYU, 1 UPM, 0
FUB). These participants were likely underqualified and/or
insufficiently motivated. For further details on the filtering
process, including a list of the 10 participants excluded, see
Appendix Q.

Ultimately, the filtering increased statistical precision
by reducing cross-site variance, but without significantly
altering the main effect estimates (e.g., see UA in Fig. 1b; see
also Table 4). The filtered models also make more sense. First,
patKnow becomes significant in three of the four frequentist
models (see Table 6), consistent with the prior two studies.
Second, the patKnow×variant interaction becomes significant

in the CO time model (p-value = 0.029), which is consistent
with the notion that pattern knowledge should be more
meaningful for the PAT variant than for the ALT variant.

However, the filtering did not significantly affect either
of the correctness models or the GR time model (see Table 4);
site is also still significant in the same models as before, and
the Bayesian results (f T1,C1:46–54,791–826) still show variant
to be more significant within sites than across sites—though
the disparity is reduced. Thus, although the participant filtering
reduces cross-site variance, it does not fully explain such variation.

3.2 Assessment of Moderators
In this section, we investigate candidate moderators. Note
that we use both the frequentist and the Bayesian models
for this discussion; also, all conclusions from this point forward
are limited to: 1) the patterns tested in the CO/GR programs
(Decorator and Abstract Factory), 2) maintenance activities,
3) maintainers that were not the original implementers, and
4) programs for which the full functionality of the patterns was
not initially needed.

3.2.1 How to Read Table 5
Table 5 shows results for the Bayesian assessment of modera-
tors. Rows represent candidate moderators; columns repre-
sent interactions. The candidate-columns (i.e., c-columns) rep-
resent variant×program× task×candidate interactions, where
candidate is the candidate moderator for the given row; the
¬c-columns represent variant×program× task interactions,
where the given candidate has been marginalized out. The
¬c-columns provide a baseline against which to compare
the c-columns. The baseline values within each ¬c-column
differ because the candidates were tested in separate models.
The data were simply too few to test all of the interactions
via a single model. Thus, we can quantitatively assess which
variables are likely moderators, but we cannot quantitatively
assess which moderators are most influential.

Each probability in Table 5 represents the max significance
of variant to occur at any level of the associated interaction.
If a variable moderates variant, then by definition, variant’s
effect must vary across the levels of the moderator. Conse-
quently, the significance of variant will always be greater
for at least one level of the moderator than it is when
the moderator is marginalized out. Thus, if a moderator
is significant, c� ¬c. For example, the top-left probability in
Table 5, 0.62, is the max significance of variant to occur among
the four levels of program× task (unfiltered data, model T1).
The next probability to the right, 0.86, is the max significance
of variant to occur among the 16 levels of program× task×site.
Since the max significance of variant substantially increases
when site is added to the interaction, site represents a likely
moderator.7

As mentioned previously, site does not help us to gener-
alize because it is not a software-domain variable; thus, we
need to identify other, more meaningful moderators. Also,

7. By significance, we mean the maximum of p(ALT>PAT) versus
p(ALT<PAT), where p is the posterior probability. Using the greater of
the two is appropriate because, for binary comparisons, non-significance
is at 0.5. Thus, values such as 0.25 and 0.75 are equally significant.
Further, the directionality of the ALT/PAT comparison is irrelevant.
All that matters is the degree to which each moderator increases the
significance of variant when added to the interaction.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 11

TABLE 5
Bayesian interaction results—moderator assessment. Probabilities are
shown in black; effect estimates in gray. Probabilities greater than 0.75

are bolded. See Section 3.2.1 for a description of how to read and
interpret this table. For a visualization of the data, see Appendix R.

time
Models

Unfiltered Filtered correctness
Models

Unfiltered Filtered
¬c c ¬c c ¬c c ¬c c

site 0.62 0.86 0.67 0.88 site 0.72 0.81 0.73 0.87
(T1) 196 653 309 842 (C1) 10.5 18.2 11.7 21.0

patKnow 0.64 0.67 0.71 0.85 patKnow 0.71 0.92 0.73 0.86
(T2) 153 169 298 504 (C2) 8.7 17.3 8.5 13.7

devExp 0.66 0.90 0.76 0.89 devExp 0.70 0.85 0.67 0.89
(T3) 237 561 398 600 (C3) 7.5 12.7 6.9 15.8

correctness 0.68 0.83 0.81 0.88 time 0.81 0.93 0.82 0.85
(T4) 218 408 404 821 (C4) 10.0 18.0 10.9 12.8

notice that the results for site in Table 5 are consistent with the
assessment of heterogeneity in Section 3.1. Thus, Table 5 is a
shorthand method for showing a moderator’s influence. For
each variable listed in the table, we could have provided a
lengthy assessment similar to that given for site in Section 3.1.

Finally, each effect estimate in Table 5 represents the
magnitude of the difference between ALT and PAT (in sec-
onds or percentage points) associated with the corresponding
probability. We provide these estimates to show the practical
significance of the moderators.8

3.2.2 Students vs. Professionals
We consider the student-professional distinction first because
it represents a notable experimental difference between the
three PatMain studies. It is possible that E joint’s use of
students caused its results to differ from those of the prior
two studies. For instance, the participant filtering, which
brought E joint’s results into greater alignment with the
prior studies, may have distilled from the student data a more
professional-like sample. After all, the median experience in
E joint was much lower than in E orig and E repl (0 years,
compared to 3.5 and 4), and accordingly, E joint had to filter
more participants (10/53 versus 0/29 and 4/44).

Likely, our use of students did involve a higher percent-
age of underqualified participants. However, the prior two
studies both used professionals, with similar experience, and
yet they still differed in their results. Also, as previously
mentioned, E repl encountered variance problems similar to
E joint, whereas E orig did not. Thus, the student-professional
distinction is too simplistic to align well with the cross-site
variance; accordingly, it is not an effective variable (from a
methodological standpoint) by which to generalize the PatMain
results. From this point forward, we explore other variables,
several of which likely underlie the student-professional
distinction.

3.2.3 Developer Experience
As a covariate, devExp is significant in the frequentist models
only before filtering (see Table 6). A 1-unit (or approx. 17%)
increase in devExp corresponds with a time decrease of 10%

8. As described in Footnote 7, the directionality of the ALT/PAT
comparison is irrelevant when assessing a moderator’s influence. Thus,
we use effect magnitudes—i.e., we drop negative signs.

TABLE 6
Frequentist model p-values for devExp and patKnow. p-values less than

or equal to 0.05 are bolded.

Unfiltered Filtered
Model devExp* patKnow devExp* patKnow

CO time 0.076 NS NS 0.007†

CO correctness 0.101 NS NS 0.049
GR time <0.001 NS NS 0.001
GR correctness NS NS NS NS

NS = not significant—i.e., the exact value is not available since the
variable was removed during model tuning due to lack of
significance. For a description of model tuning, see Appendix M.

*E repl also tested an experience covariate—a “pre-qualification
score” [20, p. 157]—which was an aggregate metric similar to
devExp. It was not found to be significant, but that result was
obtained only after filtering low-scoring participants.
†Min p-value for patKnow within the patKnow×variant interaction.

for CO (80% confidence interval (CI): 3–17) and 30% for
GR (80% CI: 22–37),9 as well as a correctness increase of 7
percentage points for CO (80% CI: 2–13).

As a moderator, we make four observations about devExp
(see Table 5): 1) devExp strongly increases the significance (or
predictive capability) of variant when the two are interacted;
2) devExp interacts with variant for both response variables;
3) filtering reduces the interaction for time, but not for
correctness; and 4) filtering does not completely eliminate
the interaction for either response variable. Thus, devExp
moderates variant, both before and after filtering. Accord-
ingly, we conclude that generalizing across sites will likely
require contextualizing the conclusions with respect to developer
experience; generalizing across studies (as opposed to sites) may
also require a standardized experience assessment.

Concerning impact, we find that variant is most significant
when devExp is low (uT3,C3:277–296 and f T3,C3:277–296).
This is true for nearly all tasks, before and after filtering, and
for both response variables. Also, when devExp is low, PAT
tends to take longer and score lower. Thus, using Decorator
or Abstract Factory during maintenance instead of a simpler
solution is likely detrimental to inexperienced developers (in the
general case). Conversely, when devExp is high, PAT tends to
have little impact. Thus, using Decorator or Abstract Factory
during maintenance instead of a simpler solution may have
little or no impact in industry (in the general case). However,
based on the analysis presented in Section 3.3 (in which
we compare data across the three PatMain studies), we find
that the positive effect of devExp on the utility of patterns
continues to increase as experience increases from students
to professionals. Thus, the more likely conclusion is that
using Decorator or Abstract Factory during maintenance instead
of a simpler solution is preferable in industry (in the general case),
as long as the developers have more experience than our student
participants. Note that the threshold of experience needed
for a specific pattern to be beneficial varies from pattern to

9. For the frequentist models, we normalized time by log transforma-
tion prior to analysis. Thus, the time models are linear on the log scale,
but exponential on the original scale. Accordingly, a 4-unit increase in
devExp does not equal, e.g., an impossible 120% decrease in time for the
GR program. Instead, the stated percentage decrease must be repeatedly
applied for every 1-unit change in devExp, such that time asymtotically
approaches zero as devExp increases.



12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

pattern; as we show in Section 3.3, the threshold is higher for
Abstract Factory.

3.2.4 Pattern Knowledge
In contrast to devExp, patKnow is significant as a covariate
only after filtering (see Table 6). Thus, removing low-scoring
participants enables detection of the patKnow effect by
mitigating the effect (or interference) of devExp. After filtering,
a 1-unit (or approx. 17%) increase in patKnow yields an
average correctness increase of 11 percentage points for CO
(80% CI: 4–17), as well as a 30% time decrease for GR (80% CI:
20–39). patKnow is also significant in the CO time model, but
in that case its marginalized effect is not meaningful because
the patKnow×variant interaction also becomes significant (p-
value = 0.029). The patKnow×variant interaction is depicted
in Fig. 2. The figure shows that patKnow affects only the
PAT variant. We discuss the frequentist interaction results
for patKnow further in the next section, at which point we
address the original PatMain hypotheses.

The patKnow×variant interaction is strongly supported
in the Bayesian models (see Table 5): 1) variant increases
in significance when interacted with patKnow; and 2) like
devExp, patKnow’s moderating influence applies to both
response variables (though for time, only after filtering). Thus
patKnow moderates variant. This result is not surprising since
the original hypotheses anticipated an interaction between
patKnow and variant. It makes sense that knowing more about
patterns would help participants cope with the PAT variant
more so than with the ALT variant. Thus, similar to devExp,
we conclude: generalizing across sites and studies will likely
require contextualizing the conclusions with respect to pattern
knowledge, and may also require a standardized pattern knowledge
assessment.

Concerning impact, patKnow is similar to devExp (uT2,C2:
167–186 and f T2,C2:167–186). First, variant is most significant
when patKnow is low. Second, when patKnow is low, the
PAT variant tends to take longer and score lower. Third,
when patKnow is high, variant is largely insignificant. Thus,
we conclude: using Decorator or Abstract Factory during
maintenance instead of a simpler solution is likely detrimental
to developers with little knowledge of patterns (in the general case);
conversely, it may be preferable in industry (in the general case),
as long as pattern knowledge among professional developers is
greater, on average, than among our student participants. Similar
to devExp, the threshold of knowledge needed for a specific
pattern to be beneficial varies from pattern to pattern; again,
as we show in Section 3.3, the threshold is higher for Abstract
Factory.

3.2.5 Motivation
We find evidence that motivation explains cross-site variance
both within E joint and across the three PatMain studies.
First, according to Lutz Prechelt, the FUB participants were
“true volunteers,” who not only stuck around despite two
reschedulings, but who were also “helping a fellow student”
whose bachelor thesis depended on their participation.
Thus, the primary motivations at FUB were likely intrinsic.
Accordingly, the FUB participants spent far more time on the
experiment than any other site (47% more time on average
than the next highest site); also, of the 10 participants filtered,
none were from FUB. In contrast, the primary incentive at

0.
0

0.
2

0.
4

0.
6

D
en

si
ty

1 2 3 4 5 6 7

0
50

0
10

00
15

00
20

00
25

00
30

00
Ti

m
e 

(s
ec

on
ds

)

Pattern Knowledge (range 1−7)

patKnow min = 1.706
ALT/PAT ratio = 0.635
p−value = 0.019

patKnow mean = 3.263
ALT/PAT ratio = 0.921
p−value = 0.381 patKnow max = 5.412

ALT/PAT ratio = 1.538
p−value = 0.091

Log−scale slopes:
PAT = −0.2527 (p−value = 0.007)
ALT = −0.0139 (p−value = 0.866)
Diff. = −0.2388 (p−value = 0.029)

Data Range
Extrapolation

ALT
y = βe−0.0139x

PAT
y = αe−0.2527x

Fig. 2. Frequentist results for the patKnow×variant interaction (CO time
model, filtered data). Since time was logged prior to analysis, the back-
transformed results are exponential. Intercepts (α=3865.3, β=1632.6)
are relative to site=BYU, order=1, task=1, correctness=60. Other settings
for these variables scale the y-axis, but do not alter the ratios or p-values
shown.

BYU and UA was course credit, and in both of those cases
many participants had to be filtered. Moreover, the majority
of the filtered participants (6 of 10) were from UA—the only
site to require participation as a class assignment.

Motivation also explains why E repl required filtering,
whereas E orig did not, even though both studies used
professional consultants. For E orig, the CEO invited the
study (which was conducted during normal business hours),
participation was voluntary, and the primary incentive was
to learn about design patterns (which at the time were
still relatively new). Conversely, E repl’s participants were
selected to participate by their consultancy firms. Thus,
although the participants in both studies were essentially
paid for their time, it would seem that E orig’s participants
were more intrinsically motivated. If so, motivation correlates
not only with cross-site variance in E joint, but also with
the fact that E orig was the only PatMain study to not need
filtering.10

Prior to the moderator analysis, the possibility of motiva-
tion being a moderator did not occur to us, so we did not
collect data on the variable as part of the experiment. Of the
variables considered so far, motivation is the most in need of
further investigation. At the very least, we can conclude that
motivation could strongly influence study outcomes, inasmuch as
it affects statistical variance; however, we cannot determine, based
on the available data, whether motivation directly moderates the
effect of design patterns. Accordingly, we recommend that future
design pattern studies report on motivation. Reports should
describe both the formal incentives and any other variables
that may have motivated or demotivated the participants. A

10. E orig was also the only PatMain study to use a paper-based
format, so the format could explain the differences in filtering across
studies. However, because the format was kept constant within E joint,
it cannot explain the differences in filtering across sites. Thus, motivation
is the more likely explanation for the observed variance.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 13

post-experiment survey may be useful to gather such data.
We also suggest experimentally controlling motivation in
some studies (e.g., by testing multiple types of incentives).

3.2.6 Other Variables
We analyzed several additional variables, many of which
correlate with cross-site variance. In most cases, the data are
insufficient to statistically test for a moderating effect. We
summarize our findings below. For the detailed discussions,
see Appendix S.

• task difficulty: When a task exceeds a certain threshold
of difficulty, relative to a developer’s experience and/or
motivation, the use of patterns appears to have no effect
on his/her performance.

• correctness/time: These variables positively correlate,
meaning the participants likely achieved higher scores
by working longer. Also, the variables statistically inter-
act with variant before filtering, but not after. Since the
filtering targets (in part) undermotivated participants,
the interactions suggest that motivation could moderate
variant.

• program order: Performance tended to improve by a
small margin on the second program (i.e., lower times
and higher correctness), thus indicating a learning (or
maturation) effect. The learning effect appears unrelated
to design patterns, so we correct for it via statistical
modeling.

• perceived time limits, cultural variation, IDE preferences, lan-
guage barriers, clarity of task instructions, compilation/testing
expectations: These variables correlate with cross-site
variance, but the data are insufficient to determine (even
informally) whether they moderate variant.

3.2.7 Summary of Results
We find evidence that both developer experience and
pattern knowledge influence cross-site variance. We also
find evidence that these variables moderate the effect of
design patterns. Thus, both variables will likely have to be
better understood and controlled in order to fully resolve
the problem of generalizability. Pattern knowledge was
anticipated to be a moderator prior to E orig; developer
experience, however, has not previously been considered as
such.

Additionally, we have identified motivation as a strong
candidate for explaining cross-site and cross-study variance.
Our data are insufficient to statistically test whether it
moderates the effect of patterns, but we find indirect evidence
for it as a moderator via the correctness and time covariates.
At the very least, motivation could strongly influence study
conclusions, inasmuch as it influences statistical variance.

Lastly, we have documented several variables in Ap-
pendix S (summarized above) that correlate with cross-site
variance. Although our data are insufficient to statistically
test whether most of these variables moderate variant, some
of them may prove to be important in future studies.

3.3 Assessment of the Original Hypotheses
Table 7 shows the final results compared across the three
studies. To preserve the integrity of Table 7, the results for
E joint are taken exclusively from the frequentist models,

which we designed prior to viewing the data and which have
not been altered by the moderator analysis. We integrate the
moderator analysis into the discussion, however, to resolve
contradictions between the PatMain studies.

Like E repl, our results are based on the filtered data
(described in Section 3.1). The filtering, which targets un-
derqualified and undermotivated participants, increases
statistical precision without significantly altering the main
effect estimates. Also, the conclusions in this section are limited
to: 1) the patterns tested in the CO/GR programs (Decorator and
Abstract Factory), 2) maintenance activities, 3) maintainers that
were not the original implementers, and 4) programs for which the
full functionality of the patterns was not initially needed.

We discuss each of the four tasks in turn. Recall that coding
tasks required modifying the code, whereas comprehension
tasks tested comprehension of the code.

3.3.1 CO Task 1 (Decorator, Coding Task)
The results for this task significantly contradict across the
three PatMain studies. However, given our findings from the
moderator analysis, we can resolve most of the contradictions.
First, the moderator analysis found that the PAT variant was
most beneficial (or least harmful) when pattern knowledge
was high. On CO task 1, we see this effect manifest in both
E repl and E joint (Table 7, rows 2–3). Second, if we rank
the studies by their participants’ average pre-experiment
pattern knowledge (in decreasing order: E orig, E repl,
E joint), we see that the benefit of the PAT variant decreases
across the studies, following the order of decreasing pattern
knowledge (Table 7, rows 2–3, 8–9). Thus, although the
results significantly differ across the studies, they agree when
considered in reference to the moderating effect of pattern
knowledge. As predicted by the moderator analysis, the time
(and possibly also correctness) benefits of the Decorator pattern
positively correlate with pattern knowledge on this coding task.

Further, notice that the pattern training had little impact
in E orig—i.e., before training, the PAT effect was −63%,
compared to −55% after (Table 7, rows 2–3). This trend
makes sense given that, of the three PatMain studies, E orig’s
participants had the most prior pattern knowledge. However,
according to E orig’s published report, only 52% actually
had prior pattern knowledge. Thus, not only does pattern
knowledge positively correlate with the benefits of the
Decorator pattern (as shown above), but it appears that only
minimal prior knowledge of the Decorator pattern is needed in
order to realize a substantial benefit on this coding task. In fact,
the only case in which ALT was significantly better than
PAT on this task occured for the least knowledgable E joint
participants—i.e., students with almost no practical pattern
experience whatsoever.

Ultimately, given an understanding of pattern knowledge
as a moderator, the original hypothesis for CO task 1 is
confirmed. The Decorator pattern is indeed preferable on this task,
especially at higher levels of pattern knowledge—the only caveat
being that if pattern knowledge is too low, the time and correctness
benefits may be negated.

3.3.2 CO Task 2 (Decorator, Comprehension Task)
For this task, the three studies mostly agree. First, PAT
took significantly longer than ALT in all three cases when
pattern knowledge was low (Table 7, row 15). Second, when



14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 7
Comparison of results across the three PatMain studies.*

Hypothesis Concrete Baseline & Reanalysis
Statement Hypotheses Expectation E orig of E orig† E repl E joint‡

CO Task 1, Coding
The PAT variant will be
preferable, especially at
higher levels of pattern
knowledge.

t : P < A A − −38% (<.001) negative - +10% (.344)§ 1
t : PH < AH AH − −35% −55% (<.05) −49% (<.05) −35% (.091) 2
t : PL < AL AL − −41% −63% (<.05) +13% (>.05) +58% (.019) 3

t : H < L L − −3% - - −36% (.090)§ 4
t : PH < PL PL − +8% (.29) +10% (>.05) −49% (<.05) −61% (.007) 5
t : AH = AL AL 0 −1% (.46) −17% (<.05) +13% (>.05) −5% (.866) 6

c : P > A A + positive positive positive −5pp (.523) 7
c : PH > AH AH + positive +43pp (<.05) +15pp (<.05)

INS
8

c : PL > AL AL + positive +43pp (<.05) +13pp (<.05) 9

c : H > L L + no diff. no diff. no diff. +39pp (.049) 10
c : PH > PL PL + no diff. 0pp (>.05) 0pp (>.05)

INS
11

c : AH = AL AL 0 no diff. +3pp (>.05) −3pp (>.05) 12

CO Task 2, Comprehension
The PAT groups will
take longer and commit
more errors.

t : P > A A + +72% positive positive +10% (.344)§ 13
t : PH > AH AH + +50% +65% (>.05) +9% (>.05) −35% (.091) 14
t : PL > AL AL + +91% +130% (<.05) +117% (<.05) +58% (.019) 15

c : P < A A − negative negative - −5pp (.523) 16
c : PH < AH AH − - −15pp (>.05) −4pp (>.05)

INS
17

c : PL < AL AL − - −35pp (<.05) +13pp (>.05) 18

GR Task 1, Coding
ALT will be easier to
understand, at least for
participants with low
pattern knowledge;
pattern knowledge will
help both groups,
though the PAT
participants may profit
more.

t : P > A A + +17% (.10) positive - +41% (.025) 19
t : PH > AH AH + +19% +30% (>.05) +40% (>.05)

INS
20

t : PL > AL AL + +11% +35% (>.05) −17% (>.05) 21

t : H < L L − −21% (.021) negative positive −73% (.001) 22
t : PH < PL PL − −17% (.17) −20% (>.05) +62% (<.05)

INS
23

t : AH < AL AL − −23% (.031) −22% (<.05) +2% (>.05) 24

c : P < A A − - - - −10pp (.245) 25
c : PH < AH AH − - +21pp (<.05) −3pp (>.05)

INS
26

c : PL < AL AL − - +3pp (>.05) +34pp (<.05) 27

c : H > L L + - - - NS 28
c : PH > PL PL + - +10pp (>.05) −9pp (>.05)

INS
29

c : AH > AL AL + - −11pp (>.05) +25pp (<.05) 30

GR Task 2, Comprehension
ALT and PAT will not
significantly differ; the
task will require less
time at higher levels of
pattern knowledge for
both variants.

t : P = A A 0 −21% (.085) negative negative +41% (.025) 31
t : PH = AH AH 0 −26% −20% (>.05) −39% (>.05)

INS
32

t : PL = AL AL 0 −20% −30% (>.05) −9% (>.05) 33

t : H < L L − −21% (.091) negative positive −73% (.001) 34
t : PH < PL PL − −26% −17% (>.05) +11% (>.05)

INS
35

t : AH < AL AL − −20% −28% (>.05) +66% (>.05) 36

c : P = A A 0 - no diff. - −10pp (.245) 37
c : PH = AH AH 0 - 0pp (>.05) −31pp (<.05)

INS
38

c : PL = AL AL 0 - +5pp (>.05) +1pp (>.05) 39

*Due to ambiguity in the original hypotheses, E orig and E repl
tested slightly different things. To facilitate comparison of their
results, we define concrete hypotheses, where:
t, c = time, correctness response variables.
P , A = PAT, ALT variants.
H , L = high, low pattern knowledge.

Results for each row are computed relative to the baseline . For
example, on the first row, −38% means that E orig estmiated
PAT to cause a 38% reduction in time relative to ALT. The
expectation (+, −, 0) represents the hypothesized direction of
the results relative to the baseline (up, down, or no effect).

Non-numeric entries indicate that no statistical results were
reported, but data were given about the direction of the effect.
A dash (-) means no data were given at all about the effect.
Gray entries had to be extracted from plots; their magnitudes
are subject to a margin of error (about ±5).

pp = percentage points (0–100%).

(I)NS = (interaction) not significant—i.e., the exact values are

not available because the variable (or interaction) was removed
during model tuning due to non-significance. For details on
model tuning, see Appendix M.

p-values are provided in parentheses where available; all
p-values are two-sided. As discussed in Appendix T, the
statistical methods are sufficiently similar between the studies
that we can directly compare the numerical results.

The CO and GR task 2 hypothesis statements do not address
all twelve of the possible concrete hypotheses. Results for the
remaining combinations are shown in Appendix U.

†E repl reanalyzed E orig’s data. This column summarizes the
results of that reanalysis.

‡ In E joint, the task interactions are all insignificant. Thus, the
results shown for the two tasks in each program are the task-
independent results repeated as necessary.

§These values are taken from the CO time model (filtered), as
defined in Section 2.3.2, but with all interactions dropped.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 15

pattern knowledge was high, none of the time effects were
statistically significant (Table 7, row 14). Third, the correctness
effects were nearly all insignificant, regardless of pattern
knowledge (Table 7, rows 17–18). Thus, we conclude that,
for developers with little pattern knowledge, the ALT variant is
preferable (at least in terms of time, but possibly also correctness)
on this comprehension task. We also tentatively conclude that,
for developers with high knowledge, the PAT variant is probably
no worse than ALT (in terms of both time and correctness). Thus,
the hypothesis for CO task 2 is confirmed for developers
with low pattern knowledge, but tentatively contradicted for
those with high pattern knowledge.

Also, as with task 1, pattern knowledge positively cor-
relates with the benefits of the Decorator pattern. However,
a greater minimum level of knowledge is required on this
comprehension task for PAT to be beneficial, than was needed
on the coding task (task 1). Additionally, we recognize that
large estimates, even though statistically insignificant, may
still represent meaningful effects (e.g., +65%; Table 7, row
14). Thus, we label the second conclusion for this task as
“tentative.” Greater confidence requires either larger sample
sizes or reduced within-study variance.

3.3.3 GR Task 1 (Abstract Factory, Coding Task)
For this task, the time effect mostly agrees across the studies—
PAT takes more time than ALT (Table 7, rows 20–21). However,
the results are statistically significant for only one of the three
studies, E joint. Coincidentally, E joint’s participants had
the least developer experience of all the PatMain studies.
Further, the one estimate showing a reverse effect (PAT
takes less time than ALT) occurred in E repl—i.e., for the
participants with the most developer experience. Since the
moderator analysis identified developer experience as a likely
moderator, we tentatively conclude: For developers with little
professional experience, ALT will likely take less time on this coding
task than PAT, but with sufficient experience, the reverse may be
true. However, given that E repl’s participants had a median
of 4 years (mean 6.6), the level of developer experience
needed for PAT to outperform ALT is likely high. Possibly,
for developers with greater pattern knowledge (than E repl’s
participants), the minimum level could be less.

As for correctness, the estimates are mostly small and
insignificant (Table 7, rows 26–27). Thus, Abstract Factory
likely has little impact on correctness for this coding task (in
the general case). However, two estimates, one for E orig
and one for E repl, are large (+21 and +34 percentage points;
rows 26 and 27, respectively). Also, the results for pattern
knowledge are scattered and inconsistent (Table 7, rows 23–
24, 29–30). Since neither of these divergences are explained
by the moderator analysis, further investigation is needed.

For now, we tentatively conclude that PAT likely does
not impact correctness in general on this coding task, but in
some (as yet unknown) cases, it may promote higher correctness.
Concerning pattern knowledge, we conclude: 1) pattern
knowledge is not always helpful on this coding task (in terms
of both time and correctness); 2) the conditions under which it
is helpful are still unknown; and 3) when it is helpful, it does
not appear to help the PAT group more than the ALT group.
Thus, the original hypothesis for GR task 1 is (tentatively):
partially confirmed for time, rejected for correctness, and at
least partially rejected for pattern knowledge.

3.3.4 GR Task 2 (Abstract Factory, Comprehension Task)
On this task, the time and correctness estimates are mostly
insignificant (Table 7, rows 31–39), which supports the origi-
nal hypothesis that ALT and PAT will not differ. However,
we again encounter the problem of insignificant, but large
effect estimates (e.g., +66%; Table 7, row 36), which means
we cannot confidently conclude the null hypothesis. We
also find significant contradiction in estimates for both time
and correctness, for which the moderator analysis provides
no resolution. In the few cases of statistical significance,
especially those of E joint, PAT took longer and scored lower
than ALT. Thus, without further investigation of moderators,
we can only tentatively conclude: In general, PAT likely does
not significantly impact time or correctness on this comprehension
task; however, in at least some contexts (possibly those of low
developer experience), PAT probably does have a harmful influence;
also, in at least some (as yet unknown) contexts, developers do take
less time on this task at higher levels of pattern knowledge, but in
other contexts they do not. Accordingly, the original hypothesis
for GR task 2 is (tentatively): partially confirmed for time,
correctness, and pattern knowledge, but also partially rejected
for pattern knowledge.

3.3.5 Summary of Results
We can summarize the results for each program as follows:

• Communication Channels (CO), Decorator.
– Expectation: Delocalization of functionality should

make the PAT variant easier to modify, but more
difficult to analyze and call.

– Result: Using the Decorator pattern instead of a
simpler solution is preferable during maintenance,
as long as the developer has at least some prior
understanding of the pattern. Given even minimal
pattern knowledge, the PAT variant is easier to modify;
given sufficient knowledge, code comprehension is
not negatively affected.

• Graphics Library (GR), Abstract Factory.
– Expectation: Architectural similarities between PAT

and ALT should cause only minor differences in
the results; where differences occur, ALT should
outperform PAT due to the comprehensibility of its
more localized structure.

– Result: Due to several unexplained divergences be-
tween the three studies, coupled with the incidence of
insignificant, but large effect estimates, the GR results
are tentative. Nevertheless, the results suggest that a
simplified solution is often equivalent to or better than
using Abstract Factory—though given sufficient de-
veloper experience (4+ years), the reverse may be true.

Overall, using a pattern where a simpler solution would
be possible can be advantageous during maintenance, but
only if the developer performing the maintenance has a suffi-
cient understanding of the pattern (and/or a sufficient level
of developer experience); also, the critical level of knowledge
(or experience) required for the pattern to be helpful appears
to be higher for Abstract Factory than for Decorator (Fig. 3
depicts the general form of these conclusions). Thus, as Vokáč
et al. state, “each design pattern. . . has its own nature, so that
it is not valid to characterize patterns as useful or harmful in
general” [20, p. 191].



16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015
Ef

fe
ct

 o
f D

es
ig

n 
Pa

tte
rn

−

0

+

Developer Experience and Pattern Knowledgelow high

Decorator

Abstract Factory

Students

Professionals

Fig. 3. Relative impact that developer experience and pattern knowledge
have on the effect of Decorator and Abstract Factory, generalized across
all three PatMain studies (E orig, E repl, and E joint). A positive effect
for a design pattern (+) means that the pattern leads to lower work times
and higher quality solutions.

4 THREATS TO VALIDITY

In this section, we discuss threats to validity. We follow a stan-
dard validity framework consisting of four parts [37], [38]:

• Construct Validity: The extent to which the protocol,
treatment operationalizations, and metrics accurately
represent the concepts under study.

• Conclusion Validity: The extent to which we can infer
relationships in the data, particularly considering the
statistical methods used.

• Internal Validity: The extent to which we know that the
treatment caused the observed changes.

• External Validity: The extent to which the results can be
generalized to other situations and people.

Due to space constraints, minor threats to validity are
presented in Appendix W. Note that internal validity only
appears in Appendix W.

4.1 Construct Validity

To operationalize work environment, we used a web portal,
which not only allowed us to asynchronously administer the
experiment, but also allowed the participants to:

1) work in their own environments, rather than in an
unfamiliar experiment room with unfamiliar tools;

2) be externally interrupted;
3) potentially cooperate;
4) create time-recording ambiguities by using the browser

back-button.
The first three factors (1–3) each increased the realism of
the work environment. However, factors 2–4 introduced the
potential for measurement error in the response variables
(particularly time). Concerning interruptions, few partici-
pants reported any problems. For those that did, their task
timings were adjusted accordingly. Concerning cooperation,
we conducted an extensive investigation of the participants’
solutions, but found no evidence of sharing—the only two
dubious similarities between participants eventually turned
out to have a convincing technical explanation. As for the
browser back button, the final comments report almost no
problems, but we nevertheless aggregated the timings for
the download, work, and upload pages to accommodate

atypical work orderings. Thus, although the three factors
may have increased variability, we do not expect them to
have significantly affected measurement of the response
variables, or to have otherwise systematically biased the
results.

In assessing developer experience, we collected multiple
experience metrics from which we ultimately created a single
aggregate metric, devExp (as described in Section 2.2). Un-
fortunately, one of the individual metrics (years professional
experience) appeared to have been variously interpreted with
respect to whether part-time work counts as “professional
experience.” Given that the participants were students,
with little experience in general, this ambiguity could have
significantly affected the results within E joint (for further
details, see Appendix I). Consequently, we used the pro-
fessional experience metric only in the form of summary
statistics to compare E joint with E orig and E repl (which
comparisons do not pose a concern). In other words, we
excluded professional experience entirely from the devExp
metric. Nevertheless, devExp is still a reasonable metric for
the students of E joint given the other component metrics
involved (e.g., lines of code, programming hours, etc.).

Since we had no idea beforehand that motivation might
impact cross-site variance, we did not formally operationalize
or measure it as part of the experiment. Consequently, our
analysis of motivation is based on ad hoc, largely qualitative
data. As such, our conclusions about motivation should not be
accepted as established fact, but rather should be considered
as justification for future work.

Lastly, note that correctness is measured on a five-point
ordinal scale following the same rubric originally used by
E repl (see Section 2.2 for details). However, we inevitably
treat it as an interval scale (as did E repl) by, in our case,
mapping it onto percentages for statistical analysis (0, 25,
50, 75, 100%). As Vokáč et al. explain with respect to E repl,
“[I]t was impossible to estimate [a logistic regression] model
by GEE or GLM, because the methods break down when
all observations for certain combinations of the explanatory
variables have the same value” [20, p. 160]. In our case, we
used mixed models, for which the problem identified by
Vokáč et al. is not a concern. Nevertheless, being a close repli-
cation, we preferred to follow E repl’s operationalization
of correctness as closely as possible so that the two sets of
results would be easily comparable. Statistically speaking,
given 1) the nature of our models, 2) the fact that correctness
is ordinal (as opposed to categorical), and 3) the fact that our
final conclusions are based on trends in the data rather than
on magnitudes, inferring the intervals is not a significant
concern.

4.2 Conclusion Validity

The moderator analysis is a post-hoc analysis. Post-hoc analy-
ses are useful for exploring experiment instability. However,
they inflate the chances of a type 1 error, the chances of
incorrectly concluding an effect exists. Thus their findings
must be tested in future studies. Analyzing moderators
also requires modeling large interactions, which reduces
statistical power. To mitigate this problem, we used Bayesian
methods, which allow us to directly compare probabilities for
competing hypotheses to determine which are most likely.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 17

Concerning the results in Table 7, data dredging (i.e.,
fishing for significance) is not a problem; those results rely on
pre-planned statistical models to address a priori hypotheses.
Instead, the primary concerns for Table 7 are extraneous
variance within studies and heterogeneity of results across
studies—which problems the moderator analysis was de-
signed to help resolve. However, inasmuch as the final
conclusions from Table 7, presented in Section 3.3, rely on
the moderator analysis, they are also tentative.

For the Bayesian analysis, we enlisted a qualified external
researcher to estimate prior distributions. We instructed him
to choose broad priors in order to minimize the weight of
those priors on the final results. In general, choosing broad
priors leads to broader posteriors, but for a post-hoc analysis,
sacrificing some precision is an acceptable tradeoff—i.e., a
bias toward type 2 errors is appropriate given that the post-
hoc nature of the analysis inflates the chances of a type 1
error.

In addition to choosing broad priors, we also could have
asked more than one external researcher to independently
select priors. Given multiple estimates for priors, we could
have performed a sensitivity analysis to verify our expecta-
tion that the priors have little influence on the results. Not
having done this, we recognize it here as a limitation and
recommend it for future studies conducting similar analyses.

4.3 External Validity

Our conclusions are limited to the patterns tested in the
CO/GR programs (Decorator and Abstract Factory), mainte-
nance activities, and programs for which the full functionality
of the patterns was not initially needed. The maintainers
were also not the original designers/implementers, and real
programs are typically larger and less well commented than
the PatMain programs.

E joint’s participants also had little developer experience
and pattern knowledge. However, being based on all three
PatMain studies, the final conclusions represent a fairly broad
range of developers.

Additionally, for both E repl and E joint, the replicating
researchers interacted considerably with prior experimenters,
which means the likelihood of shared bias is high among all
three studies. For a description of the cross-study interactions,
see Appendix V. Shared bias is not necessarily a bad thing.
It helps in the early stages of investigation in order to reduce
unexpected variance across experiments. However, it does
indicate a weakness in external validity, which can only be
addressed by eventually replicating the study with little or
no cross-study interaction—other than the use of published
reports and (possibly) lab packages.

Ultimately, given that we have successfully generalized
the results across all three PatMain studies—which collec-
tively represent 58 students and 68 professionals from 17
institutions and 4+ countries—the most significant threats
to external validity are not population related; rather, they
concern the size and complexity of the software programs
being tested, as well as the fact that the developers worked
in isolation, rather than in team environments.

As discussed in Appendix S, we found evidence in
E joint that program complexity could impact the outcome
of the PatMain experiment. Although inconclusive, the

data suggest that if the difficulty of a problem exceeds a
certain threshold (relative to a developer’s experience and/or
pattern knowledge) then design patterns will have little
impact on work time and solution correctness. However,
we do not know whether this observation would hold in
industry, much less whether it would be experimentally
repeatable. Quite possibly, the reverse is true—that the real
value of design patterns is only manifest for big software of
the magnitude found in industry. To answer these questions,
additional studies are needed explicitly targeting the issue of
program complexity.

Concerning the issue of programming environments, it
is possible that isolated developers respond differently to
design patterns than developers working in a team. For
instance, via the sharing of knowledge, team dynamics may
compensate for negative effects of design patterns. On the
other hand, team dynamics may also attenuate design pattern
benefits, thus causing patterns to have less impact overall.
Additional studies are needed.

5 CONCLUSIONS

In this section, we present conclusions. We discuss modera-
tors, design patterns, and finally, future work.

5.1 Moderators
We find that both developer experience and pattern knowledge
moderate the effect of design patterns, such that a higher
level of either tends to enhance the benefits of patterns
(or reduce their harm) during maintenance. We also find
indirect evidence for motivation as a moderator. At the very
least, we can tentatively conclude that lack of motivation
increases statistical variance, which in turn can confound the
comparison of results across studies. Whether and to what
degree motivation impacts the effect of patterns outside the
experimental setting is still unclear.

5.2 Design Patterns
Based on the two moderators for which we have quantitative
data—developer experience and pattern knowledge—we
were able to fully resolve conflicts for one of the two patterns
studied (Decorator) and partially for the other (Abstract
Factory). Each of the final conclusions (summarized below)
generalizes across all three PatMain studies (E orig, E repl,
and E joint), involving 126 participants from five universities
and twelve software companies, spanning two continents
and at least four countries—thus covering a broader set of
contexts than has previously been achieved in the study of
design patterns. Such a high level of generalization would
not have been possible without the moderator analysis.

1) The Decorator pattern is preferable to a simpler solu-
tion, as long as the developer has at least some prior
knowledge of the pattern.

2) For Abstract Factory, the simpler solution is mostly
equivalent to the pattern solution.

3) Abstract Factory requires a higher level of pattern
knowledge and/or developer experience than Decorator
for the pattern to be beneficial.

In general, using a pattern where a simpler solution would be
possible can be advantageous during maintenance, but only



18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

if the developer performing the maintenance has a sufficient
understanding of the pattern. See Fig. 3, above, for a pictorial
representation of these conclusions.

5.3 Future Work
An obvious item for future work is to further replicate the
PatMain experiment with additional controls and measure-
ments for moderators. In that case, we recommend focusing
on developer experience, pattern knowledge, and motivation.
However, we also recommend documenting other factors
which may be influencing the outcome of the experiment.
These additional factors can be cross-referenced against the
list we provide in Section 3.2. Further, it may be valuable to
explore relationships between moderators. For instance, it
would be useful to know whether developer experience can
compensate for a lack of pattern knowledge (or vice versa).

Due to the fact that measurement operationalizations
tend to vary across experiments, controlling variables within
studies will not, by itself, solve the problem of gener-
alizability. To fully solve that problem, we also need to
develop methods for mapping moderators across studies. To
accomplish this, we recommend investigating best methods
for assessing common context variables (e.g., developer
experience), and then formulating standardized assessments
for those variables.

In addition to further replicating the PatMain experiment,
it would be interesting to review the design pattern literature
for data on potential moderators. Many studies likely contain
at least some traces of information on moderators, the
synthesis of which may reveal useful insights. The results of
such a literature review could be used to corroborate (or even
generalize and extend) the findings reported in this paper.

For additional discussion of future work, see Appendix X.

ACKNOWLEDGMENTS

We are grateful to: Martin Liesenberg for building the web
portal; Ulrich Stärk for expert advice to Martin; Martin
Liesenberg and Christian Bird for the Java and C# program
translations, respectively; Alexander MacLean and Landon
Pratt for grading all solutions to ensure consistency in the
scoring across sites; Paul Felt for sharing source code and
advice concerning his Bayesian models; Gilbert Fellingham
for expert advice on the Bayesian analysis; Marek Vokáč
for providing data and historical information about the first
replication of the PatMain experiment, as well as for member
checking our analysis and reporting of his experiment;
RESER 2011 reviewers and participants for encouragement
and valuable feedback; and all study participants for their
contributions. This research has been partially supported
by the grant TIN-2011-23216 (Spanish Ministry of Economy
and Competitiveness), as well as by funding from Ironwood
Experts, LLC.

REFERENCES

[1] K. Beck, J. O. Coplien, R. Crocker, L. Dominick, G. Meszaros,
F. Paulisch, and J. M. Vlissides, “Industrial experience with design
patterns,” in Proc. Int’l Conf. Softw. Eng., 1996, pp. 103–114.

[2] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu, “Automatic
code generation from design patterns,” IBM Syst. J., vol. 35, no. 2,
pp. 151–171, 1996.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns. Chich-
ester, UK: John Wiley & Sons, 1996.

[4] G. Florijn, M. Meijers, and P. van Winsen, “Tool support for
object-oriented patterns,” in Proc. European Conf. Object-Oriented
Programming, 1997, pp. 472–495.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley, 1995.

[6] L. Aversano, L. Cerulo, and M. D. Penta, “Relationship between
design patterns defects and crosscutting concern scattering degree:
An empirical study,” IET Softw., vol. 3, no. 5, pp. 395–409, 2009.

[7] J. Garzás, F. Garcı́a, and M. Piattini, “Do rules and patterns affect
design maintainability?” J. Computer Sci. Technol., vol. 24, no. 2, pp.
262–272, 2009.

[8] S. Jeanmart, Y.-G. Guéhéneuc, H. Sahraoui, and N. Habra, “Impact
of the visitor pattern on program comprehension and maintenance,”
in Proc. Int’l Symp. Empir. Softw. Eng. and Measurement, 2009, pp.
69–78.

[9] T. H. Ng, S. C. Cheung, W. K. Chan, and Y. T. Yu, “Work experience
versus refactoring to design patterns: A controlled experiment,”
in Proc. ACM SIGSOFT Symp. Foundations of Softw. Eng., 2006, pp.
12–22.

[10] L. Prechelt, B. Unger, W. F. Tichy, P. Brössler, and L. G. Votta, “A
controlled experiment in maintenance comparing design patterns
to simpler solutions,” IEEE Trans. Softw. Eng., vol. 27, no. 12, pp.
1134–1144, 2001.

[11] P. Wendorff, “Assessment of design patterns during software
reengineering: Lessons learned from a large commercial project,” in
Proc. European Conf. Softw. Maintenance and Reeng., 2001, pp. 77–84.

[12] C. Zhang and D. Budgen, “What do we know about the effective-
ness of software design patterns?” IEEE Trans. Softw. Eng., vol. 38,
no. 5, pp. 1213–1231, 2012.

[13] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research
state of the art on GoF design patterns: A mapping study,” J. Syst.
Softw., vol. 86, no. 7, pp. 1945–1964, 2013.

[14] N. J. Salkind, Ed., Encyclopedia of Measurement and Statistics. Thou-
sand Oaks, CA: Sage Publications, 2007.

[15] R. M. Baron and D. A. Kenny, “The moderator-mediator variable
distinction in social psychological research: Conceptual, strategic,
and statistical considerations,” J. Pers. Soc. Psychol., vol. 51, no. 6,
pp. 1173–1182, 1986.

[16] P. Diesing, How Does Social Science Work? Reflections on Practice.
Pittsburgh, PA: University of Pittsburgh, 1991.

[17] P. Solomon, M. M. Cavanaugh, and J. Draine, Randomized Controlled
Trials: Design and Implementation for Community-Based Psychosocial
Interventions. Oxford, UK: Oxford University, 2009.

[18] D. I. K. Sjøberg, T. Dybå, and M. Jørgensen, “The future of empirical
methods in software engineering research,” in Future Softw. Eng.,
2007, pp. 358–378.

[19] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F. Tichy,
“Two controlled experiments assessing the usefulness of design
pattern documentations in program maintenance,” IEEE Trans.
Softw. Eng., vol. 28, no. 6, pp. 595–606, 2002.

[20] M. Vokáč, W. F. Tichy, D. I. K. Sjøberg, E. Arisholm, and M. Aldrin,
“A controlled experiment comparing the maintainability of pro-
grams designed with and without design patterns: A replication in
a real programming environment,” Empir. Softw. Eng., vol. 9, no. 3,
pp. 149–195, 2004.

[21] J. L. Krein, C. D. Knutson, L. Prechelt, and N. Juristo, “Report
from the 2nd international workshop on replication in empirical
software engineering research (RESER 2011),” ACM SIGSOFT Softw.
Eng. Notes, vol. 37, no. 1, pp. 27–30, 2012.

[22] RESER Workshop, “2nd International Workshop on Replication in
Empirical Software Engineering Research,” http://sequoia.cs.byu.
edu/reser2011, 2011, last accessed: April 2014.

[23] Freie Universität Berlin, “Replication of ‘PatMain’,” http://www.
inf.fu-berlin.de/w/SE/PatmainReplicationInfo, 2011, last accessed:
April 2014.

[24] N. Juristo and S. Vegas, “Design patterns in software maintenance:
An experiment replication at UPM,” in Proc. Int’l Workshop Replica-
tion Empir. Softw. Eng. Research, 2011, pp. 7–14.

[25] J. L. Krein, L. J. Pratt, A. B. Swenson, A. C. MacLean, C. D. Knutson,
and D. L. Eggett, “Design patterns in software maintenance: An
experiment replication at Brigham Young University,” in Proc. Int’l
Workshop Replication Empir. Softw. Eng. Research, 2011, pp. 25–34.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 19

[26] A. Nanthaamornphong and J. C. Carver, “Design patterns in
software maintenance: An experiment replication at University
of Alabama,” in Proc. Int’l Workshop Replication Empir. Softw. Eng.
Research, 2011, pp. 15–24.

[27] L. Prechelt and M. Liesenberg, “Design patterns in software
maintenance: An experiment replication at Freie Universität Berlin,”
in Proc. Int’l Workshop Replication Empir. Softw. Eng. Research, 2011,
pp. 1–6.

[28] J. L. Krein, L. Prechelt, N. Juristo, K. D. Seppi, A. Nanthaamorn-
phong, J. C. Carver, S. Vegas, and C. D. Knutson, “A method for
generalizing across contexts in software engineering experiments,”
IEEE Trans. Softw. Eng., 2015, under review.

[29] L. Prechelt, “PatmainPackage,” http://page.mi.fu-berlin.de/
prechelt/Biblio/#package, 2013, last accessed: April 2014.

[30] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects.
Chichester, UK: John Wiley & Sons, 2000.

[31] F. L. Ramsey and D. W. Schafer, The Statistical Sleuth: A Course in
Methods of Data Analysis, 2nd ed. Pacific Grove, CA: Duxbury,
2002.

[32] J. Surowiecki, The Wisdom of Crowds. New York, NY: Anchor Books,
2005.

[33] M. H. DeGroot and M. J. Schervish, Probability and Statistics, 4th ed.
Boston, MA: Addison-Wesley, 2012.

[34] P. Felt, “Improving the effectiveness of machine-assisted annota-
tion,” Master’s thesis, Dept. of Computer Science, Brigham Young
University, Provo, UT, 2012.

[35] R. A. McLean, W. L. Sanders, and W. W. Stroup, “A unified
approach to mixed linear models,” Am. Stat., vol. 45, no. 1, pp.
54–64, 1991.

[36] K. Charmaz, Constructing Grounded Theory: A Practical Guide through
Qualitative Analysis, 1st ed. London, UK: Sage Publications, 2006.

[37] T. D. Cook and D. T. Campbell, Quasi-Experimentation: Design &
Analysis Issues for Field Settings. Boston, MA: Houghton Mifflin,
1979.

[38] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. New York,
NY: Springer, 2012.

[39] C. F. Dormann, J. Elith, S. Bacher, C. Buchmann, G. Carl,
G. Carré, J. R. G. Marquéz, B. Gruber, B. Lafourcade, P. J.
Leitão, T. Münkemüller, C. McClean, P. E. Osborne, B. Reinek-
ing, B. Schröder, A. K. Skidmore, D. Zurell, and S. Lautenbach,
“Collinearity: A review of methods to deal with it and a simulation
study evaluating their performance,” Ecography, vol. 36, no. 1, pp.
27–46, 2013.

[40] D. E. Farrar and R. R. Glauber, “Multicollinearity in regression
analysis: The problem revisited,” Rev. Econ. Stat., vol. 49, no. 1, pp.
92–107, 1967.

[41] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, ser.
Monographs on Statistics and Applied Probability. London, UK:
Chapman & Hall/CRC, 1993.

[42] J. C. Carver, “Towards reporting guidelines for experimental
replications: A proposal,” in Proc. Int’l Workshop Replication Empir.
Softw. Eng. Research, 2010, pp. 1–4.

Jonathan L. Krein is a Partner at Ironwood Ex-
perts, LLC and an Adjunct Professor of Computer
Science at Brigham Young University (BYU). He
also works as an Adjunct Researcher in the
BYU SEQuOIA (“Software Engineering Quality:
Observation, Insight, Analysis”) Lab. He holds
Ph.D., M.S., and B.S. degrees in computer sci-
ence from BYU and served as co-founder and
co-organizer of the International Workshop on
Replication in Empirical Software Engineering
Research (RESER 2010, 2011, 2013). His re-

search interests include knowledge production in empirical software
engineering research (replication, theory building, and the development
of transferable best practices), Bayesian methods in Computer Science,
the management of private information in software organizations, and
software repositories as empirical data sources.

Lutz Prechelt received a PhD from the University
of Karlsruhe for work that combined machine
learning and compiler construction for parallel
machines. He then moved to empirical software
engineering and performed a number of con-
trolled experiments before spending three years
in management in the software industry. He is
now full professor for software engineering at
Freie Universität Berlin. His research interests still
revolve primarily around the human factor in the
software development process but his research

methods are now more often qualitative than quantitative. Additional
research interests concern research methods and the health of the
research system.

Natalia Juristo received the PhD degree from
the Technical University of Madrid in 1991. She is
currently a professor of software engineering at
Universidad Politecnica de Madrid. Natalia was
the Director of the UPM MSc in Software Engi-
neering from 1992 to 2002 and the coordinator
of the Erasmus Mundus European Master on
SE (with the participation of the University of
Bolzano, the University of Kaiserslautern, and
the University of Blekinge) from 2006 to 2012.
Her main research interests are experimental

software engineering, requirements, and testing. Natalia is coauthor of
the book, Basics of Software Engineering Experimentation (Kluwer, 2011).
She is a member of the editorial board of Empirical SE Journal. She
was recently awarded a FiDiPro (Finland Distinguish Professor) research
grant. She began her career as a developer in the European Space
Agency (Rome) and the European Center for Nuclear Research (Geneva).
She was a resident affiliate at the Software Engineering Institute in
Pittsburgh in 1992.

Aziz Nanthaamornphong is a PhD student in
the Computer Science Department at the Univer-
sity of Alabama. His primary research interests
include empirical software engineering, software
quality, and software engineering for computa-
tional science and engineering. He earned his
MS in information technology from the Kasetsart
University, Thailand. He is a student member
of IEEE and the ACM. Contact him at anan-
thaamornphong@ua.edu.

Jeffrey C. Carver earned his PhD degree in
Computer Science from the University of Mary-
land. He is an Associate Professor in the De-
partment of Computer Science at the University
of Alabama. His main research interests include
empirical software engineering, software quality,
software engineering for computational science
and engineering, software architecture, human
factors in software engineering and software
process improvement. He is a Senior Member of
the IEEE Computer Society and a Senior Member

of the ACM. Contact him at carver@cs.ua.edu.

Sira Vegas is an associate professor of software
engineering with the Computing School at the
Universidad Politcnica de Madrid in Spain. She
received the BS and PhD degrees in Computing
from the Universidad Politcnica de Madrid, Spain.
Sira was visiting scholar of the European Centre
for Nuclear Research (Geneva) in 1995. She
was a regular visiting scholar of the Experimental
Software Engineering Group at the University of
Maryland from 1998 to 2000, and visiting scien-
tist at the Fraunhofer Institute of Experimental

Software Engineering in Germany in 2002. Sira has served in several
Program Committees ESEM/ISESE, SEKE, CSEET and others. She has
been Program Chair for ESEM07. She is/has been regular reviewer of
several journals, including IEEE Transactions on Software Engineering,
IEEE Software, Empirical Software Engineering Journal, and Information
and System Technology (http://grise.upm.es/miembros/sira/).



20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

Charles D. Knutson is an Emeritus Professor
of Computer Science at Brigham Young Univer-
sity (BYU) and Managing Partner at Ironwood
Experts, LLC. He is the Director of the BYU
SEQuOIA (“Software Engineering Quality: Ob-
servation, Insight, Analysis”) Lab and the former
Director of the BYU Mobile Computing Lab. Dr.
Knutson has 29 years of industry experience,
including engineering and management positions
at Hewlett-Packard and Novell, Inc. He was also
Vice President of R&D at Counterpoint Systems

Foundry, Inc. (now Sybase iAnywhere), the world’s leading provider of
IrDA and Bluetooth protocol stacks for embedded systems. Dr. Knutson
has more than 120 technical publications in areas including mobile
computing, medical informatics, and software engineering. He is a
co-founder and organizer of the Workshop on Research in Empirical
Software Engineering Research (RESER). He holds a PhD in Computer
Science from Oregon State University, and BS and MS degrees in
Computer Science from BYU.

Kevin D. Seppi is an Associate Professor at
Brigham Young University. He received his BS
in Computer Science from Brigham Young Uni-
versity in 1982 and his MS from Santa Clara
University in 1987. He received his PhD from
the University of Texas in 1990 on a resident
study fellowship from IBM. Following his PhD he
returned to IBM where he worked until 1995, at
which time he joined BMC Software. In 2002,
Dr. Seppi joined the Computer Science faculty
at Brigham Young University, where he currently

serves as director of the Applied Machine Learning Lab. His research
focuses on probabilistic models and their applications, as well as on
optimization.

Dennis L. Eggett is an Associate Research
Professor of Statistics and the Director of the Cen-
ter for Statistical Consultation and Collaborative
Research at Brigham Young University (BYU).
He received his B.S and MS in statistics from
BYU and PhD in statistics from North Carolina
State University. From 1987–1997 he was a
research scientist and statistical consultant at
Pacific Northwest National Laboratory (PNNL)
in Richland, Washington. PNNL is a contract
laboratory of the Department of Energy operated

by Battelle Memorial Institute. While at PNNL, Dr. Eggett worked in areas
related to waste cleanup, waste characterization, remote sensing, and
the analysis of large data sets. Dr. Eggett joined the faculty of BYU
in August of 1997. During that time he has served as Director of the
Center. This includes consulting with on campus and off campus clients,
supervising student consultants, and teaching statistical methods. He has
co-authored over 140 journal papers. He has worked with researchers
from many different fields ranging from nursing to engineering. His
expertise include linear models, multivariate methods, experimental
design, mixed models analysis, and resampling methods.



This document contains appendices for the paper, A Multi-Site Joint Replication of a Design Patterns
Experiment using Moderator Variables to Generalize across Contexts, by Krein et al., 2015.

Since replicability and generalizability are key concerns of the study, we provide a considerable
amount of supplemental information in the appendices. The appendices are provided to assist
future replicators and/or to facilitate transparency; none are necessary in order to understand the
conclusions and general validity of the study.

The appendices are meant to be used, as needed, like a reference manual. To make the information
more accessible, we cite each appendix in the main paper where it is most relevant. This document
is numbered as a continuation of the main paper.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 21

APPENDIX A
REPLICATION WEB PORTAL

The replication web portal embodies the materials, instruc-
tions, and data collection infrastructure for the PatMain
experiment. The web portal allows the researcher to do the
following actions:

1) Register and create an instance of the experiment.
2) Create batches of participant IDs.
3) Print little chits providing the experiment URL and login

ID for each participant.
4) Monitor experiment progress.
5) Close the experiment and download the results.

The web portal supports administering the experiment in
full with all four programs, or administering an abridged
version with only two of the four programs (either the pair
CO/GR or the pair ST/BO).

Participation via the portal involves answering question-
naires, downloading programs, and uploading solutions. The
portal guides the participant through the following steps:

1) Log in to the application using an assigned ID.
2) Choose a language: C++, C#, or Java.
3) Complete two short questionnaires assessing devel-

opment experience (10 questions) and design pattern
knowledge (19 questions).

4) Perform maintenance tasks on two programs (one
PAT and one ALT variant), including two tasks for
each program (one coding and one comprehension).
Coding tasks require the download and upload of source
code. Comprehension tasks consist of 1–2 short answer
questions.

5) At the end of each program, complete a performance
self-evaluation (6 questions per program).

6) Submit final comments—in particular, listing any inter-
ruptions.

The total time required for the abridged experiment is
approximately 2–3 hours. The portal records the participants’
answers, uploads, and timings at each step. By assigning
IDs in contiguous sequence, participants are evenly bucketed
into the experiment groups. All participants see the same
instruction text for a given program regardless of the
assigned treatment group.

The portal’s source code (written by Martin Liesen-
berg) is provided in the lab package as a ZIP file (join-
trep experiment webapplication.zip, packaged by Lutz
Prechelt). The ZIP file contains a README.txt and the
directory layout of a Java EE WAR file (for Tomcat and
MySQL). Portal screenshots and the original experiment
programs are also provided in the lab package.

APPENDIX B
INFORMATION ON SITES

Table 8 provides an overview of the experiment execution
and participants at each of the four sites. Note that the three-
day experiment timeframe mentioned for UA includes only
the official PatMain experiment protocols. All additional UA
protocols (described below), were administered in a separate
one-week period.

B.1 Additional Protocols
The UA replication added protocols beyond those defined by
PatMain. All additions were administered to participants
as a separate “pre-experiment,” which the participants
completed prior to the PatMain experiment. Although the
two experiments were administered at different times, they
involved the same participants and programs. Consequently,
UA’s results could systematically differ from those of BYU,
FUB, and UPM.

The pre-experiment required participants to view UML
diagrams of the programs (not program source code) and
to answer questions. Thus UA participants likely performed
better on the PatMain tasks—i.e. lower times and higher
correctness scores—than they otherwise would have. How-
ever, the main effect (program variant) most likely remains
intact. In general, previewing UML diagrams would tend
to raise the overall level of program comprehension. Thus
if any impact did occur, the most likely effect would be to
reduce (but not reverse) the experiment effect among UA
participants. Accordingly, we believe the UA data can be
used in the joint analysis. See the E joint lab package for
copies of UA’s pre-experiment artifacts.

Additionally, note that UA tested its participants on all
four programs (CO, GR, ST, and BO), rather than on just CO
and GR. However, UA issued two web portal IDs to each
participant, one for the CO/GR programs and one for the
ST/BO programs (rather than running all four programs in
the same session). Thus, UA’s experiment groups for the
CO/GR programs are consistent with those of BYU, FUB,
and UPM.

B.2 Design Pattern Education
At BYU, design patterns are taught by two professors (neither
of which is affiliated with this study). The first professor
teaches classic GOF patterns via the Gamma et al. book [5]
and via a modestly-sized programming project (approx. 3–5
KLOC). He does not explicitly teach patterns in a gener-
alizable way, but when asked, commented, “it’s probably
some of both,” meaning general and specific (interview,
Oct. 30, 2012). The second BYU professor also teaches GOF
patterns via a modestly-sized programming project (approx.
3–5 KLOC), but does not teach patterns from the Gamma et
al. book [5]. Instead, he uses in-class programming examples.
Via these examples he first shows “bad ways of solving a
problem,” after which he then interactively helps the students
to improve those bad solutions by incorporating design
patterns (interview, Oct. 30, 2012).

In general, the teaching style at BYU stresses applying
design patterns within specific implementations. Of this, the
latter professor commented, “On average, I do not think most
of the students could generalize the patterns well, given their
limited experience in the course” (interview, Oct. 30, 2012).
Nearly all of the BYU participants should have previously
received training from one of these two professors. Thus both
types of education are represented among BYU participants.

At FUB, all participants were recruited from a project
course involving Eclipse plugin programming. In that con-
text, they each definitely had practical contact with the
Observer pattern, as well as possibly Composite, Strategy,
and others. Further, most of the FUB participants had



22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 8
General information about the experiment and participants at each of the four sites.

BYU FUB UA UPM All

Experiment Timeframe 3 weeks approx. 1 week 3 days 4 days -

Experiment Execution asynchronous* asynchronous* asynchronous* asynchronous* -

Programming Language Java Java Java Java -

Language Required yes no† yes no† -

Participant Type students students students students -

Solicitation Venue
software

engineering
course

software project
course

software
engineering

course

research
group‡

-

Participation voluntary voluntary assignment voluntary -

Total Participants 22 13 18 8 61

Undergraduate Students 20 9 0 0 29

Graduate Students 2 4 18 8 32

Data Discarded as Invalid 1 undergrad 1 undergrad 4 grad 2 grad 8

Socioeconomic Background mostly
middle-class

broad unknown unknown -

Nationality mostly North
American

mostly
German

10 American
8 other

all South
American

-

BYU = Brigham Young University *Participants took the experiment at a time of their own choosing.
FUB = Freie Universität Berlin †The participants were allowed to select their preferred language
UA = The University of Alabama (C++, C#, or Java), but all chose Java.
UPM = Universidad Politécnica de Madrid ‡Software engineering research group of the UPM joint replicators.

previously taken Lutz Prechelt’s basic software engineering
course. That course dedicates two 90-minute lectures to
design patterns—specifically, composite, adapter, bridge,
facade, observer, strategy, abstract factory, and builder. Later
in the course, two further 90-minute lectures on software
reuse cover other types of patterns—including, analysis and
usability patterns (for requirements), usability architecture
patterns (for design), software process patterns, and anti-
patterns. Although the design patterns course does not
require students to implement patterns, all of the FUB
participants had practical experience with patterns in the
aforementioned project course.

In general, Lutz explains, “I teach patterns as a form of
packaged, reusable, and reconfigurable design ideas where
the specific form of their implementation is definitely not
a key element of the pattern as such. Ideally, my students
should come out with a rather flexible, adaptable idea of what
the use of a specific pattern looks like” (email, Oct. 9, 2012).

UA participants were all recruited from Jeffrey Carver’s
software engineering course. Jeff reports, “In our course, the
students learn design patterns from a book. We do not do
any special exercises on patterns. The students in the course
each prepare a lecture on one or more patterns to teach to the
class. I add information that they miss” (email, Oct. 30, 2012).

UPM participants were all graduate students, recruited
from the software engineering research group. According to
Natalia Juristo, “We did not teach the students about pat-
terns. Our experimental participants were master and PhD
students who said they knew design patterns, which does not
mean they really do. None of the students completed their
undergraduate degrees at UPM. They studied computing in
other Spanish or Latin-American universities. So I do not
know how many previously received training on patterns.

I tend to think they have learned patterns as part of their
work, but cannot be sure” (email, Oct. 30, 2012).

APPENDIX C
PARTICIPANT DEMOGRAPHICS PER SITE

Table 8 provides general information about the participants
at each site. Tables 9 and 10 summarize the participants’
self-reported developer experience and pattern knowledge.
For each variable in Tables 9 and 10, we statistically com-
pare sites using the Kruskal-Wallis rank sum test (which
procedure compares medians, rather than means). We use a
nonparametric (distribution-free) test because, in many cases,
the data are not normally distributed. Histograms of the data
are provided in the lab package.

C.1 Developer Experience (Table 9)
The most noticeable differences across sites (in terms of
means) involve the lines of code (LOC) and professional ex-
perience questions. Statistically, the sites also differ in terms
of the languages-used questions. We discuss each in turn.

Concerning LOC questions (i.e., LOC-lifetime and LOC-
Java), four of the American participants (3 at BYU, 1 at UA)
report unrealistically high values.11 For example, one at BYU
reports 8 million lifetime lines of code. Conversely, none of
the participants at the European universities (FUB and UPM)
list such extreme values. Once the unrealistic outliers are

11. For students reporting at most 5 years professional experience, we
consider responses of 150 KLOC or more to be unreasonable. Some of
the extreme outliers may be due to typing errors, but some respondents
may have exaggerated, possibly due to disinterest with the questions.
All other data for these participants appear reasonable, so we do not
exclude their data from analysis.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 23

dropped, the four sites no longer statistically differ on the
LOC questions (updated p-value for LOC-Java = 0.053).

As for professional experience (i.e., working-hours-per-
week and years-professional-experience), two of the UPM
participants report outlier values (10 and 15 years experience,
working 40 hours per week). Since UPM only contributes
6 participants, its median responses are much higher than
those of the other three sites. Statistically, UPM differs from
the other sites for years-professional-experience, but not for
working-hours-per-week. However, with the two outliers
excluded, the p-value for years-professional-experience be-
comes 0.203, indicating that the UPM outliers differ from all
other participants, even those at UPM.

Thus, outliers account for most of the statistically signif-
icant differences in developer experience that we observe
across sites. Excluding unrealistic outliers, only two signifi-
cant cross-site differences remain: 1) Two of the UPM partici-
pants report significantly more professional experience than
any other participant in the study, and 2) BYU participants
report using more programming languages than participants
at the other three sites (see languages-used-lifetime and
languages-used-often). The BYU participants’ advantage in
language experience may be a product of their university’s
teaching style, or it may reflect a cultural tendency to exag-
gerate on survey questions. Coincidentally, BYU participants
are also the primary contributor of unrealistic responses to
the LOC questions.

C.2 Pattern Knowledge (Table 10)

Statistically, the four sites differ on 14 of the 18 patterns sur-
veyed. However, the patterns-used-lifetime variable, which
describes actual pattern use, is not statistically significant.
Additionally, only four of the statistically significant patterns
involve a median exceeding 4.0 (i.e., “understand it well”),
and the largest median among all patterns is only 5.5 (i.e.,
between “understand it well and have worked with it
once” versus “understand it well and have worked with
it two or three times”). Thus, cross-site differences in pattern
knowledge almost exclusively concern exposure to pattern
concepts rather than experience implementing patterns.

Many of the individual patterns display similar box
plot arrangements—for instance, Command, Composite,
and Decorator. With a little effort, we can identify several
potentially meaningful arrangements. However, since we
measured 17 patterns, these groupings may simply be due to
random chance. To test the possibility, we count the number
of unique arrangements. Ordering sites by median, allowing
means to break ties, we find 10 unique arrangements among
the 17 patterns. If the pattern variables share dependencies,
we would expect fewer unique arrangements than predicted
by random chance. With 24 possible permutations, the
probability of obtaining 10 or fewer by random chance is
0.085. Thus we cannot reject the null hypothesis that the
observed groupings are due to random chance, though the
p-value is suggestive.

We also examine the order of sites overall, to see which
ones tend to report higher pattern knowledge. We assign
points to each site based on its rank for each of the 17 pattern
knowledge variables—where rank 1 (i.e., highest pattern
knowledge) is worth 3 points, rank 2 is worth 2 points,

TABLE 9
Summary statistics for the developer experience pre-questionnaire. For a
description of each variable, identified by field number, see Appendix G.
The count of participants for each column is given in parentheses. For

each box plot, the median value is labeled, the mean is shown as a black
dot, and the max whisker range is 1.5 IQR. All p-values are two-sided;
p-values less than or equal to 0.05 are bolded; p-values are based on
the Kruskal-Wallis rank sum test comparing sample medians across

sites (calculated with R 2.15.2).

BYU
(21)

FUB
(12)

UA
(14)

UPM
(6)

All
(53) sig.

Languages
Used

Lifetime*
(field 7)

●

● ●●●

●

● ●

●
●

10.00
6.50 7.00 8.00 8.00

0
8

16

0.001

Languages
Used Often

(field 9)
●

●

●

●
●

●

●

●

●
● ● ●4.00

2.00 3.00 2.50 3.00

0
8

16

0.007

Lines of
Code

Lifetime*†
(KLOC)
(field 10)

●

●

●

●

●

●

●

●

●

●

50.00 25.00 35.00
85.00

35.000
25
0

50
0

0.329

Lines of
Code Java‡

(KLOC)
(field 11)

●

●

●

●

●

●

●

●●
●

●

●

● ● ●

●

12.50 5.75 4.50 7.00 9.000
12
5

25
0

0.010

Programming
Hours Per

Week
(field 12)

●
●

●

●

●15.00 18.50
10.00

30.00

15.00

0
25

50

0.131

Programming
Skill (scale

1–7)§
(field 13)

●

●

●
●

●
●

●3.00
2.00

4.00 3.50 3.00

1
4

7

0.261

Working
Hours Per

Week
(field 15)

●●
●

●

● ●●
●
●●●

● ●
●

●

●

0.00
10.00

0.00

25.00

0.000
25

50

0.054

Years
Professional
Experience

(field 16) ●
●●

●

●

● ● ●

●

●

0.00 1.00 0.00
3.50

0.000
8

16

0.029

BYU = Brigham Young University †Two outliers not
FUB = Freie Universität Berlin shown: BYU=8000
UA = The University of Alabama and UA=1000.
UPM = Universidad Politécnica de Madrid ‡One outlier not
sig. = significance (two-sided p-value) shown: BYU=4000.
*“Lifetime” means the number of §1=high skill, 7=low.

languages (or LOC) the participant
reports having ever used (or written).

and so forth. As before, rank is determined by median,
allowing means to break ties. For example, the rank order for
the Command pattern is FUB, UA, BYU, UPM. Given this



24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 10
Summary statistics for the design pattern knowledge pre-questionnaire. For a description of each variable, identified by field number, see Appendix G.
The count of participants for each column is given in parentheses. For each box plot, the median value is labeled, the mean is shown as a black dot,

and the max whisker range is 1.5 IQR. All p-values are two-sided; p-values less than or equal to 0.05 are bolded; p-values are based on the
Kruskal-Wallis rank sum test comparing sample medians across sites (calculated with R 2.15.2).†

BYU
(21)

FUB
(12)

UA
(14)

UPM
(6)

All
(53) sig.

Patterns
Used

Lifetime*
(field 19)

●●

●

●

●

●

●

●

● ●
●

●
8.00 6.50 5.00 4.00 6.00

0
13

26

0.077

Abstract
Factory‡
(field 20)

●● ●●

●
●

●

●

●3.00 3.00 3.00 2.50 3.00

1
4

7

0.454

Adapter
(field 21)

●

●

●

●

●

●3.00 3.50 4.00

2.00
3.00

1
4

7

0.010

Bridge
(field 22)

●●●●

●

●

●

● ●

1.00
2.00

3.50

2.00
3.00

1
4

7

<0.001

Chain of
Responsi-

bility
(field 23)

●

●
●

●

●
●

2.00 2.00

4.00

2.50 3.00

1
4

7

0.002

Command
(field 24)

●

●
●

●

●4.00
5.00

4.00

2.50

4.00

1
4

7

0.032

Composite‡
(field 25) ●

●

●

●

●

3.00

5.00
4.00

2.00

4.00

1
4

7

0.008

Decorator‡
(field 26) ●

●
●

●

●

3.00

4.50 4.00

2.00

4.00

1
4

7

0.086

Factory
Method
(field 27)

●

●

●

●

●
4.00

2.50 3.00 2.50 3.00

1
4

7

0.002

BYU
(21)

FUB
(12)

UA
(14)

UPM
(6)

All
(53) sig.

Flyweight
(field 28) ●

●

●

●

●

●

●

●

1.00

3.50 3.50

1.50 2.00

1
4

7

<0.001

Mediator
(field 29) ●

●

●

●●

●●

●

●
●

●

●

●

1.00
2.00

4.00

2.00 2.00

1
4

7

<0.001

Memento
(field 30)

●

●

●

● ●

1.00
2.00

4.00

2.00 2.00

1
4

7

<0.001

Observer
(field 32)

●

●

●

● ●

●

●

●5.00 5.00
4.00 3.50

5.00

1
4

7

0.104

Proxy
(field 33)

●

●

●

●

●

2.00

5.50

4.00

2.50

4.00

1
4

7

<0.001

Reactor
(field 34)

●

●

●

●

●

●

●

● ●
●

1.00
2.00

1.00 1.00 1.001
4

7

<0.001

Strategy
(field 35)

●

●

●

●

●

●
●

●

●

2.00
3.00

4.00

2.00
3.00

1
4

7

0.002

Template
Method
(field 36)

●

●
●

●

●

●

●

2.00 2.00

3.50

2.00
3.00

1
4

7

0.009

Visitor
(field 37)

●

●

●

●

●

5.00

3.00
4.00

1.50

4.00

1
4

7

<0.001

BYU = Brigham Young University † Individual patterns (fields 20–37) are self-assessed on an ordinal scale (1–7): 1=never heard
FUB = Freie Universität Berlin of it, 2=have only heard of it, 3=understand it roughly, 4=understand it well, 5=understand it
UA = The University of Alabama well and have worked with it once, 6=understand it well and have worked with it two or three
UPM = Universidad Politécnica de Madrid times, 7=understand it well and have worked with it many times. Note that differentiation
sig. = significance (two-sided p-value) between levels 2, 3, and 4 is subjective and may be sensitive to cultural influence. Since
*“Lifetime” means the number of patterns these values are frequent in the responses, cross-site comparisons may be problematic.

the participant reports having ever used. ‡The design pattern is included in E joint.

scheme, UA scores 41% of the total possible points, followed
by FUB with 32%, then BYU with 17%, and UPM with 10%.

Thus for an overwhelming number of patterns, UA and
FUB report greater pattern knowledge than BYU and UPM.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 25

Incidentally, this effect explains why we find fewer unique
permutations than expected.

APPENDIX D
DETAILED PROGRAM/TASK DESCRIPTIONS

The text in this section is quoted from E orig’s published
report [10, pp. 1140–1142], with minor modifications to adapt
it to the present context. The text is also similar to that given
in E repl’s published report [20, pp. 173–176], which mostly
paraphrases the original. The program metrics listed below
(LOC and class counts) vary across the three studies. This
is due to: 1) E repl adjusted the programs from the original
paper-based format to facilitate compilation, and 2) in E joint,
the programs were translated from C++ to Java. The metrics
given in the text are those for E orig; metrics for E repl and
E joint are provided in footnotes.

The programs used by E orig and E repl included C++
header files, in which system components were declared.
Since the system components were not technically part
of the programs, the header files were excluded from the
program metrics. Some testing code was also provided for
the GR program, but that code was not provided in the form
of a class. However, for E joint—which administered the
experiment in Java—both the header files and the testing
code had to be translated into classes. To make E joint’s
metrics comparable to those of the prior studies, we ignore
the system classes entirely and consider the GR testing class
only for LOC counts (not for class counts).

D.1 Decorator: Communication Channels (CO)
Communication Channels is a wrapper library. A communi-
cation channel establishes a connection for transparently
transferring arbitrary-length packets of data. One can turn
on additional logging, data compression, and encryption
functionality. The library does not implement the function-
ality itself, but only provides a facade to a system library.
However, this application of the Facade pattern is irrelevant
to the experiment.

The PAT variant, which comprises 365 LOC in six C++
classes,12 is designed with a Decorator for adding function-
ality to a bare channel. Logging, data compression, and
encryption are implemented as decorator classes. The ALT
variant, which comprises 318 LOC in a single C++ class,13

uses flags and if-sequences for turning functionality on or off;
the flags can be set when creating a channel. Communication
Channels is the only program where the ALT variant has a
structured (as opposed to object-oriented) design.

D.1.1 Work Task 1
“Enhance the functionality of the program such that error-correct-
ing encoding (bit redundancy) can be added to communication
channels.” The error-correcting functionality is already pro-
vided by a system class, so the participants only had to
integrate that functionality into the program as a new
wrapper. The PAT participants had to add a new Decorator

12. [CO-PAT] E repl = 404 LOC, 6 C++ classes; E joint = 311 LOC, 6
Java classes (including 1 Java interface).

13. [CO-ALT] E repl = 342 LOC, 1 C++ class; E joint = 267 LOC, 1
Java class.

class, while the ALT participants had to make additions and
changes at various points in the existing program.

We expect two influences of the Decorator on the partici-
pants’ behavior. First, the ALT variant is easier to understand
because its behavior is not delocalized as in the multiple
decorator classes. This would lead to the conclusion that the
ALT groups should be faster than the PAT groups, especially
for participants with low pattern knowledge. Second, a
counter-influence results from the structure of the Decorator:
The functionality is encapsulated in classes and one need
hardly care about mutual influences. In particular, in the
ALT variant, the participants have to ensure they add the
new functionality at the correct places in the program for
proper sequencing of the various switchable functionalities;
this will consume time and may lead to mistakes. We expect
the second influence to be stronger than the first and, hence,
the PAT variant to be preferable, especially at higher levels
of pattern knowledge.

D.1.2 Work Task 2
A communication channel has different states (namely,
opened, closed, or failed) and its operations have
different result codes (OK, failure, or impossible). Work
task 2 called to “determine under which conditions a reset() call
will return the ‘impossible’ result.” To do this the participants
had to find the spots where the states were changed. In the
PAT variant, these spots are spread over the decorator classes.
Program understanding is gained in the first task, so only
the new details relevant for this task need to be learned. We
expect this task will be easier for the more localized ALT
variant with respect to both time and correctness.

Additionally, the participants were asked to “create a
channel object that performs compression and encryption.” The
ALT participants had to create only a single object (one
statement), giving parameters for the functionality flags,
while PAT participants had to determine the proper nesting
of the decorators to get the required functionality in the
requested order. We expect the PAT groups will take longer
and commit more errors.

D.2 Composite, Abstrt. Factory: Graphics Library (GR)

Graphics Library contains a library for creating, manipulating,
and drawing simple types of graphical objects (lines and
circles) on different types of output devices (alphanumeric
display, pixel display). In a central class (generator), the
output device is selected. Depending on the device, the
corresponding types of graphical objects are created. Some
basic objects (lines and points) are implemented identically
for all devices. However, for complex objects, like circles,
implementation depends on the specific device. Furthermore,
graphical objects can be collected into groups, that can be
manipulated like individual objects.

The patterns used in the PAT variant of this program are
Abstract Factory (for the generator classes) and Composite
(for hierarchical object grouping). The ALT variant of the
program uses switch statements, implemented in a single
generator class, to select and instantiate the appropriate
classes for each output device. The ALT variant also uses
a quasi-Composite to implement object grouping. The only
difference is that groups are not treated as objects themselves,



26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

as in the Composite. For instance, a group B is included in
another group A by adding each element of B individually
to A—i.e., there is no hierarchical group nesting.

The Graphics Library program has a smaller structural
difference between its PAT and ALT variants than does
the Communication Channels program. The PAT variant
comprises 682 LOC in 13 C++ classes;14 the ALT variant
comprises 663 LOC in 11 C++ classes.15

D.2.1 Work Task 1
“Add a third type of output device (plotter).” Participants in the
PAT groups had to introduce a new concrete factory class and
extend the factory selector method. Participants in the ALT
groups had to enhance the switch statements in all methods
of the generator class. Both groups had to add two concrete
product classes.

The time for finding the changes is expected to be almost
equal for the PAT and ALT groups. Thus, we anticipate the
main difference in time required for this task to be caused by
program understanding. We expect the simpler ALT variant
to be easier to understand, at least for participants with
low pattern knowledge. Additionally, we expect that pattern
knowledge will help both groups due to the Composite
structure in both variants. However, the PAT participants
may profit a little more from pattern knowledge since they
also interact with the Abstract Factory pattern.

D.2.2 Work Task 2
Determine whether a specific sequence of operations will result in
an x-shaped figure. This work task is a small comprehension
test concerning the Composite structure. The key to the
answer for both groups is finding out that only references to
graphical objects (not copies of objects) are stored in an object
group. The structure of both variants is quite similar in the
region of interest, so we do not expect to observe significant
differences between the ALT and the PAT groups. How-
ever, we do expect pattern knowledge to have an impact—
participants with low pattern knowledge are expected to be
slower than those with high knowledge because the latter
will be more familiar with the Composite pattern.

APPENDIX E
SUMMARY STATISTICS FOR KEY VARIABLES

Tables 11 and 12 summarize key experiment variables.
For each variable, we statistically compare sites using the
Kruskal-Wallis rank sum test (which procedure compares
medians, rather than means). We use a nonparametric
(distribution-free) test because, in several cases, the data
are not normally distributed. Histograms of the data are
provided in the lab package.

APPENDIX F
UNUSABLE DATA

In 8 cases, we exclude all of a participant’s data from analysis
as unusable. These data still appear in the data file provided

14. [GR-PAT] E repl = 683 LOC, 13 C++ classes; E joint = 578 LOC,
13 Java classes (including 2 Java interfaces).

15. [GR-ALT] E repl = 667 LOC, 11 C++ classes; E repl = 598 LOC, 11
Java classes (including 2 Java interfaces).

TABLE 11
Summary statistics for key explanatory variables (see Section 2.2 for a
description of each variable). The count of participants for each column
is given in parentheses. For each box plot, the median value is labeled,
the mean is shown as a black dot, and the max whisker range is 1.5 IQR.

All p-values are two-sided; p-values less than or equal to 0.05 are
bolded; p-values are based on the Kruskal-Wallis rank sum test

comparing sample medians across sites (calculated with R 2.15.2).

BYU
(21)

FUB
(12)

UA
(14)

UPM
(6)

All
(53) sig.

Developer
Experience
(scale 1–7)*

●
●

●

● ●4.39 4.42
3.65

4.38 4.34

1
4

7

0.158

Pattern
Knowledge
(scale 1–7)*

●

●

●

●

●

●2.76
3.44 3.65

2.09
3.24

1
4

7

0.001

BYU = Brigham Young University *Aggregate metric.
FUB = Freie Universität Berlin See Section 2.2 for
UA = The University of Alabama additional scale
UPM = Universidad Politécnica de Madrid information.
sig. = significance (two-sided p-value)

in the lab package (with appropriate annotations), but are
completely ignored for analysis.

• 10354: The participant left both CO task 2 and 3 blank.
The timings for those tasks are also both zero seconds,
which requires clicking passed the tasks without even
reading them. Additionally, the participant reports
“many interruptions” during the experiment, but does
not provide sufficient information for us to correct his
or her timings.

• 11088: The participant quit the experiment before com-
pleting any program tasks.

• 31563: The participant held a false assumption that the
experiment was to be no more than 2 hours, as stated in
the participant’s comments.

• 36737: The participant reported having to repeat the
experiment due to website problems. Many of his or
her timings are extremely short (less than 10 seconds).
Presumably, the participant resubmitted previously
competed solutions.

• 61820: Instead of listing programming languages when
requested, the participant responded as though s/he did
not know any languages or completely misunderstood
the question—e.g., “I don’t know” and “None that I
know of.” Also his or her CO/GR task 1 timings are both
extreme outliers, totalling 7.75 hours, which implies long,
unrecorded breaks. Further, the participant completed
the 19-question pattern knowledge survey in only 13
seconds. Given that his or her responses covered an
array of categorical selections, such a low time suggests
random choices.

• 63358: Instead of listing programming languages when
requested, the participant responded as though s/he
did not know any languages—e.g., “Yes, I did. But not
that much I’ve experience on this as I never worked in a
software company [sic]” and “I worked in the telecom



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 27

TABLE 12
Summary statistics for response variables. For a description of each

variable, identified by field number, see Section 2.2 and Appendix G. The
count of participants for each column is given in parentheses. For each
box plot, the median value is labeled, the mean is shown as a black dot,

and the max whisker range is 1.5 IQR. All p-values are two-sided;
p-values less than or equal to 0.05 are bolded; p-values are based on
the Kruskal-Wallis rank sum test comparing sample medians across

sites (calculated with R 2.15.2).

BYU
(21)

FUB
(12)

UA
(14)

UPM
(6)

All
(53) sig.

CO Task 1
Time

(seconds)
(field 66)

●

●

●
●
●

●

●

●

●
●

1439
2985

1570
2675 2048

0
32
50

65
00

0.002

CO Task 2
Time

(seconds)
(field 69)

●

●

●●

●

●

●

●

●

●440
690 451

968
486

0
12
50

25
00

0.050

GR Task 1
Time

(seconds)
(field 75)

●

●

●

●

●

●

●
●

●

974

3792

2135 2028 1510

0
32
50

65
00

<0.001

GR Task 2
Time*

(seconds)
(field 78)

●

●
●

●

●
●

●

●
●

●

●

●

537 306
886

628 578

0
12
50

25
00

0.278

CO Task 1
Correctness

(0–100%)
(field 81)

●

●
●

●

●

75.0 75.0 75.0

25.0

75.0

0
50

10
0

0.608

CO Task 2
Correctness

(0–100%)
(field 87)

●
●

●

●

●

●50.0

100.0

0.0 0.0

50.0

0
50

10
0

0.001

GR Task 1
Correctness

(0–100%)
(field 89)

●●●●●●

●

●

● ●

●75.0
100.0

75.0 75.0 75.0

0
50

10
0

0.147

GR Task 2
Correctness

(0–100%)
(field 91)

●●

●

●

●

●

●

0.0 0.0 0.0

100.0

0.00
50

10
0

0.261

BYU = Brigham Young University *Two outliers not
FUB = Freie Universität Berlin shown: UA=7239
UA = The University of Alabama and UA=5842.
UPM = Universidad Politécnica de Madrid
sig. = significance (two-sided p-value)

company and their I had experience with them very
little [sic].” The participant also left CO task 3 completely
blank, got all tasks completely wrong, and listed almost
no developer experience on the pre-questionnaire. The

participant does not appear to meet the minimum
participation guidelines.

• 91072: The participant’s CO task 1 timing is unreason-
ably low (76 seconds), whereas his or her CO task 2
timing is exceptionally high. Conversely, the participant
achieved a correctness of 50% on task 1, but got task 2
completely wrong. The participant appears to have used
the browser back button to confuse the web portal’s
timing mechanism.

• 94345: The participant did not complete any of the
program tasks.

We also partially exclude data for the following 3 partici-
pants. In these cases, we are missing data for either the CO
or GR program:

• 15350: The participant submitted GR source code for CO
task 1, so we exclude all CO program data.

• 92863: The participant submitted CO source code for GR
task 1, so we exclude all GR program data.

• 95105: The participant completed the questionnaires and
the CO program tasks, but quit before completing the
GR program tasks, so we exclude all GR program data.

APPENDIX G
DATASET SCHEMA DEFINITIONS

In this section, we describe the schema used for the E joint
dataset, which is provided in the lab package. The dataset
includes 91 fields.

G.1 Experiment Metadata
These fields describe contextual or administrative elements
of the experiment, such as research lab and treatment group
assignments.

1) id: Unique participant id.
2) group_idMOD4: Treatment group (computed as partici-
pant ID % 4); corresponds to the alternation of program
order (CO/GR) and program variant (PAT/ALT), as
described in Section 2.1.3.

3) researchLab: The research team providing the given
participant’s data, where: BYU=Brigham Young Univer-
sity, FUB=Freie Universität Berlin, UA=The University of
Alabama, and UPM=Universidad Politécnica de Madrid.

4) experimentLang: The programming language in
which the given participant completed the experiment,
corresponding to one of three options: C++, C#, or Java.
In our data, this value is always Java. BYU and UA
required Java; the FUB and UPM participants all chose
Java.

5) experimentLangRequired: Identifies whether the
particular research team required their participants to
use a specific language for the experiment (correspond-
ing to “TRUE”), or whether the participants were al-
lowed to choose their preferred language (corresponding
to “FALSE”).

G.2 Pre-Questionnaire 1—Developer Experience
Each field (except for 7, 9, and 18) represents one question
on the developer experience survey. Exact questions are
provided in the lab package. All scores are self-assessments.
For summary statistics, see Appendix C.



28 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

6) langsUsedLifetime: A comma-separated list of pro-
gramming languages used at least once in the par-
ticipant’s lifetime (listed in the order given by the
participant). Spelling, capitalization, and punctuation
have been standardized.

7) langsUsedLifetime_count: A count of the number
of languages listed in field 6.

8) langsUsedOften: A comma-separated list of program-
ming languages known well by the participant and
worked with several times (listed in the order given by
the participant). Spelling, capitalization, and punctua-
tion have been standardized.

9) langsUsedOften_count: A count of the number of
languages listed in field 8.

10) locLifetime: The total number of lines of code that
the participant has ever written in any programming
language. The value in this field should be ≥ that of
field 11.

11) locJava: The total number of lines of code that the
participant has ever written in Java. The value in this
field should be ≤ that of field 10.

12) progHoursPerWeek: Hours per week in which the
participant reads, writes, or modifies code.

13) progSkill: The participant’s self-assessed program-
ming skill, where: 1= top 10%, 2= top 25%, 3= top 40%, 4
=average, 5=bottom 40%, 6=bottom 25%, 7=bottom 10%.

14) studentStatus: The participant’s current student sta-
tus, where: 1=undergraduate, 2=graduate, 3=postgraduate,
4=non-student.

15) workHoursPerWeek: Hours per week spent by the par-
ticipant working as a “professional software developer.”
See also field 16.

16) yearsProfExp: Years spent by the participant working
as a “professional software developer.” See also field 15.

17) major: Main course of study; this question was stated
such that it was to be answered only if the participant
is currently a student. Thus a non-null answer should
indicate that the participant is currently a student and
should correspond with a value of 1, 2, or 3 for field 14.

18) major_translated: Translation of field 17 from Ger-
man/Spanish into English.

G.3 Pre-Questionnaire 2—Pattern Knowledge

Each field represents one question on the pattern knowledge
survey. Exact questions are provided in the lab package. All
scores are self-assessments. Fields 20–37 represent individual
patterns. All but two of the individual patterns were origi-
nally defined by Gamma et al. [5]. Field 31, the Multistructor
pattern, does not actually exist and was included as a sanity
check. Field 34, the Reactor pattern, was originally defined
by Schmidt et al. [30, pp. 179–214]. Scores for the individual
patterns are based on a 7-point ordinal scale: 1=never heard
of it, 2=have only heard of it, 3=understand it roughly, 4=
understand it well, 5=understand it well and have worked with it
once, 6=understand it well and have worked with it two or three
times, 7=understand it well and have worked with it many times.
For summary statistics, see Appendix C.
19) patternsUsedLifetime: The number of software

design patterns with which the participant has ever
worked.

20) abstractFactory: Abstract Factory pattern.
21) adapter: Adapter pattern.
22) bridge: Bridge pattern.
23) chainOfResponsibility: Chain of Responsibility

pattern.
24) command: Command pattern.
25) composite: Composite pattern.
26) decorator: Decorator pattern.
27) factoryMethod: Factory Method pattern.
28) flyweight: Flyweight pattern.
29) mediator: Mediator pattern.
30) memento: Memento pattern.
31) multistructor: Multistructor is not an actual pattern.

This field was included as a sanity check. Most partici-
pants answered 1 (never heard of it). A few answered as
high as 3 (understand it roughly), which is not too surpris-
ing out of 61 participants, since the term “multistructor”
could reasonably be confused with other patterns. Most
importantly, no one answered 4 (understand it well) or
above. Also, of those participants who answered 2 or 3,
all appear (based on their other responses) to have
conscientiously completed the experiment.

32) observer: Observer pattern.
33) proxy: Proxy pattern.
34) reactor: Reactor pattern.
35) strategy: Strategy pattern.
36) templateMethod: Template Method pattern.
37) visitor: Visitor pattern.

G.4 Task Responses
These fields include responses submitted for short-answer
tasks, as well as responses to post-task questionnaires. Note
that the coding tasks (CO/GR task 1s) involved submitting
source code; thus they do not appear here. Instead, the
participants’ source code solutions are included in the lab
package.

Concerning fields 47–48 and 56–57, the participants
appear to have interpreted these questions in two different
ways. Most participants responded with values less than
100%—e.g., 50%, presumably meaning 50% less time, or half
the time it would have taken. A few participants responded
with values exceeding 100%—e.g., 300%, presumably mean-
ing 300% faster.
38) CO_task2: The participant’s short-answer response to

CO task 2.
39) CO_task2_translated: Translation of field 38 from

German/Spanish into English.
40) CO_task3: The participant’s short-answer response to

CO task 3.
41) CO_task3_translated: Translation of field 40 from

German/Spanish into English.
42) CO_patternsNoticed: A comma-separated list of

design patterns (listed in the order given by the partici-
pant), which the participant reports having noticed in the
CO program. Spelling, capitalization, and punctuation
have been standardized.

43) CO_difficulty: The participant’s assessment of com-
bined difficulty for all three CO program tasks, where: 1
=quite easy, 2=reasonably easy, 3=neither easy nor difficult,
4=reasonably difficult, 5=quite difficult.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 29

44) CO_confidence: The participant’s self-reported confi-
dence (as a percentage) that s/he has correctly solved
the three tasks for the CO program.

45) CO_difficultAspects: Aspects of the CO program
tasks which the participant found most difficult.

46) CO_difficultAspects_translated: Translation of
field 45 from German/Spanish into English.

47) CO_patKnowHelp: The participant’s self-assessment
of how much faster (as a percentage of time) s/he
solved the CO program tasks due to his/her personal
“knowledge of the design patterns used in the program.”

48) CO_docHelp: The participant’s self-assessment of how
much faster (as a percentage of time) s/he solved the
CO program tasks due to “the explicit documentation
of the design patterns used in the program.”

49) GR_task2: The participant’s short-answer response to
GR task 2.

50) GR_task2_translated: Translation of field 49 from
German/Spanish into English.

51) GR_patternsNoticed: A comma-separated list of
design patterns (listed in the order given by the partici-
pant), which the participant reports having noticed in the
GR program. Spelling, capitalization, and punctuation
have been standardized.

52) GR_difficulty: The participant’s assessment of com-
bined difficulty for the two GR program tasks, where: 1
=quite easy, 2=reasonably easy, 3=neither easy nor difficult,
4=reasonably difficult, 5=quite difficult.

53) GR_confidence: The participant’s self-reported confi-
dence (as a percentage) that s/he has correctly solved
the two tasks for the GR program.

54) GR_difficultAspects: Aspects of the GR program
tasks which the participant found most difficult.

55) GR_difficultAspects_translated: Translation of
field 54 from German/Spanish into English.

56) GR_patKnowHelp: The participant’s self-assessment
of how much faster (as a percentage of time) s/he
solved the GR program tasks due to his/her personal
“knowledge of the design patterns used in the program.”

57) GR_docHelp: The participant’s self-assessment of how
much faster (as a percentage of time) s/he solved the
GR program tasks due to “the explicit documentation of
the design patterns used in the program.”

G.5 Final Comments
These fields document all comments provided by participants
at the end of the experiment. Note that participants also
provided useful comments in fields 45 and 54.
58) finalComments: Any final comments the participant

submitted after completing the experiment.
59) finalComments_translated: Translation of field 58

from German/Spanish into English.

G.6 Survey and Task Times
These fields record web page timings. All timings represent
the time spent (in seconds) on the associated web portal
page, which is not necessarily equivalent to the time spent
working—e.g., the participant may have taken a break or
been interrupted. Note in this regard that some participants
mention in their final comments having taken breaks during

the experiment. In most cases, we apply time adjustments to
correct for interruptions (see fields 64, 68, 73, 77). In one case,
due to insufficient information, we can only record the prob-
lem (see fields 70, 79) and exclude the data during analysis.

60) devExpSurveyTime: The time spent by the participant
on the development experience pre-questionnaire page.

61) patKnowledgeSurveyTime: The time spent by the
participant on the pattern knowledge pre-questionnaire
page.

62) CO_task1DownloadTime: The time spent by the par-
ticipant on the source code download page for CO task 1
(note that this time may include working time—e.g., the
participant may have begun reading code before moving
on to the task description page).

63) CO_task1WorkTime: The time spent by the participant
on the description page for CO task 1.

64) CO_task1WorkTimeCorr: Time that is to be added
to CO task 1 to correct for breaks reported by the
participant in his/her final comments.

65) CO_task1UploadTime: The time spent by the par-
ticipant on the solution upload page for CO task 1
(note that this time may include working time—e.g.,
the participant may have proceeded to this page after
reading the task description, but before having worked
on the task).

66) CO_task1TotalTime: The total time (with corrections)
spent by the participant on the download, description,
and upload pages for CO task 1 (i.e., the sum of fields 62–
65). This is the time recommended for analysis.

67) CO_tasks2-3WorkTime: The time spent on the task
page for CO tasks 2 and 3. These tasks were presented
on the same page and timed together. Tasks 2 and 3
were short-answer questions that did not require the
download, modification, or upload of source code.

68) CO_tasks2-3WorkTimeCorr: Time that is to be added
to CO tasks 2 and 3 to correct for breaks reported by the
participant in his/her final comments.

69) CO_tasks2-3TotalTime: The total time (with correc-
tions) spent by the participant on the task page for CO
tasks 2 and 3 (i.e., the sum of fields 67 and 68). This is
the time recommended for analysis.

70) CO_dataValid: Specifies whether the data for the CO
program tasks should be considered valid for the given
participant. “FALSE” indicates that the participant’s data
are either known to be invalid or are so anomalous (e.g.,
impossibly small timings) that they cannot reasonably
be considered as valid. “TRUE” indicates that the data
appear to be valid. A parenthetical note indicates that
the data are suspect—i.e., the researcher should consider
them with caution. Parenthetical notes include a list of
anomalous data fields.

71) GR_task1DownloadTime: The time spent by the par-
ticipant on the source code download page for GR task 1
(note that this time may include working time—e.g., the
participant may have begun reading code before moving
on to the task description page).

72) GR_task1WorkTime: The time spent by the participant
on the description page for GR task 1.

73) GR_task1WorkTimeCorr: Time that is to be added
to GR task 1 to correct for breaks reported by the



30 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

participant in his/her final comments.
74) GR_task1UploadTime: The time spent by the par-

ticipant on the solution upload page for GR task 1
(note that this time may include working time—e.g.,
the participant may have proceeded to this page after
reading the task description, but before having worked
on the task).

75) GR_task1TotalTime: The total time (with corrections)
spent by the participant on the download, description,
and upload pages for GR task 1 (i.e., the sum of fields 71–
74). This is the time recommended for analysis.

76) GR_task2WorkTime: The time spent on the task page
for GR task 2. task 2 was a short-answer question that
did not require the download, modification, or upload
of source code.

77) GR_task2WorkTimeCorr: Time that is to be added
to GR task 2 to correct for breaks reported by the
participant in his/her final comments.

78) GR_task2TotalTime: The total time (with corrections)
spent by the participant on the task page for GR task 2
(i.e., the sum of fields 76 and 77). This is the time
recommended for analysis.

79) GR_dataValid: Specifies whether the data for the GR
program tasks should be considered valid for the given
participant. “FALSE” indicates that the participant’s data
are either known to be invalid or are so anomalous (e.g.,
impossibly small timings) that they cannot reasonably
be considered as valid. “TRUE” indicates that the data
appear to be valid. A parenthetical note indicates that
the data are suspect—i.e., the researcher should consider
them with caution. Parenthetical notes include a list of
anomalous data fields.

G.7 Task Correctness Scores
These fields list the correctness scores assigned to partici-
pant solutions and short-answer responses. All scores are
percentages (0–100%). A suffix of “LabGrade” indicates that
the scores were assigned by the research team specified in
field 3—i.e., BYU, FUB, UA, or UPM. A suffix of “BYUGrade”
indicates that the scores were assigned by the BYU research
team, which regraded all solutions to ensure consistency
across sites.
80) CO_task1LabGrade: CO task 1 correctness, assessed

by the individual research team.
81) CO_task1BYUGrade: CO task 1 correctness, assessed

by the BYU research team.
82) CO_task2LabGrade: CO task 2 correctness, assessed

by the individual research team.
83) CO_task2BYUGrade: CO task 2 correctness, assessed

by the BYU research team.
84) CO_task3LabGrade: CO task 3 correctness, assessed

by the individual research team.
85) CO_task3BYUGrade: CO task 3 correctness, assessed

by the BYU research team.
86) CO_tasks2-3LabGrade: Average of fields 82 and 84.

This field corresponds with field 69.
87) CO_tasks2-3BYUGrade: Average of fields 83 and 85.

This field corresponds with field 69.
88) GR_task1LabGrade: GR task 1 correctness, assessed

by the individual research team.

89) GR_task1BYUGrade: GR task 1 correctness, assessed
by the BYU research team.

90) GR_task2LabGrade: GR task 2 correctness, assessed
by the individual research team.

91) GR_task2BYUGrade: GR task 2 correctness, assessed
by the BYU research team.

APPENDIX H
DATA PREPARATION PROCESS

Producing the final dataset involved three steps:
1) Merging individual datasets from the four research teams:

Given that the web portal provides all data in a fixed
schema, this step was trivial.

2) Unifying terminology and format: This step involved cor-
recting spelling errors, as well as matching capitalization
and punctuation across columns to facilitate readability.
We modified only the four columns representing lists of
either programming languages or design patterns (e.g.,
changing “Decoratr” and “decorator pattern” both to
read as “Decorator”). These four fields were provided
by the participants as free-form text. We did not alter the
list orderings, nor modify any other columns. To ensure
consistency, we made these changes using spreadsheet
tools (i.e., spell checking and search/replace tools).

3) Annotating the data: This step involved three sub-
processes: 1) a column search for data errors (none
were found); 2) a column search for outliers; and
3) a row search for participants who deviated from
the instructions. All anomalies are recorded in the
data file as annotations. The data file is provided in
the lab package. We have added two columns to the
data file to describe data validity: CO_dataValid and
GR_dataValid. For an explanation of how to read
these columns, see fields 70 and 79 in Appendix G. We
have also added columns for recording time corrections
(fields 64, 68, 73, and 77 in Appendix G), which we
inferred from the participants’ final comments.

The data preparation process involved only minor syntactic
corrections for readability, as described in Step 2 above.
All other anomalies were merely annotated. In cases where
correct values are known, those values are recorded in the
annotations. It is left up to the analyst to deal with anomalous
data as s/he sees fit, based on the annotations provided.

APPENDIX I
VARIABLES EXCLUDED FROM ANALYSIS

In this section, we list the fields we exclude from statistical
analysis, with an explanation for each. Future work may find
some of these fields useful. Field numbers correspond to
those shown in Appendix G.

• group_idMOD4 (field 2): Group is a surrogate for the
combination of program order and variant.

• experimentLang (field 4): All participants used the
same programming language (Java), so this field does
not differentiate participants.

• experimentLangRequired (field 5): This field con-
veys little information beyond that already provided by
field 3, researchLab.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 31

• langsUsedLifetime (field 6): This field is replaced by
field 7, langsUsedLifetime_count.

• langsUsedOften (field 8): This field is replaced by
field 9, langsUsedOften_count.

• studentStatus (field 14): This field can be viewed as
a high-level indicator of developer experience. However,
it does not necessarily represent developer experience.
For instance, in our data, student status does not cor-
relate with progSkill or progHoursPerWeek (0.02
and 0.06, respectively)—both of which seem directly
related to developer experience.16 Although student
status could represent some other important concept, we
exclude it from analysis because, within the context of
the PatMain study, it only seems relevant as a measure
of developer experience.

• workHoursPerWeek and yearsProfExp (fields 15
and 16): We ignore working-hours-per-week and years-
professional-experience for two reasons. First, both
questions ask about “professional” work. Second, in
hindsight, the term professional seems ambiguous for
students. Should students count part-time work, or do
these questions refer only to full-time work? Many
participants (18) do, in fact, report part-time hours.
However, more than half of the participants (29 of
53) report zero hours and zero years experience, at
least some of whom may be working in professional
software companies, but do not consider their jobs to be
“professional” because the work is not full time.

• major (field 17): All participants are essentially the same
major, so this field conveys little information.

• patternsUsedLifetime (field 19): This field includes
several unreasonable outliers. We could deal with these
outliers by bucketing or otherwise transforming the data.
However, estimating the number of patterns one has
ever used seems more difficult than estimating one’s
knowledge of specific patterns. Thus we prefer to use
the individual pattern knowledge assessments instead
(fields 20–37).

• multistructor (field 31): This field is a sanity check.
No such design pattern actually exists.

• CO_task2, CO_task3, and GR_task2 (fields 38, 40,
and 49): These fields are replaced by correctness scores
(fields 87 and 91).

• devExpSurveyTime (field 60): Survey times are unre-
lated to the experiment hypotheses.

• patKnowledgeSurveyTime (field 61): Survey times
are unrelated to the experiment hypotheses.

• Component task times (including download, work,
upload, and corrections; fields 62–65, 67–68, 71–74,
and 76–77): We use the total times instead (sum of the
component times) because of uncertainty in how the
participants navigated the task download, description,
and upload pages.

• CO_dataValid and GR_dataValid (fields 70 and 79):
These fields apply only to pre-analysis decisions con-
cerning which data entries are valid.

• “LabGrade” correctness scores (fields 80, 82, 84, 86,
88, and 90): For consistency across sites, we use the

16. Pearson product-moment correlation coefficients (calculated with
R 2.15.2); two-sided p-values = 0.89 and 0.65, respectively.

centrally-graded BYU scores instead.
• CO_task2BYUGrade and CO_task3BYUGrade (fields

83 and 85): Like E repl, we combine CO tasks 2
and 3. Thus these fields are replaced by field 87,
CO_tasks2-3BYUGrade.

• Post-questionnaire data and final comments (fields 42–
48, 51–57, and 58): Where applicable, we apply these
responses qualitatively to help interpret the statistical
results.

APPENDIX J
DEVELOPER EXPERIENCE DERIVED METRIC

To compose the developer experience metric, we transform,
scale, and average 6 component metrics (field numbers
correspond to those shown in Appendix G):

1) langsUsedLifetime (field 6)
2) langsUsedOften (field 8)
3) locLifetime (field 10)
4) locJava (field 11)
5) progHoursPerWeek (field 12)
6) progSkill (field 13)

For a description of each component, see Appendix G. For
summary statistics, see Appendix C. The aggregation process
is accomplished in 6 steps:

1) Replace each response for langsUsedLifetime and
langsUsedOften with its cardinality.

2) Apply a natural log transformation to each response
for langsUsedOften, locLifetime, and locJava
to correct for skew and outliers.

3) Scale all component variables (langsUsedLifetime,
langsUsedOften, locLifetime, locJava, prog-
HoursPerWeek, and progSkill) to a range of 1–7,
such that zero maps to 1 and the variable’s maximum
value maps to 7. Note that progSkill is already on a 1–
7 scale. However, for that variable 7 initially represents
low skill; thus the scale must be reversed.

4) Average the components langsUsedLifetime and
langsUsedOften to create a single variable represent-
ing the general concept, langsUsed.

5) Average the components locLifetime and locJava
to create a single variable representing the general
concept, locWritten.

6) Finally, average the four variables langsUsed, loc-
Written, progHoursPerWeek, and progSkill to
produce the final aggregate metric.

The final metric is a continuous variable ranging from
1 to 7 (scaled to match the range of the pattern knowledge
metric), where 7 represents high experience. The metric is
an average of four core components—languages used, LOC
written, programming hours per week, and self-assessed
programming skill—with each component receiving a weight
of 25% in the average. The four components (after pre-
averaging) only moderately correlate (from 0.2 to 0.4), which
is ideal for creating an effective aggregate metric. The
components measure related concepts, yet each component
incorporates unique information.

Additional notes:
• The log transformation impacts the Pearson product-

moment correlation, but not the rank correlation. Scaling
impacts neither.



32 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

• We pre-average some variables (steps 4 and 5) in order
to reduce their collective impact on the final average.
In each case, the variables are highly correlated—0.87
in the case of the LOC metrics and 0.63 in the case
of the languages used metrics.17 These correlations are
significantly higher than those for any other pair of
variables, with the next highest being only 0.43. Thus we
pre-average in cases where multiple variables measure
a similar concept to prevent that concept from having
excessive influence on the final metric.

• A few entries in the dataset are clearly erroneous. In
most cases, no correction is possible because we have
no idea what the true responses should have been.
However, in two cases we do adjust the data prior to
computing the aggregate metric. For participants 38048
and 92689, we append a copy of their langsUsedOften
response to the end of their langsUsedLifetime
response. In both cases, the participants report dis-
joint sets for these variables. Conversely, all other
participants report langsUsedOften as a subset of
langsUsedLifetime.

APPENDIX K
JAVA FAMILIARITY DERIVED METRIC

The java familiarity metric was the only metric we tested
in the statistical models that turned out to be completely
unhelpful. The metric is derived from the languages-used-
often variable, based on the following ordinal scale: 1= the
participant does not list any object oriented languages, 2= the
participant lists only non-Java object oriented languages, 3= the
participant lists Java. Most participants (47/53) list Java, so
this variable has little statistical impact. Thus, we ignore it in
the discussion, other than to mention that we explored it.

APPENDIX L
STATISTICAL MODEL ASSUMPTIONS

The frequentist models depend on several assumptions, in-
cluding: 1) response variables should be normally distributed;
2) explanatory variables should not be significantly correlated;
and 3) explanatory variables should be homoscedastic (i.e.,
of constant variance, as opposed to heteroscedastic). Given
our setup, assumptions 2 and 3 also apply to the Bayesian
models.

L.1 Normality

The time data are skewed with several significant outliers.
For the frequentist analysis, we normalize time by log-
transformation (see Figs. 4–5 and Table 13). However, for the
Bayesian analysis, we model time using a gamma distribu-
tion, so normality is not an issue in that case. Concerning
correctness, the range is discretized into only five buckets,
thus precluding the possibility of gross outliers (a primary
threat to model validity and a principle reason for concern
with normality). Also, with such a limited range, correctness

17. All correlations in this section are Pearson product-moment
correlation coefficients (calculated with R 2.15.2). Parametric tests are
appropriate for these data because they have been previously normalized
via log transformation.

CO Task 1

0e
+0

0
4e
−0

4
8e
−0

4

0 2000 4000 6000 8000
Time (seconds)

D
en

si
ty

CO Task 2

0e
+0

0
4e
−0

4
8e
−0

4

0 2000 4000 6000 8000
Time (seconds)

D
en

si
ty

GR Task 1

0e
+0

0
4e
−0

4
8e
−0

4

0 2000 4000 6000 8000
Time (seconds)

D
en

si
ty

GR Task 2

0e
+0

0
4e
−0

4
8e
−0

4

0 2000 4000 6000 8000
Time (seconds)

D
en

si
ty

Fig. 4. Density plots for the time response variable before log transforma-
tion. Compare to Fig. 5 and Table 13.

CO Task 1

0.
0

0.
2

0.
4

0.
6

4 5 6 7 8 9 10
Time (log seconds)

D
en

si
ty

CO Task 2

0.
0

0.
2

0.
4

0.
6

4 5 6 7 8 9 10
Time (log seconds)

D
en

si
ty

GR Task 1

0.
0

0.
2

0.
4

0.
6

4 5 6 7 8 9 10
Time (log seconds)

D
en

si
ty

GR Task 2

0.
0

0.
2

0.
4

0.
6

4 5 6 7 8 9 10
Time (log seconds)

D
en

si
ty

Fig. 5. Density plots for the time response variable after log transforma-
tion. Compare to Fig. 4 and Table 13.

cannot take on much of a skew. Thus, we do not apply a
log transformation to correctness. That said, with only five
buckets, the correctness variable is unlikely to fit a smooth
normal distribution. Thus, although we assume normality for
the frequentist analysis, we avoid that assumption entirely
in the Bayesian analysis by modeling correctness with a beta
distribution.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 33

TABLE 13
Results for the Shapiro-Wilk test of normality for the time response
variable before/after log transformation (calculated with R 2.15.2).

p-values represent the probability of obtaining a given sample, assuming
a normally distributed population—i.e., low p-values indicate risk of

non-normality. Compare to Figs. 4 and 5.

Shapiro-Wilk p-value
Before Log

Transformation

Shapiro-Wilk p-value
After Log

Transformation

CO Task 1 2.16×10-04 0.755

CO Task 2 9.17×10-07 0.275

GR Task 1 1.86×10-05 0.286

GR Task 2 1.52×10-11 0.044*

*This p-value indicates possible non-normality. However, that
conclusion depends on a single extreme outlier, participant 90620,
without which the p-value becomes 0.211. Also, the log-time
density plot for GR task 2 appears roughly normal even with the
outlier (see Fig. 5), and our final results ultimately exclude
participant 90620 (as described in Section 3.1). Thus, we are not
concerned about normality in this case.

L.2 Multicollinearity
Multicollinearity occurs when two or more explanatory
variables in a statistical model are significantly correlated. In
the presence of multicollinearity a model’s predictive power
and overall reliability are not impacted. However, parameter
estimates for the collinear variables may be inaccurate and
can change erratically with only small changes to the data.
For instance, two highly significant, but collinear variables
can both appear insignificant when included in the model
together.

All correlations between explanatory variables for the
models considered in this paper are low. Generally, mul-
ticollinearity is not a problem for pairwise correlation
magnitudes below 0.7 [39],18 and the highest magnitude
among our explanatory variables is only 0.4 (between devExp
and time ln on GR task 2).19 Thus multicollinearity is not a
concern. A complete list of all correlations is included in the
lab package.

L.3 Heteroscedasticity
Heteroscedasticity occurs when the variance in a dataset
differs across sub-populations (e.g., treatment groups). This
condition can be seen by plotting each explanatory variable
against the response variable. If any expanding, shrinking,
or multi-modal patterns are visible across the range of the
explanatory variable, then heteroscedasticity is a concern.
We provide scedasticity plots for all explanatory variables in
the lab package. For our dataset, scedasticity plots indicate
concern in only one case—patKnow. For patKnow, only 13% of
participants score above 4.0, such that the variance appears

18. Most texts cite correlation thresholds in the range 0.5 to 0.9 as
indicating potential multicollinearity [39], [40]. Also, note that correlation
magnitudes are not a direct measure of collinearity, and they can fail to
detect the condition in some cases. However, all collinearity detection
methods are subject to some error, and rule-of-thumb correlation
thresholds have been shown to perform at least as well as the more
complicated methods [39].

19. We use Pearson product-moment correlation coefficients (calcu-
lated with R 2.15.2). Parametric tests are appropriate in this case because
the data have been normalized via log transformation.

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

1 2 3 4 5 6 7

Ti
m

e 
(lo

g 
se

co
nd

s)

Pattern Knowledge (range 1−7)

Fig. 6. Scedasticity plot for patKnow (CO time model). Data sparseness
in the upper range (>4.0) indicates the possibility of heteroscedasticity.

lower in the upper range (see Fig. 6). Our statistical models
assume constant variance, which may be true, but the data
are simply too sparse in the upper range to know for sure.

If patKnow is heteroscedastic, the statistical results would
only be minimally impacted. First, heteroscedasticity does not
bias least squares coefficient estimates, so none of our parameter
estimates in the frequentist analysis would be affected. Second,
heteroscedasticity does impact variance estimates, which in
turn can bias p-values. However, such a bias would primarily
affect only the upper range of patKnow, and it would most
likely mean inflated p-values. Specifically, since most of the
data reside in the lower range, variance for the upper range
(if it is inaccurate) is likely overestimated by the common
variance term. Consequently, if we were to allow our models
to estimate separate variances for high and low patKnow, and
if the data sparseness problem were resolved, the resulting
p-values would more likely decrease or remain unchanged
than to increase. In other words, if our analysis is biased with
respect to pattern knowledge, it is most likely biased toward type 2
errors—failure to reject the null hypothesis; furthermore, any such
bias would apply only to the upper range.

APPENDIX M
TUNING FREQUENTIST MODELS

We tune all frequentist models using a standard covariate
pruning technique [31, p. 345]. The technique is essentially a
modified form of backward stepwise regression. We avoid ba-
sic stepwise regression because it effectively constitutes data
dredging (i.e., fishing for significance), which can seriously
bias the results [31, pp. 353–354]. The primary difference
between the modified form (which makes it appropriate)
and the basic form is that we drop all main effects from
the model before performing the elimination procedure.
This way, tuning does not manipulate the final results. The
main effects are only added back to the model once tuning
is complete. Discarded covariates are still adjusted for in
the final models, since they had a chance to be included
prior to adding the main effects back in [31, pp. 345–347].



34 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 14
Prior distributions for all Bayesian model parameters.

Response CO Task 1 CO Task 2 GR Task 1 GR Task 2 All Other
Variable Models Variance Variance Variance Variance Base Offset Parameters

time T1–T6 Γ (3, 480000) Γ (3, 83333) Γ (3, 403333) Γ (3, 163333) N
(
1900, 5002

)
N

(
0, 10002

)
3σ = 25 min. 3σ = 50 min.

correctness C1–C6 Γ (2, 0.07) Γ (2, 0.08) Γ (2, 0.055) Γ (2, 0.12) N
(
0.5, (0.4/3)2

)
N

(
0, 0.32

)
3σ = 40 pts. 3σ = 90 pts.

Γ(k, θ) = gamma distribution, where k and θ represent shape and scale.
N(µ, σ2) = normal distribution, where µ and σ2 represent mean and variance.
3σ = the approximate practical range of a normal distribution on either side of the mean.

Conceptually, the tuning process acts as a high-level filter that
removes any covariates unrelated to the response variable.

We use p-values for the elimination criterion. The process
requires iteratively removing the least significant covariate
until all remaining covariates are at least moderately sig-
nificant (p-values . 0.1). For all models, we treat program
variant and all interactions as main effects. After returning
the main effects to the model, the final step is to drop any
non-significant interactions. In general, we never include
an interaction without including its lower order terms.
Thus we always drop high-order interactions first. Pruning
interactions does reintroduce the concern of data dredging.
However, given the nearly complete lack of significance
that the interactions have in all models, removing them is
appropriate and the threat of data dredging is minimal.

APPENDIX N
DISCRETIZATION OF BAYESIAN VARIABLES

As explained in Section 2.3, for the Bayesian models, we
discretize all continuous explanatory variables into low
and high categories. We divide variables based on a visual
inspection of clustering and/or by conceptually interpreting
the variable’s scale. The resulting partitions for each variable
are follows:

• devExp: 2 buckets, representing high and low developer
experience (high=scores of 4.5–7.0 inclusive, matching
22 of 53 participants).

• patKnow: 2 buckets, representing high and low pattern
knowledge (high=scores of 3.5–7.0 inclusive, matching
21 of 53 participants).

• time (when used as a covariate for correctness): 2 buckets,
representing high and low work times. High times are
determined on a per-task basis:
- CO task 1: ≥2000 sec. (26 of 52 observations)
- CO task 2: ≥500 sec. (25 of 52 observations)
- GR task 1: ≥1900 sec. (22 of 51 observations)
- GR task 2: ≥700 sec. (18 of 51 observations)

• correctness (when used as a covariate for time): 2 buckets,
representing high and low solution correctness (high=
scores of 75–100 inclusive, matching 103 of 206 observa-
tions).

APPENDIX O
BAYESIAN PRIORS

Bayesian priors are shown in Table 14. To avoid biasing
the Bayesian analysis, we enlisted an external researcher

to provide estimates for all priors. Our helper—who had 5
years of experience managing professional developers, as
well as 10 years of experience teaching undergraduate and
graduate computer science students—is an expert in the area
of Bayesian statistics. To inform our helper, we gave him
mean and variance data for all CO and GR tasks from E orig.
We did not give him any data from E joint.

We gave our helper only two constraints in selecting the
priors (both suggestions of Felt [34]): First, we instructed
him to center all priors—with the exception of the variances
and base offset—at zero, thus assuming no effect by default
(i.e., the null hypothesis). Second, we instructed him to select
broad priors. Doing so allows the posterior distributions to
move more easily in response to the data, thus minimizing
the weight of our biases in the analysis. In general, choosing
broad priors leads to broader posteriors, but for a post-hoc
analysis, sacrificing some precision is an acceptable tradeoff
in order to focus the analysis more on the data. After all,
the purpose of a post-hoc analysis is to formulate data-driven
conjectures.

In selecting the priors, our helper assumed that the
student participants would take longer and score lower
(on average) than the professionals from E orig. He also
assumed that they would display greater variance than
the professionals. Our helper chose normal distributions
for most parameters primarily because we have no reason
to believe anything other than symmetric noise. He chose
gamma distributions for the variances because the support
for gamma is limited to values greater than zero.20

APPENDIX P
NOTES ON OBSERVATION FILTERING

E repl used observation filtering when modeling the time
response variable. As Vokáč et al. explain, “Since completion
times have little meaning for solutions with low correctness,
only those solutions achieving correctness score 4 (‘almost
correct’) or 5 (‘correct’) were used in [the time analysis]” [20,
p. 158]. Scores of 4 and 5 in E repl’s data correspond to
scores of 75% and 100%, respectively, in our data. Although
the authors do not explain why low-scoring solutions are
problematic, one concern is that the associated timings may
be censored (i.e., artificially capped). For example, some
participants may have submitted an incomplete solution
simply because they were tired of the task.

20. Inverse gamma is a common choice for variance, but given our
use of Gibbs sampling, conjugacy was not necessary.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 35

TABLE 15
Unfiltered Bayesian results showing the correctness×variant interaction

and the marginalized effect of variant for each of the four tasks
(uT4:46–54,387–406). Probabilities exceeding a significance (sig.) of

0.75 are bolded. Insignificant probabilities are those near 0.5.

program task correctness ALT−PAT p(ALT>PAT) sig.

CO 1 low 120 0.61 0.61
CO 1 high −373 0.17 0.83
CO 1 marg. −126 0.39 0.61

CO 2 low −69 0.40 0.60
CO 2 high 135 0.67 0.67
CO 2 marg. −46 0.51 0.51

GR 1 low −409 0.23 0.77
GR 1 high 317 0.78 0.78
GR 1 marg. 33 0.53 0.53

GR 2 low −28 0.47 0.53
GR 2 high −408 0.17 0.83
GR 2 marg. −218 0.32 0.68

ALT−PAT = the difference between variants (in seconds)—i.e., the
difference between the posterior distribution means.

p(ALT>PAT) = posterior probability that the ALT variant takes
longer than the PAT variant.

sig. = significance of variant (i.e., max of p and 1−p, where p is the
posterior probability).

marg. = marginal posterior probability for variant, factoring out its
interaction with correctness.

Observation filtering can mitigate the problem of cen-
sored data, but it also limits the generality of the results.
Further, from a statistical standpoint, observation filtering
actually addresses two separate issues: 1) it accounts for
variance due to an interaction between correctness and variant;
and 2) it accounts for variance due to a relationship between
correctness and time (i.e., participants may score higher
simply by working longer). Thus, to improve on the use
of observation filtering, we address these issues separately.

P.1 correctness×variant Interaction
Many conditions could induce an interaction between cor-
rectness and variant. For instance, added noise from data
censoring could mask the effect of variant at low levels of
correctness. We test for a correctness×variant interaction in
the Bayesian models. For those models, we divide correctness
into low and high buckets, based on the same threshold used
by E repl (as shown in Appendix N).

Table 15 shows the correctness×variant interaction and
the marginalized effect of variant for each task. The table
indicates a relatively strong interaction between correctness
and variant. First, variant is more significant within the
interaction than as a standalone variable. Second, for all tasks,
the effect of variant (denoted ALT−PAT in the table) varies
considerably across correctness levels (low, high). For instance,
on GR task 1, PAT is estimated to take 409 seconds longer than
ALT when correctness is low. However, for high correctness,
PAT requires 317 seconds less than ALT—a difference of 12.1
minutes. For tasks requiring 20–30 minutes to complete, even
5 minute differences can be significant.

Thus, we do find an interaction between correctness and
variant, but that interaction is inconsistent across tasks. There-
fore, 1) observation filtering is inadvisable, and 2) excluding

TABLE 16
Unfiltered frequentist and Bayesian results showing the significance of

correctness as a covariate in the time models (and vice versa). p-values
less than or equal to 0.05 and posterior probabilities exceeding 0.75 are
bolded. All p-values are two-sided. All posterior probabilities describe the

probability of a positive correlation between correctness and time.

Posterior
Model Covariate p-value Probability*

CO time correctness 0.071 -
CO correctness time ln 0.110 -
GR time correctness <0.001 -
GR correctness time ln 0.003 -

T1 correctness - 0.99
T2 correctness - 0.97
T3 correctness - 0.91
T4 correctness - 0.68†

T5 correctness - 0.95
T6 correctness - 0.90

C1 time - 0.85
C2 time - 0.84
C3 time - 0.82
C4 time - 0.63†

C5 time - 0.81
C6 time - 0.88

*Source: uT1–T6,C1–C6:61–63.
†For these models only, the covariate is interacted with other

variables. In both cases, the interaction requires estimating 16
parameters, rather than 2. The increase in parameters dampens
statistical significance [31, p. 347].

low-scoring data is too blunt a method to account for the
correctness×variant relationship we observe across tasks.

We confirm this conclusion by applying observation
filtering to the frequentist models. After filtering, the ef-
fect of variant is completely lost. Thus, the significance of
variant depends on both low and high correctness scores,
and consequently, we cannot filter individual observations
based solely on correctness. For additional discussion of the
correctness×variant interaction, see Section 3.2.

P.2 correctness-time Relationship

We test for a relationship between correctness and time by
including correctness as a covariate in the time models (and
vice versa). The Bayesian models (see Table 16) indicate that
correctness and time are likely related in E joint’s data. The
frequentist models further reveal that the relationship varies
by program, being highly significant for the GR program,
but less so for CO.

The correctness-time correlation is positive in all models—
i.e., the participants are likely achieving higher scores at
the expense of time. The magnitude of the effect is modest.
For example, in the GR time model, a 10-point increase
in correctness corresponds with a 5.9% increase in time.
The other three frequentist models show similar results (see
Tables 25, 29, and 37 in Appendix Y). According to the
Bayesian models, achieving a high score (75% or 100%) is
associated with a 2–4 minute increase in time (which could
be significant relative to 20–30 minute tasks).

E repl also included correctness as a covariate in the time
models, but found it to be insignificant. However, E repl



36 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

only tested correctness after having filtered the data. If a
relationship did exist, it was likely lost due to the filtering.
As a test, we applied observation filtering to our own data,
exactly as described by Vokáč et al., and reran the frequentist
models. Similar to E repl, time and correctness both became
insignificant in all models after the filtering (p-values ≥ 0.23).
Thus we do find a significant, though modest, relationship
between correctness and time, and observation filtering does
account for that relationship.

P.3 Summary
We find significant evidence for an interaction between
correctness and variant, but that interaction is inconsistent
across tasks. Thus we cannot exclude low-scoring observa-
tions without eliminating the main effect. Further, we find
evidence for a small positive correlation between correctness
and time, which is fully accounted for by observation filtering.
However, since observation filtering is not acceptable, we
must account for the correctness-time relationship by including
correctness as a covariate in the time models (and vice versa),
rather than by filtering.

We conclude that observation filtering, as implemented
by E repl, does not reduce cross-site variance for E joint. As
a method for reducing irrelevant variance, it is simply too
inefficient. We also propose that the analysis of E repl may be
improved by addressing the correctness×variant interaction
and the correctness-time relationship separately, via statistical
modeling, rather than through observation filtering.

APPENDIX Q
NOTES ON PARTICIPANT FILTERING

In this section, we provide additional information on the
participant filtering discussed in Section 3.1.

Q.1 Filtering by Correctness
To help ensure objectivity, we enlisted four independent
reviewers. The four reviewers were all software engineering
researchers, including two not affiliated with this study.
Based on a plot of the averages (see Fig. 7), the reviewers
unanimously selected a threshold of 25 percentage points.
All of the excluded participants received a zero on all, or
nearly all tasks. A zero score is only given when the solution
is completely wrong, and it appears that the participant did not
understand the requirements. Thus the excluded participants
were likely underqualified and/or insufficiently motivated.

Figs. 7a, 7b, and 7c present different views of the E joint
participants, plotted by average task time and correctness.
Fig. 7a was the specific plot used by the four independent
reviewers to decide the filtering threshold. Fig. 7b shows the
participants categorized by site. Fig. 7c adds ID labels and
the filter threshold. Notice that the American universities
(BYU and UA) account for most of the participants filtered.

Fig. 7d is a post-hoc validation of the participant filtering—
i.e., we generated it only after choosing the filter threshold.
Fig. 7d shows the distribution of participants from E joint
whose data were identified during the annotation process
as questionable. For example, participant 15350 reported
having previously written zero lines of code in any language.
For a complete list of such concerns, see the data file in

the lab package. Fig. 7d also shows the distribution of the
professionals from E orig. E orig’s participants completed
tasks on paper, rather than on a computer, so comparisons
to E joint are only tentative. That said, notice that the
questionable data mostly fall to the left of the filter, whereas
all of E orig’s participants (the professionals) fall to the right.

Figs. 8 and 9 show time and correctness displayed accord-
ing to the site×variant interaction. The plots depict the data
before and after participant filtering. We include the figures
for two reasons: 1) to show that the main effect, program
variant, significantly varies across the four sites; and 2) to
show that participant filtering only marginally reduces that
variance. See Sections 3.1–3.2 for further discussion.

Q.2 Filtering by Time
In addition to filtering by correctness, we also asked the
reviewers to select a threshold for filtering by time (again,
based on Fig. 7a). Possibly, high times indicate underqualified
participants, similar to low correctness. Or more likely,
high times indicate technical difficulties or the taking of
unrecorded breaks. For example, at the outset of the analysis
we discarded all data for participant 57033 because s/he
reported having spent more than an hour setting up an IDE.

Each reviewer selected a different threshold (approxi-
mately 2250, 2550, 2650, and 3200 seconds). We tested each
threshold and found that none substantially affect the results
when applied in addition to the correctness filter. If anything,
filtering by time slightly reduces the significance of variant—
likely due to the loss of good data. Therefore, like E repl, we
do not exclude participants based on work times.

APPENDIX R
VISUALIZATION OF MODERATOR VARIABLES

In this section, we provide an extended version of Table 5
from Section 3.2. Table 17 extends Table 5 in three ways: 1) it
shows probabilities for additional interactions; 2) it visualizes
the probabilities via box plots; and 3) it provides back
references to the Bayesian results tables, mapping the box
plots to the posterior probabilities on which they are based.
Below we explain how to read Table 17. The explanation
assumes familiarity with Table 5.

In Table 17, we replace Table 5’s column labels, ¬c and
c, with the labels vpt and vptc (where v=variant, p=program,
t= task, and c=candidate). We then add six additional inter-
action columns: v, vp, vt, vc, vpc, and vtc. We include the
additional columns to show that, in most cases, the signif-
icance of variant depends not only on the given candidate
moderator, but also on program and task—i.e., variant is most
significant in the four-way interactions (labeled vptc). Thus,
we focus in the main paper on the interactions vpt and vptc.

In Table 17, instead of listing only the max significance
for each interaction, we use box plots to show the full
range of significances. Viewing the full range is helpful
in order to see how the spread of probabilities changes
across the interactions. For the vpt and vptc interactions,
we label the max significance values and (in parentheses) the
corresponding effect estimates. The labeled values match the
numbers shown in Table 5.

Table 17 also includes back references to the Bayesian
results tables. The back references are important as an audit



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 37

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

50
0

10
00

15
00

20
00

25
00

30
00

35
00

0 20 40 60 80 100

Av
er

ag
e 

Ta
sk

 T
im

e 
(s

ec
on

ds
)

Average Task Correctness (0−100%)

(a)

●

●

●

●

●

●

●

●

●

●

●

●

50
0

10
00

15
00

20
00

25
00

30
00

35
00

0 20 40 60 80 100

Av
er

ag
e 

Ta
sk

 T
im

e 
(s

ec
on

ds
)

Average Task Correctness (0−100%)

●

BYU
FUB
UA
UPM

(b)

●

●

●

●

●

●

●

●

●

●

●

●

50
0

10
00

15
00

20
00

25
00

30
00

35
00

0 20 40 60 80 100

Av
er

ag
e 

Ta
sk

 T
im

e 
(s

ec
on

ds
)

Average Task Correctness (0−100%)

16468

1923123674

23938
28808

29546

3483248761

50387
52359

53397

56168

57033
58142

59259

64084
65113

69680

74027

96713

98323

18112

62075

63882

67947

71173

81388

84394

84852

87105

92594

92883
95105

24085

26851

35507

65946

65997

74922

76772

81124

86709

88050

90620

92863

93535

99410

15350

22591

23719

38048
80744

92689

●

BYU
FUB
UA
UPM

D
is

ca
rd

Ke
ep

(c)

●

●

●

●

●

●

●

50
0

10
00

15
00

20
00

25
00

30
00

35
00

0 20 40 60 80 100

Av
er

ag
e 

Ta
sk

 T
im

e 
(s

ec
on

ds
)

Average Task Correctness (0−100%)

74027

23938

57033

95105

81124

92863

15350

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

E_joint (questionable data)
E_orig (professionals)

D
is

ca
rd

Ke
ep

(d)

Fig. 7. Participants plotted by average task time and correctness. (a) Plot of E joint participants used by the four independent reviewers to select
the filter threshold. (b) Same as prior plot, but with participants categorized by site. (c) Same as prior plot, but including participant IDs and filter
threshold. (d) Post-hoc validation of the filter threshold, showing questionable data from E joint, as well as professionals from E orig.

trail for the analysis. They also allow the reader to compare
interactions in more detail, if desired. To locate the source
data for a given box plot, note the table identified in the
header (i.e., Table 59 or 60 from Appendix Z), the Bayesian
model listed on the left (i.e., one of T1–T4 or C1–C4), and
the row numbers provided directly below the box plot. For
example, source data for the top left box plot can be found
in Table 59, column T1, lines 33–35 (uT1:33–35).

APPENDIX S
MODERATOR VARIABLES CONTINUED

The material in this section is a continuation of Section 3.2.

S.1 Task Difficulty

Nearly twice as many E joint participants complained in
their post-questionnaire comments about the difficulty of the

CO tasks, as compared to GR (13 versus 7). The participants
also assessed the CO tasks as being slightly more difficult,
and they reported feeling slightly less confident in their
CO solutions. Correspondingly, variant is less significant
in the CO time model than in the GR time model (before
filtering, CO time p-value = 0.925, GR time p-value = 0.016).
Also, filtering low-scoring participants strongly increases the
significance of variant in the CO time model, but has little
impact on the GR time model (CO time p-value shifted from
0.925 to 0.019, GR time p-value shifted from 0.016 to 0.025).

If the CO tasks were more difficult than the GR
tasks, then presumably the low-scoring (i.e., underquali-
fied/undermotivated) participants failed so badly that they
masked the main effect in the unfiltered CO time model. In
the case of GR time, however, those same participants did
not struggle as much, and so the main effect is detectable
without filtering. Thus, the data suggest that a threshold of
experience/motivation exists, which is dependent on task difficulty,



38 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

●

CO Task 1, Unfiltered
5

6
7

8
9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s) ●

CO Task 1, Filtered

5
6

7
8

9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s)

●

CO Task 2, Unfiltered

5
6

7
8

9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s)

●

CO Task 2, Filtered
5

6
7

8
9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s)

●

●

●

●

●

GR Task 1, Unfiltered

5
6

7
8

9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s)

●

●

GR Task 1, Filtered

5
6

7
8

9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s)

GR Task 2, Unfiltered

5
6

7
8

9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s)

GR Task 2, Filtered

5
6

7
8

9

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

Ti
m

e 
(lo

g 
se

co
nd

s)

Fig. 8. Time data, showing ALT versus PAT displayed by site. Max whisker
range is 1.5 IQR.

and below which a developer will fail so badly that design
patterns have no measurable impact. We depict this threshold in
Fig. 10, incorporated into the moderating effect of developer
experience.

Interestingly, E orig and E repl both found variant to
be more significant for the CO program than for GR. For
example, E orig obtained p-values < 0.001 for CO, but all p-
values for GR were in the range 0.02–0.17. Thus, the filtering—
which is explained in part by task difficulty—brings E joint’s
results into greater alignment with the prior two PatMain
studies.

●

●

CO Task 1, Unfiltered

0
20

40
60

80
10

0

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

C
or

re
ct

ne
ss

 (0
−1

00
%

)

●

CO Task 1, Filtered

0
20

40
60

80
10

0

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

C
or

re
ct

ne
ss

 (0
−1

00
%

)

CO Task 2, Unfiltered

0
20

40
60

80
10

0

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

C
or

re
ct

ne
ss

 (0
−1

00
%

)

CO Task 2, Filtered

0
20

40
60

80
10

0

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

C
or

re
ct

ne
ss

 (0
−1

00
%

)

●

●

●

GR Task 1, Unfiltered
0

20
40

60
80

10
0

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

C
or

re
ct

ne
ss

 (0
−1

00
%

)

●

GR Task 1, Filtered

0
20

40
60

80
10

0

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

C
or

re
ct

ne
ss

 (0
−1

00
%

)

● ●

GR Task 2, Unfiltered

0
20

40
60

80
10

0

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

C
or

re
ct

ne
ss

 (0
−1

00
%

)

● ●

GR Task 2, Filtered
0

20
40

60
80

10
0

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

AL
T

PA
T

BYU FUB UA UPM

C
or

re
ct

ne
ss

 (0
−1

00
%

)

Fig. 9. Correctness data, showing ALT versus PAT displayed by site. Max
whisker range is 1.5 IQR.

S.2 correctness and time

Table 18 shows the frequentst results for correctness and time.21

As covariates for one another, both correctness and time are
clearly meaningful irrespective of filtering, especially for the
GR program. The correctness-time correlation is estimated to
be positive in all models—i.e., the participants are achieving
higher scores at the expense of time. For example, the
unfiltered GR time model indicates that a 10-point increase

21. The relationship between correctness and time, as well as the
correctness×variant interaction, are also discussed in Appendix P.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 39

TABLE 17
Bayesian interaction results—moderator assessment. See Appendix R for a description of how to read and interpret this table.

Unfiltered Results (source: Table 59) Filtered Results (source: Table 60)
v vp vt vpt vc vpc vtc vptc v vp vt vpt vc vpc vtc vptc

Ti
m

e
M

od
el

s
(T

1–
T4

)

site
(T1)

0.
5

0.
75

1.
0

0.62
(196)

0.
5

0.
75

1.
0

0.62
(196)

●

0.
5

0.
75

1.
0

0.86
(653)

0.
5

0.
75

1.
0

0.67
(309)

0.
5

0.
75

1.
0

0.88
(842)

33–
35

36–
40

41–
45

46–
54

538–
546

599–
616

669–
686

791–
826

33–
35

36–
40

41–
45

46–
54

538–
546

599–
616

669–
686

791–
826

patKnow
(T2)

0.
5

0.
75

1.
0

0.64
(153)

0.
5

0.
75

1.
0

0.64
(153)

0.
5

0.
75

1.
0

0.67
(169)

0.
5

0.
75

1.
0

0.71
(298)

0.
5

0.
75

1.
0

0.85
(504)

33–
35

36–
40

41–
45

46–
54

102–
106

117–
126

137–
146

167–
186

33–
35

36–
40

41–
45

46–
54

102–
106

117–
126

137–
146

167–
186

devExp
(T3)

0.
5

0.
75

1.
0

0.66
(237)

0.
5

0.
75

1.
0

0.66
(237)

0.
5

0.
75

1.
0

0.90
(561)

0.
5

0.
75

1.
0

0.76
(398)

0.
5

0.
75

1.
0

0.89
(600)

33–
35

36–
40

41–
45

46–
54

212–
216

227–
236

247–
256

277–
296

33–
35

36–
40

41–
45

46–
54

212–
216

227–
236

247–
256

277–
296

correctness
(T4)

0.
5

0.
75

1.
0

0.68
(218)

0.
5

0.
75

1.
0

0.68
(218)

0.
5

0.
75

1.
0

0.83
(408)

0.
5

0.
75

1.
0

0.81
(404)

0.
5

0.
75

1.
0

0.88
(821)

33–
35

36–
40

41–
45

46–
54

322–
326

337–
346

357–
366

387–
406

33–
35

36–
40

41–
45

46–
54

322–
326

337–
346

357–
366

387–
406

C
or

re
ct

ne
ss

M
od

el
s

(C
1–

C
4)

site
(C1)

0.
5

0.
75

1.
0

0.72
(10.5)

0.
5

0.
75

1.
0

0.72
(10.5)

●

0.
5

0.
75

1.
0

0.81
(18.2)

0.
5

0.
75

1.
0

0.73
(11.7)

0.
5

0.
75

1.
0

0.87
(21.0)

33–
35

36–
40

41–
45

46–
54

538–
546

599–
616

669–
686

791–
826

33–
35

36–
40

41–
45

46–
54

538–
546

599–
616

669–
686

791–
826

patKnow
(C2)

0.
5

0.
75

1.
0

0.71
(8.7)

0.
5

0.
75

1.
0

0.71
(8.7)

0.
5

0.
75

1.
0

0.92
(17.3)

0.
5

0.
75

1.
0

0.73
(8.5)

●

0.
5

0.
75

1.
0

0.86
(13.7)

33–
35

36–
40

41–
45

46–
54

102–
106

117–
126

137–
146

167–
186

33–
35

36–
40

41–
45

46–
54

102–
106

117–
126

137–
146

167–
186

devExp
(C3)

0.
5

0.
75

1.
0

0.70
(7.5)

0.
5

0.
75

1.
0

0.70
(7.5)

0.
5

0.
75

1.
0

0.85
(12.7)

0.
5

0.
75

1.
0

0.67
(6.9)

●

0.
5

0.
75

1.
0

0.89
(15.8)

33–
35

36–
40

41–
45

46–
54

212–
216

227–
236

247–
256

277–
296

33–
35

36–
40

41–
45

46–
54

212–
216

227–
236

247–
256

277–
296

time
(C4)

0.
5

0.
75

1.
0

0.81
(10.0)

0.
5

0.
75

1.
0

0.81
(10.0)

0.
5

0.
75

1.
0

0.93
(18.0)

0.
5

0.
75

1.
0

0.82
(10.9)

0.
5

0.
75

1.
0

0.85
(12.8)

33–
35

36–
40

41–
45

46–
54

322–
326

337–
346

357–
366

387–
406

33–
35

36–
40

41–
45

46–
54

322–
326

337–
346

357–
366

387–
406

in correctness corresponds with a 5.9% increase in time (80%
CI: 4–8). The other frequentist models show similar results
(see Appendix Y).

The most likely variable to account for a positive correla-
tion between correctness and time is motivation. As previously
discussed, some participants were significantly more mo-
tivated than others. Particularly at FUB, the participants
appear to have been willing to take longer in order to
do a better job (see also the discussion of “perceived time
limits” below). Thus, the frequentist results for correctness
and time reinforce the importance of analyzing motivation as
a potential moderator in future design pattern studies.

Table 19 shows the Bayesian interaction results for cor-
rectness and time. Prior to filtering, the correctness and time
interactions appear significant, especially in the time models.
After filtering, however, the interactions are largely elimi-
nated. Since filtering mitigates the interactions, we anticipate
that the interactions were primarily due to the fact that variant
has little impact on underqualified and/or undermotivated
participants (as discussed in the prior subsection on “task
difficulty”). Thus, upon removing those participants, the
interaction disappears and general significance for the main
effect increases. Overall, these results support the need to
filter underqualified and undermotivated participants, as



40 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015
Ef

fe
ct

 o
f D

es
ig

n 
Pa

tte
rn

s

−

0

+

Developer Experiencelow high

E_joint Data
Extrapolation

Students

Professionals?

Threshold at which the
participant's experience and/or
motivation is insufficient
relative to the task
difficulty.

Fig. 10. Relative impact that developer experience has on the effect of
design patterns, taking into account the co-moderating influence of task
difficulty. Since the graph depends on a specific level of task difficulty, the
axes are depicted as relative scales. A positive effect for design patterns
(+) means that the patterns lead to lower work times and higher quality
solutions.

TABLE 18
Frequentist model p-values for correctness and time. p-values less than

or equal to 0.05 are bolded.

Model Covariate Unfiltered Filtered

CO time correctness 0.071 0.104
CO correctness time 0.110 NS
GR time correctness <0.001 <0.001
GR correctness time 0.003 <0.001

NS = not significant—i.e., the exact value is not available since the
variable was removed during model tuning due to lack of
significance. For a description of model tuning, see Appendix M.

TABLE 19
Bayesian interaction results—moderator assessment (excerpt from

Table 5 in Section 3.2; included here for convenience).

time
Models

Unfiltered Filtered correctness
Models

Unfiltered Filtered
¬c c ¬c c ¬c c ¬c c

correctness 0.68 0.83 0.81 0.88 time 0.81 0.93 0.82 0.85
(T4) 218 408 404 821 (C4) 10.0 18.0 10.9 12.8

was done in E repl. They also represent indirect evidence
that motivation could moderate the effect of variant, since
the filtering targeted (in part) undermotivated participants.

S.3 Program Order

Table 20 shows the effect of program order in the frequentist
and Bayesian models. For the time models, order is statistically
significant, with effect estimates in the range 2.4–7.5 minutes.
An effect size of 5 minutes could be meaningful given that
each task required only 20–30 minutes to complete. For the
correctness models, order is less significant, and its effect is
fairly small (2.3–4.5 percentage points). Based on these results,
we conclude that the participants spent significantly less time,
and possibly scored slightly higher, on whichever program was
second. Since performance tended to improve on the second
program, the most likely explanation is a learning effect.

Interestingly, both E orig and E repl found order to be
insignificant. Since E joint used the same basic design, the
experiment proper likely did not cause the learning effect.
Instead, we believe the effect is due to the initial setting up

TABLE 20
Frequentist and Bayesian results showing the significance and effect of

program order. p-values less than or equal to 0.05 and posterior
probabilities exceeding 0.75 are bolded. All p-values are two-sided.

Unfiltered Filtered

Model sig. 1st−2nd sig. 1st−2nd

CO time 0.007 296 0.004 306
CO correctness NS - NS -
GR time 0.002 452 0.038 325
GR correctness NS - NS -

T1 0.994 189 0.964 141
T2 0.998 228 0.978 175
T3 0.998 223 0.981 180
T4 0.996 214 0.970 164
T5 0.996 210 0.970 157
T6 0.995 189 0.967 142

C1 0.865 −3.4 0.874 −3.8
C2 0.827 −3.1 0.850 −3.6
C3 0.852 −3.5 0.883 −4.5
C4 0.781 −2.3 0.852 −3.6
C5 0.799 −2.6 0.898 −4.3
C6 0.803 −2.7 0.812 −3.1

sig. = significance of order—i.e. p-values for the frequentist models
(first four rows), posterior probabilities for the Bayesian models
(source: uT1–T6,C1–C6:11–13 and f T1–T6,C1–C6:11–13).

1st−2nd = estimated difference between program orderings (in
seconds or percentage points).

NS = not significant—i.e., the exact value is not available since the
variable was removed during model tuning due to lack of
significance. For a description of model tuning, see Appendix M.

of development environments. E joint’s participants were
given only two things: task instructions and source code.
They had to set up their own development environments,
including importing the source code. The effort required to
setup IDEs could certainly account for extra time on the
first program—especially since E joint’s participants were
students, who may not have known prior to the experiment
how to import existing code into an IDE.

Conversely, E orig’s participants completed tasks on
paper, and E repl’s participants were given a standard-
ized environment with the programs already set up as
development projects. Moreover, “[a]ll [E repl] subjects
performed an initial, familiarization task in order to try out
the programming environment and the user interface” [20,
p. 188]. Thus, environment setup was not a significant factor
for either E orig or E repl.

In general, program order is not directly relevant to
design patterns, nor to industrial software development. To
eliminate it in future studies, we recommend administering
a pre-task, as was done in E repl. In the case of E joint,
we statistically correct for the effect by including order as a
covariate in all models.

S.4 Perceived Time Limits

The BYU participants appear constrained on the time they
were willing or able to spend on the experiment, relative to
the participants at the other three sites (see Fig. 11). Also,
the FUB participants took longer (on average) than the
participants at any other site—in particular, more than twice



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 41

●

●

●

●

●

●

●

●

●

●

●

●

50
0

10
00

15
00

20
00

25
00

30
00

35
00

0 20 40 60 80 100

Av
er

ag
e 

Ta
sk

 T
im

e 
(s

ec
on

ds
)

Average Task Correctness (0−100%)

●

BYU
FUB
UA
UPM

Fig. 11. Participants plotted by average task time and correctness,
categorized by site (repeat of Fig. 7b from Appendix Q; included here for
convenience).

as long as the BYU participants (see Table 21). These trends
could be due to variations in the participants’ perception of
time requirements.

The BYU participants, though volunteers, were primarily
motivated by course credit. As students, they were required
to complete 7 hours per week of software engineering work.
The students were permitted to count any time spent on
the experiment toward their weekly 7 hours. However, a
former teaching assistant indicated that students typically
struggle to fill the 7 hours. In fact, the class from which
the participants were solicited reported an average of only
6.6 hours per week. If BYU participants perceived a time
constraint, it was not likely due to the course requirements.

Another possible explanation is that the BYU researchers
unintentionally communicated a time limit to their partic-
ipants. One BYU participant (31563) clearly mentioned a
perceived time limit when describing the difficult aspects
of the CO tasks: “Figuring out what all is going on in the
alloted time left, since I spent all of my 2 hours download
and installing Eclipse [sic].” Incidentally, we excluded this
participant’s data from analysis, as described in Appendix F.

At BYU, the participants were told that the experiment
would require 2–3 hours of their time. This information
was given as an estimate to help participants plan for the
experiment. The estimate was provided verbally at the time
of solicitation and in print on the BYU-specific instruction
sheet for volunteers (a copy of which is included in the
lab package). The verbal instructions were not recorded,
but the instruction sheet stated, “Required 2–3 Hours.” In
hindsight, the term “Required” was a poor choice, since it
can be ambiguously understood as implying a time limit.
Also, a better estimate may have been 2–4 hours.

Concerning FUB’s high times, Lutz Prechelt recalls:
The FUB subjects were true volunteers. Martin
Liesenberg produced a number of mishaps while he
tried to get the portal to run and had to put off the
subjects I think twice. Some of them disappeared. So
the remaining ones were likely seriously interested

TABLE 21
Average task time and correctness for each participant (same data as

that shown in Fig. 11). The count of participants for each column is given
in parentheses. For each box plot, the median value is labeled, the mean

is shown as a black dot, and the max whisker range is 1.5 IQR. All
p-values are two-sided; p-values less than or equal to 0.05 are bolded;

p-values are based on the Kruskal-Wallis rank sum test comparing
sample medians across sites (calculated with R 2.15.2).

BYU
(21)

FUB
(12)

UA
(14)

UPM
(6)

All
(53) sig.

Average
Task Time
(seconds)

●

●

●

●

●
●

951

2164

1229 1470 1286

0
17
50

35
00

<0.001

Average
Task

Correctness
(0–100%)

●

●

●

● ●

●55.0
67.5

47.5
36.2

55.0

0
50

10
0

0.018

BYU = Brigham Young University
FUB = Freie Universität Berlin
UA = The University of Alabama
UPM = Universidad Politécnica de Madrid
sig. = significance (two-sided p-value)

in participating and not just doing minimal course
duty. Also, I think they felt they were helping a
fellow student (whose bachelor thesis involved
needing participants for the experiment). Whether
Martin ever uttered any specific expectations for the
time required I cannot say. I found no email of his
with such content, but he may not have copied me
on that or may have said something orally. (email,
Oct. 9, 2012)

Thus the FUB participants may have perceived a minimum
time requirement, which may have led to their taking
more time on average. However, based on the data, we
can at least conclude that a minimum time limit was not
prominently stressed. Thus it seems unlikely that all of the
FUB participants would have perceived such a requirement.

Intrinsic motivation is the more likely explanation for
FUB’s high times, especially considering that the BYU and
UA participants—who took the least time on the experiment
(see Table 21)—were primarily extrinsically motivated (by
course credit). Moreover, the UPM participants, whose times
fall in the middle, did not receive course credit, but were
solicited from a research lab. Having prior relationships with
their experimenters (who were their graduate advisors), they
likely felt greater social pressure to do a good job than did the
participants at BYU and UA who did not previously know
their experimenters. Also, we find no evidence that the UPM
participants were particularly intrinsically motivated, thus
explaining why their times were not as high as those at FUB.

In general, the perception of time limits is a relevant
variable in industry settings. For instance, if a developer feels
short on time, s/he may avoid examining a program’s overall
structure and, therefore, miss some of the benefits of a given
design pattern. However, our data are insufficient to test
time perception as a moderator. We recommend that future
studies more carefully control and report on this variable.



42 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

S.5 Cultural (or Regional) Variation
During data analysis, we found several cases in which
cultural (or regional) variation may have impacted the results.
First, we discovered that the question for CO task 2 is
slightly ambiguous, such that it resulted in two different
interpretations. The question stated:

For a given object CommChannel channel, the
statement channel.reset() may produce the
result CommChannel.IMPOSSIBLE. Under which
condition does this result occur?

The intended meaning is that the first sentence provides a
context in which the actual question (second sentence) is to be
answered. The anticipated answer is thus: CLOSED channel or
FAILED encrypted channel. However, the question can also
be read such that the first sentence is merely an example, and
“this result” refers to all cases of IMPOSSIBLE that can occur:

• reset() called on a CLOSED channel,
• reset() called on a FAILED encrypted channel,
• close() called on a CLOSED channel,
• basicOpen() called on a non-CLOSED channel.
Notice that the second interpretation is a superset of the

first. Nine of the twelve FUB participants clearly provided the
extra information, whereas none of the participants from any
other site did so.22 In Lutz Prechelt’s words, “If it is indeed
so that none of the non-FUB participants used this second
interpretation, I would consider this a fascinating example
of a subtle cultural dependency” (email, Aug. 25, 2011).23

A second example of a possible cultural dependency con-
cerns self-reporting on the pre-questionnaires. As discussed
in Appendix C, all of the extreme outliers for the lines of
code questions came from an American school (BYU or UA),
and most of those came from BYU. The BYU participants also
reported substantially higher numbers of languages used. In
this latter case, the participants listed the actual languages by
name, so inflating the count was not likely due to disinterest
with the question. However, BYU participants may not have
actually used more languages. Their threshold for counting
a language may simply have been lower.

We discuss additional cultural variables in the following
subsections, some of which are clearly relevant to industrial
contexts. However, they may or may not interact with
design patterns. We recommend future studies to report
such variables as much as reasonably possible. More work is
needed to identify cultural variables, as well as to formulate
methods for controlling them, both within and across studies.

S.6 IDE Preferences
Another cultural or regionally-influenced variable concerns
programming environments.24 On the source code download
pages we provided the following instructions:

22. One participant’s response from BYU (64084) could, possibly, be
construed as having followed the second interpretation, but the answer
is so incomplete that it could just as well have been an incorrect response
to the first interpretation.

23. The second interpretation was not penalized in the grading. The
extra information was simply ignored. Additionally, it may have taken
longer to answer the question according to the second interpretation,
which would create additional variance. However, we find no evidence
that the choice of interpretation interacted with variant. Thus, the final
results should not be biased.

24. For a related discussion, see Section 4.4 of E repl’s published
report [20, pp. 163–164].

Download the .zip file and import it into your
workspace. In Eclipse this is done via: File - Import -
General - Import existing project into workspace.
Now select ‘select archive file’ and click ‘Finish’.

The IDE instructions were meant to aid inexperienced
participants. We did not require the use of Eclipse, nor
was the code specific to any particular programming en-
vironment. However, in response to these instructions, 4 of
the 21 BYU participants mentioned problems with and/or
complained about having to use the Eclipse IDE. Several
UPM participants also complained about Eclipse, as though
it were a requirement, and half of the UPM participants
complained about the difficulty of importing the CO and
GR programs into the NetBeans IDE, as though the code
was configured specifically for Eclipse (which it was not).
Conversely, no participants at FUB or UA expressed these
concerns or mentioned NetBeans.

Apparently, our advice impacted the sites unevenly.
The imbalance could be due to a regional language effect,
in which only participants at BYU and UPM mistakenly
thought Eclipse was required. However, since BYU and UPM
do not share native languages (English vs. Spanish), and
neither do FUB and UA (German vs. English), the more
likely explanation is regional preference for programming
environments. Quite possibly, FUB and UA participants
already preferred Eclipse, so any misperceived requirement
to use Eclipse was simply not viewed as a problem.

In general, we believe participants should be encouraged
to work in their native environments. First, standardizing
the environment for a specific experiment does not solve
the problem of generalizability, since the programming
environment may still vary across studies. Second, when
experiments involve small-scale tasks, the time spent learning
an unfamiliar environment could mask the main effect. Third,
allowing participants to use their preferred environments
increases the realism of the experiment.

However, if we allow participants to work in their
preferred environments, we must either make no mention
of development tools, or we must clearly instruct the partic-
ipants to use the tools to which they are most accustomed.
Also, providing project import instructions is helpful, but if
given these instructions must include all relevant IDEs and
development frameworks. Otherwise, only some participants
are benefited, and as we find in E joint, that bias is not likely
to be random with respect to sites or studies.

S.7 Language Barriers
This variable is related to the issue of cultural variation. In
fact, the first example of cultural variation discussed above
(concerning two interpretations for CO task 2) is directly
related to language issues.

In E joint, we administered all instruments in English.25

However, two participants mentioned problems understand-
ing the English text. UPM participant 38048 commented, “It
was quite more easy for me to perform all the task if the
instructions was in spanish [sic].” Similarly, FUB participant

25. E orig administered German text to German participants, and
concerning E repl, Marek Vokáč comments, “The task descriptions the
subjects got were in Norwegian to lessen the language friction” (email,
Oct. 14, 2012).



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 43

71173 commented, “[T]he task descriptions in English created
some problems for me.” Quite possibly, other participants
were also hindered by the English instructions, but they did
not notice the effect or viewed it as not worth mentioning.
Concerning FUB, Lutz Prechelt comments:

I expect the English text will have slowed down
the FUB participants somewhat (and some more
than others, creating some additional variance),
but should not have distorted the PAT/ALT effect.
Further, the FUB participants all know the pattern
terminology mostly in its English form, rather than
German. (email, Oct. 9, 2012)

Another example of language barriers impacting experi-
mental measurements involves the student status question.
The choices provided for the student status question were
(in order): undergraduate student, graduate student, post-
graduate student, not a student. In hindsight, postdoctoral
may have been a better term instead of postgraduate since, in
some countries, the designation postgraduate is synonymous
with and preferred over that of graduate. Interestingly, the
UPM participants, who were all master’s students, uniformly
selected postgraduate. Conversely, all of the master’s and PhD
students at the other three sites—including those at FUB, a
German university—selected graduate.

Thus, the participants’ native languages impacted mea-
surements in E joint, and that impact was at least partially
contingent on site. We do not anticipate that language would
directly influence the effect of patterns, but it may at least
add sufficient variance to mask the effect in an experiment
or to muddle results across studies.

Specific to replication, language poses a particular chal-
lenge because we often need to maintain instruments across
sites and studies (especially in the early stages of investiga-
tion). On the one hand, ensuring that various translations
convey the same meaning is difficult. On the other hand, to
administer experiments in a single language introduces the
potential for misinterpretation by non-native readers. At this
point, it is not clear to us which approach is best.

S.8 Clarity of Task Instructions
This variable relates to the issue of language barriers (dis-
cussed previously). In post-questionnaire comments, 17 of 53
participants (almost 1/3) expressed difficulty understanding
the task instructions (see Table 22). The prevalence of these
complaints is worth examining because the same tasks were
used by E orig and E repl, but in neither of those studies
did the participants complain to such a degree.

Perhaps the problem is due to our use of student
participants, as opposed to the professionals of the prior
two studies. In this case, it may be that students have more
trouble due to lack of experience, and they manifest that
trouble by complaining about the instructions. Alternatively,
students may simply complain more than professionals when
faced with similar frustrations. Or, perhaps the professionals
also complained, but that information has since been lost.

According to Lutz Prechelt, principal investigator for
E orig, the third hypothesis is very unlikely, and indeed,
we find no evidence to support that hypothesis in either
the published reports or the datasets. More importantly, all
three hypotheses are inconsistent with the fact that all of

TABLE 22
Prevalence of participants at each site who complained that the task

instructions were difficult to understand.

Site Complaints Total Participants Percentage

BYU 10 21 48%
FUB 0 12 0%
UA 3 14 21%
UPM 4 6 67%

Total 17 53 32%

BYU = Brigham Young University
FUB = Freie Universität Berlin
UA = The University of Alabama
UPM = Universidad Politécnica de Madrid

E joint’s participants were students, and yet the complaints were
imbalanced across sites. As a percentage, the complaints were
much more prevalent at BYU and UPM than at FUB and
UA (see Table 22). Further, the complaints do not correspond
with student status—BYU and FUB participants were mostly
undergraduates, whereas UA and UPM participants were en-
tirely graduate students (as shown in Table 8 in Appendix B).
As discussed in Appendix C, the participants were also
fairly homogeneous with respect to developer experience.
Concerning pattern knowledge, the FUB and UA participants
do report broader overall exposure than the participants at
BYU and UPM. However, the UA participants also report
greater pattern knowledge than those at FUB, which does
not seem consistent with the results in Table 22.

Another possibility is that the translation (from German
to English) muddled the task instructions. We find some
evidence for this hypothesis in that FUB provided the
translation, and accordingly, none of the FUB participants
complained. However, the complaints also do not appear to
have been entirely contingent on native language, since the
prevalence of complaints differed between the two English-
speaking schools, BYU and UA. On the other hand, UA does
report a significant portion of their participants as being
international students (8/18; see Table 8 in Appendix B).

Table 23 indicates that the participants who complained
performed marginally different from those that did not
complain. On average, they worked a little more quickly
and scored a bit lower. They also showed less confidence in
their answers and viewed the tasks as slightly more difficult.
Given the imbalance in complaints across sites, as well as the
data in Table 23, the task descriptions likely account for at
least a small portion of the cross-site variance—which means
they likely inhibit isolation of the main effect. However, since
the task descriptions were the same for ALT and PAT, they
should not have biased the conclusions.

S.9 Compilation/Testing Expectations

E orig was administered on paper, such that compilation
was not a concern. Accordingly, some of the function bodies
were replaced by the comment, “Body doesn’t matter.” When
the code was translated to Java for E joint, these stubs were
maintained. Thus some of the Java methods contained only
a comment, with no return statement, causing the code to
not compile. On one hand, maintaining the stubs without
modification minimizes differences between the replication



44 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 23
Comparison of participants—those who complained that the task

instructions were difficult to understand versus those who did not. The
count of participants for each column is given in parentheses. For each
box plot, the median value is labeled, the mean is shown as a black dot,
and the max whisker range is 1.5 IQR. For a description of each variable,

identified by field number, see Appendix G.

Communication
Channels (CO)

Graphics
Library (GR)

C
(13)

¬C
(40)

C
(7)

¬C
(46)

Participant
Assessment of Task

Difficulty
(scale 1–5)*

(fields 43, 52)

●●

●
●

3

2

1
3

5 ●

●
●2 2

1
3

5

Participant
Confidence in

His/Her Answers
(0–100%)

(fields 44, 53)
●

●

●●

●●

●

●

60
80

0
50

10
0

●●

●

●

●

●
●70
80

0
50

10
0

Task 1 Time
(seconds)

(fields 66, 75)

●
●
●

●
●1726 2230

0
32
50

65
00

●

●

●

1086 1582

0
32
50

65
00

Task 2 Time†
(seconds)

(fields 69, 78)

●

●

●
●

388 522

0
12
50

25
00 ●

●

●

●

460 585

0
12
50

25
00

Task 1 Correctness
(0–100%)

(fields 81, 89)
●

●50

75

0
50

10
0

●●●●●●

●

●75
100

0
50

10
0

Task 2 Correctness
(0–100%)

(fields 87, 91)
●

●50 50

0
50

10
0

●

●

●

0 00
50

10
0

C = Complained *1=low difficulty, 5=high.
¬C = Did not complain †Two outliers for the GR program not

shown: ¬C=7239 and ¬C=5842.

and the original study. However, the fact that the code did
not compile appears to have caused problems for some
participants—e.g., participant 74027 commented, “it didn’t
compile with my version of java, which caused problems
because my ide did not work properly.”26

Additionally, the code did not support full execution by
default for either the CO or GR programs. The CO program
simply contained no main method by which to execute
the code. For GR, a “testrun” class was provided, but it

26. E joint’s grading rubric included compilation as one of the
criteria. However, that particular criterion was applied only to the
code the participants wrote and/or modified. This was accomplished
by extracting the modified portions of code and placing them in a
framework for testing. Thus the participants were not penalized for
non-compiling code that they did not write.

worked for only one of the two initial output modes of the
program. Several participants complained about not being
able to execute the code. For example, in response to the
statement, “I found these to be the most difficult aspects of
the task,” participant 26851 responded, “Not being able to
run something to weed out stupid mistakes.”

The problem is that many developers write software
by testing as they go. When the code is not compilable
by default, participants either have to spend time fixing it—
which some participants did, although it was not the assigned
task—or they have to interact with the task in an abnormal
way. Further, as the graders explained, “Sometimes the
participants can compile, sometimes they can’t. Sometimes
they can partially execute, sometimes they can’t. Sends mixed
messages, mixed expectations.” Thus the problem was not
just that the participants could not compile by default, but
more particularly, we were unclear with them concerning
our compilation and testing expectations.

Compilation and testing expectations can certainly be
unclear in the real world. However, given that development
practices can vary regionally (e.g., in response to where one
was educated), compilation and testing issues likely affect
sites unevenly, which means they induce extraneous variance
unrelated to the question of interest. Therefore, in future
PatMain studies we recommend eliminating compilation
errors (as was done in E repl27) even though doing so
means modifying the original source code. It may also
be worthwhile to clarify testing expectations and/or to
systematically explore the use of testing to see if it influences
the outcome of the PatMain experiment.

APPENDIX T
COMPARISON OF STATISTICAL METHODS

In this section, we compare statistical methods across the
three PatMain studies. In particular, we show that the
methods are sufficiently similar such that we can directly
compare the numerical results. This discussion is particularly
relevant to Table 7 in Section 3.3.

T.1 E orig

To analyze the time response variable, E orig used analysis of
variance (ANOVA) and nonparametric (distribution-free) boot-
strap methods. For correctness, E orig simply compared the
counts of solutions with errors. As Prechelt et al. explain, “For
many tasks, all groups achieved near-perfect correctness” [10,
p. 1136].

ANOVA was used for preliminary analysis to determine
which variables best explain time. However, ANOVA is sub-
ject to normality assumptions, and the time data were skewed.
Thus the authors avoided ANOVA for the final results. The
authors also avoided Kruskal-Wallis and Wilcoxon (both of
which are based on rank) because they wanted their results to
summarize means, rather than medians. Bootstrap methods
were a reasonable nonparametric alternative.

27. Of E repl, Marek Vokáč states, “The C++ code was as in Prechelt’s
original, the only changes were those needed to make it compile, plus
introduction of a small library to give a console user interface. This
library had only a few functions and played no significant role in the
code” (email, Oct. 16, 2012).



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 45

Bootstrapping is a resampling technique [41]. In E orig,
the authors randomly resampled their data 10,000 times with
replacement (making sure to preserve group cardinalities).
To compare two groups, they calculated the mean difference
between the groups within each resampling. This process
resulted in a distribution of 10,000 difference estimates for
each test statistic. It was from these distributions that the
authors essentially “read off” their p-values.

T.2 E repl
E repl’s analysis was more complex than E orig’s. The au-
thors modeled both time and correctness, as well as addressed
an additional statistical concern besides non-normality—non-
independence of the data. This latter concern existed as well
with E orig, but was not accounted for in that analysis.

Non-independence occurs when subsets of the data
correlate in response to some other variable. In the case of
PatMain, the experiment protocol requires each participant to
complete multiple tasks—thus observations cluster around
individual participants. Ideally, participant effects should be
factored out to reduce variance. Statistical procedures that
account for these blocking (i.e., grouping) variables are more
precise, in that they can accurately reduce error estimates.
Lower error terms mean lower p-values and tighter con-
fidence intervals. Consequently, E orig’s analysis was not
incorrect, just less efficient. Where statistical significance was
not obtained, accounting for non-independence may have
yielded a significant result; otherwise, the results would not
have changed much.

To account for non-normality and non-independence,
E repl used generalized estimating equations (GEE), which is
a specialized form of generalized linear models (GLM). First,
note that GLM is a generalization of linear regression, and by
extension, of ANOVA. Consequently, GLM and GEE are both
related to some of the methods used in E orig. The benefit of
GLM is that it allows the researcher to specify non-Gaussian
distributional assumptions, thereby obviating the need for
nonparametric methods. GEE further adds to GLM support
for modeling blocking variables.

The authors modeled time with a gamma distribution
and correctness with a normal distribution. The gamma
distribution is ideal for skewed data, for which the range is
strictly greater than zero. The authors also applied a log trans-
formation to both time and correctness. Justifications for the
transformations were not given in the paper. However, log
transformations are typically used to normalize skewed data.

T.3 E joint
For E joint, we used both frequentist and Bayesian statistics.
However, we do not discuss the Bayesian methods here
because neither E orig, nor E repl performed a comparable
analysis. Concerning the frequentist methods, we used
linear mixed models, which are an extension of ANOVA and
linear regression. These methods add support for modeling
blocking variables and fitting non-Gaussian distributions. In
these two respects, mixed models are similar to GEE.

Including a variable in a model does not achieve the same
effect as blocking on that variable. For standard variables the
data are assumed to be independent, whereas for blocking
variables, the analysis specifically estimates and accounts

for sub-correlations. In mixed models analysis, blocking
variables are modeled as random effects. Accordingly, we
model participant ID as a random effect in E joint.

We also address the concern of non-normality for both
time and correctness. For time, we apply a log transformation
(like the analysis of E repl), which effectively normalizes
the observations. Accordingly, a normal distribution is
an appropriate model for our data. Further, the range of
correctness is discretized into only five buckets. As a result, it
cannot take on much of a skew. Therefore, unlike E repl, we
do not apply a log transformation to correctness. That said,
with only five buckets, the correctness variable is unlikely
to fit a smooth normal distribution. Thus, although we
assume normality for the frequentist analysis, we avoid that
assumption entirely in the Bayesian analysis by modeling
correctness with a beta distribution.

In summary, our methods are most similar to those
of E repl, particularly with respect to statistical efficiency.
However, E orig’s methods are a bit more straightforward,
which can be helpful in the early stages of investigation.
Nevertheless, straightforward statistics come at a price.
Although bootstrapping is unhampered by distributional
assumptions, it sacrifices statistical power. Also, bootstrap-
ping and ANOVA do not account for blocking variables.
Thus, we would expect little or no change in the results were
E repl and E joint to swap statistical methods. However, using
either GEE or mixed models in E orig’s analysis may increase
statistical significance in some cases.28

APPENDIX U
ADDITIONAL RESULTS DATA

In Table 7 of Section 3.3, we provide a comparison of results
across the three PatMain studies. For that comparison, we
define concrete hypotheses based on the original hypothesis
statements. Given the variables involved, twelve potential
concrete hypotheses can be made for each task. For two
of the tasks (CO and GR task 2), the original hypothesis
statements do not address all of the possible combinations
for concrete hypotheses. In this section, we provide results
for the remaining combinations, which may be helpful for
future meta-analysis (see Table 24).

APPENDIX V
RESEARCHER INTERACTIONS

In this section, we describe interactions between replicating
researchers and prior experimenters. We include this infor-
mation per Carver’s guidelines for reporting experimental
replications [42]. This information is important for assessing
shared bias between experiments.

V.1 E repl
The published report from E repl does not specifically
mention interactions with E orig’s experimenters. However,
the replication clearly reuses E orig’s artifacts, and the report
states that Walter Tichy taught the patterns course for both

28. In fact, as part of their study, E repl reanalyzed E orig’s data using
GEE methods. In general, the p-values either did not change much or
they decreased, as expected.



46 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 24
Comparison of results across the three PatMain studies (supplement to Table 7 in Section 3.3). Shows results for the remaining combinations of

concrete hypotheses not addressed by the original hypothesis statements.

Hypothesis Concrete Baseline & Reanalysis
Statement Hypotheses Expectation E orig of E orig E repl E joint

CO Task 2, Comprehension
The PAT groups will
take longer and commit
more errors.

t : H ? L L ? +23% - - −36% (.090)*
t : PH ? PL PL ? +6% −5% (>.05) −35% (>.05) −61% (.007)
t : AH ? AL AL ? +34% +40% (>.05) +28% (>.05) −5% (.866)

c : H ? L L ? - - - +39pp (.049)
c : PH ? PL PL ? - +14pp (>.05) +1pp (>.05)

INS
c : AH ? AL AL ? - −9pp (>.05) +15pp (<.05)

GR Task 2, Comprehension
ALT and PAT will not
significantly differ; the
task will require less
time at higher levels of
pattern knowledge for
both variants.

c : H ? L L ? - - - NS
c : PH ? PL PL ? - −10pp (>.05) −18pp (>.05)

INS
c : AH ? AL AL ? - −5pp (>.05) +15pp (>.05)

*This value is taken from the CO time model (filtered), as defined in Section 2.3.2, but with all interactions dropped.
? = hypothesis/expectation is undefined.

E orig and E repl. Further, we know from email archives
that Vokáč, Sjøberg, Tichy, Unger, and Prechelt were actively
discussing the replication in 2002. Their discussions included
whether to let participants use personal laptops, whether to
incorporate pair programming, and whether to conduct a
qualitative analysis. Lutz Prechelt further recalls that those
interactions began as early as 1999, and in his words, “There
was quite a bit of interaction overall.”

V.2 E joint
E joint involved four types of interaction:

1) Interactions between E joint organizers and prior experi-
menters during replication design. During this phase we
did not interact with E repl’s researchers. However, Lutz
Prechelt—principal investigator for E orig—designed
E joint’s protocol.

2) Interactions between E joint organizers and the individual
research teams. To facilitate this interaction, we created
a project website [23] and mailing list. Discussions on
the mailing list were open to all research teams and
concerned operation of the web portal, as well as clarifi-
cations about information posted on the project website.

3) Interactions between the individual research teams and
prior experimenters. The research teams did not directly
interact with prior experimenters, except for mailing
list discussions involving Lutz Prechelt. Lutz answered
many questions about the experiment and web portal.

4) Interactions between E joint organizers and prior exper-
imenters during joint analysis. Our interactions with
E orig were conducted entirely through Lutz Prechelt,
who participated throughout the analysis process. Dur-
ing analysis, Jonathan Krein also communicated with
Marek Vokáč, E repl’s principal investigator. Since this
communication occurred late in the analysis, the only
procedure impacted was data filtering (Section 3.1). We
were already considering filtering, but Marek’s feedback
reinforced that intuition. Note that all other mentions
of Marek in the paper reflect data we incorporated after
the fact (i.e., during the drafting of the report).

V.3 Summary
We see strong indications of shared bias (which is not
necessarily a bad thing) between E orig and the two PatMain
replications (E repl and E joint). However, the level of in-
teraction appears to be more significant between E orig and
E joint, since E orig’s principal investigator, Lutz Prechelt,
was also a primary designer and collaborator for E joint.

APPENDIX W
THREATS TO VALIDITY CONTINUED

The material in this section is a continuation of Section 4. In
this section, we discuss minor threats to validity.

W.1 Construct Validity
The possibility exists that self-reporting on the pre-question-
naires was inaccurate, biased, or somehow inconsistent
across sites—thus affecting operationalization of developer
experience and/or pattern knowledge. For example, cultural
trends may influence what a person considers to be “pro-
fessional” experience. In fact, we found evidence that the
BYU participants tended to exaggerate when reporting LOC
written much more so than the FUB and UPM participants.
For a discussion of this issue, see Appendix C. To mitigate in-
accuracies, we collected several related metrics for developer
experience and pattern knowledge. We then pruned away
the least promising metrics and aggregated the rest. For an
example with developer experience, see Appendix J.

W.2 Conclusion Validity
Concerning statistical assumptions, the one assumption we
could not fully ensure for our models is that of homoscedas-
ticity. In the case of the patKnow explanatory variable, our
sample is thin in the upper range, such that we could not
confirm constant variance, although the variance may indeed
be constant. As a result, p-values for E joint, which concern
the high range of patKnow, may be overestimated—i.e., the
p-values may be biased toward type 2 errors or failure



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 47

to reject the null hypothesis. For further details on model
assumptions, see Appendix L.

The results of the Bayesian analysis are not likely to be bi-
ased by the selection of prior distributions. First, we enlisted
a third party helper (who was not previously affiliated with
the study) to estimate the priors using historical data from
E orig. Second, we intentionally chose broad priors so as to
make them of little influence on the results.

Additionally, concerning the Bayesian analysis, in some
cases only a few observations were available for estimating a
particular parameter. In these cases, the minimal data do not
mislead the models. The posterior distributions simply do
not deviate much from the broad priors; thus the resulting
probabilities are insignificant (i.e., near 0.5), as they should
be. However, additional data could produce significance in
these cases. Thus, the Bayesian analysis, by virtue of its broad
priors, is biased toward type 2 errors, or failure to reject the
null hypothesis. However, this bias is preferable because
the Bayesian analysis is post-hoc, and post-hoc analyses are
predisposed toward type 1 errors.

W.3 Internal Validity

A potential threat to internal validity is survivor bias. Sur-
vivor bias could occur in a software engineering experiment
as follows: Condition A is in fact worse than B. It is even so
much worse that most of the low-performers in the A group
drop out of the experiment prematurely due to frustration.
The rest of the A group thus appears much stronger than
it should and the inferiority of A versus B disappears. Of
the 61 E joint participants to begin the experiment, 6 quit
prematurely. For a list of the 6, see Appendix F. In general, we
find no evidence that quitting correlates with any particular
experiment group or site. Thus, quitting was most likely due
to general disinterest with the experiment, or possibly due
to frustration at some condition unrelated to design patterns.

In E joint, we assessed pattern knowledge via a survey
(i.e., an observational assessment) instead of a training course
(i.e., a randomized, controlled assessment). Thus, causality
inferences relating to pattern knowledge are tentative. How-
ever, since we synthesize our results with those of the prior
two PatMain studies, this threat is not a significant concern
for the final conclusions.

The experiment was translated from German into English.
Unfortunately, several grammar errors occurred which were
not corrected prior to the first site (FUB) administering the
experiment. For the sake of consistency, we did not correct
the text at the other three sites. Some participants noticed the
errors, but were not bothered by them. We also pre-tested the
framework at BYU on several students not affiliated with the
study. The test participants had no problem understanding
the correct meanings. Thus, we do not think the errors
impacted the results of the study.

E joint’s programs were translated from C++ into Java.
To minimize changes, we maintained the original structures
as much as possible. However, this decision meant that the
Java versions were written in a subtle C style. Possibly the
style may have confused some participants. One participant
(24085) did comment, “Those are not at all valid java codes.
No experience programmer will write such code. That made
understanding the code tough [sic].” In the worst case, the

coding style could have slowed down some participants,
creating additional variance, but we do not expect it to have
systematically influenced the main effect.

All participants took the experiment in Java, but un-
doubtedly, not all participants had equal familiarity with
Java (as would be the case for any language). If Java
familiarity varied significantly within or across sites it may
have added considerable noise to the results. To investigate
this possibility, we developed a metric to measure Java
familiarity. However, when added to the statistical models,
we found the metric to have almost no impact on the results
(as described in Appendix K). Additionally, 1) almost all of
the participants (47 of 53) listed java as a language they use
often; 2) at two of the sites (FUB and UPM) the participants
all voluntarily chose Java (over C++ and C#); and 3) based
on course curricula, we know that almost all of the BYU
and UA participants had recently received formal training
in Java. Thus, we do not believe that Java familiarity had a
significant impact on the results of the experiment.

To ensure consistency, we had the same two people grade
all tasks (as described in Section 2.2). For the coding tasks, the
graders worked in a pair-programming style arrangement.
However, for the short-answer tasks, the graders worked
separately, each on half of the responses. Thus, the short-
answer scores could be inconsistent across participants. In
hindsight, we could have asked each grader to grade more
than half of the participants and then used the overlap to
compute an inter-rater reliability score. Having not done
this, we note it here as a limitation and recommend it for
future studies. That said, based on three factors, we believe
the risk of inconsistency is low. First, unlike the coding
tasks, the short-answer tasks involved fairly straightforward,
unambiguous answers. Second, the graders initially graded
several solutions together, from which they established both
a grading rubric and an understanding of how that rubric
was to be applied. Third, upon completing their work, the
graders cross-checked each other’s results specifically for the
purpose of ensuring consistency.

Lastly, we observed a small learning (or maturation) effect
in E joint. However, we found the effect to be unrelated to
the use of design patterns and were able to correct for it in
the statistical analysis.

W.4 External Validity
Our use of a web portal may have impacted the participants’
attitudes. Possibly the work-at-home nature of the portal led
to reduced motivations or focus. In contrast, the participants
in the prior two studies were required to work in dedicated
rooms, which may have promoted a greater sense of serious-
ness about the experiment. Ultimately, both approaches have
positives and negatives, inasmuch as they represent tradeoffs
in experimental stress. Some developers work better under
pressure, other do not. Thus, either setting could be viewed
as more or less like industry. To an extent, having both
represented in the final results strengthens external validity.

APPENDIX X
FUTURE WORK

Most of the ideas below focus on exploring variables that
moderate the effect of design patterns. Ideally we can dis-



48 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

cover a handful of key variables sufficient to predict the out-
come of pattern experiments in most contexts. Understanding
the role of key moderators can also lead to the development
of explanatory and predictive theories, which in turn may
enable the formulation of transferable best practices.

X.1 PatMain Replications
The most obvious item for future work is to further repli-
cate the PatMain experiment with additional controls and
measurements for moderators. We recommend that the next
round of investigation should focus on a few of the most
promising variables. Controlling additional variables can
help to reduce extraneous variance, but ideally we want to
identify the smallest set of moderators possible, sufficient to
predict experimental outcomes. We recommend the following
moderators:

• pattern knowledge: Pattern knowledge has been shown
in all three PatMain studies to moderate the effect of
design patterns. However, the extent of its influence,
particularly with respect to the Abstract Factory pattern
in the GR program, is still not fully worked out.

• developer experience: Developer experience has also been
considered in the prior PatMain studies, but its effect as
a moderator has only been tested in E joint; it needs to
be further validated.

• motivation: Motivation is promising because it correlates
with variance in E joint, as well as with variance across
the three PatMain studies. However, we were not able
to directly test its interaction with design patterns in
E joint due to lack of the appropriate quantitative data.

Note that when investigating moderators, researchers should
pay close attention to the level of heterogeneity in their
samples. Insufficient heterogeneity can result in failure to
detect a moderator, even in cases where the moderator is
highly influential.

In addition to testing specific moderators, we also recom-
mend that future replicators document other variables that
appear to correlate with variance in their studies. Doing so
will make those studies more useful in the future, especially if
the variables identified above prove inadequate. Also, it may
be worthwhile to explore relationships between moderators.
For instance, can developer experience compensate for a lack
of pattern knowledge (and vice versa)? Lastly, controlling
variables within studies will not, by itself, solve the prob-
lem of generalizability. We also need to develop methods
for mapping moderators across studies. This work could
take the form of investigating best methods for assessing
particular developer attributes and formulating standardized
assessments.

X.2 PatMain Meta-analysis
Our analysis in this paper could be improved by statistically
modeling all three PatMain studies together. A combined
analysis is reasonable because the two replications both
sought to closely duplicate the original. Thus, all three studies
use nearly the same materials and comparable experimental
designs. The resulting models would likely be similar in size
to those we have already constructed, but the volume of data
would nearly triple. For any attempt at such an analysis, note
the following concerns:

1) E joint used a survey to assess pattern knowledge in-
stead of a training course. One approach to resolving this
protocol difference would be to label all E joint obser-
vations as “PRE” (meaning pre-training). Additionally,
both of the prior PatMain studies collected demographic
data on pattern knowledge. Those data could be used to
create a unified pattern knowledge metric.

2) Three of E joint’s sites initially graded their own par-
ticipants’ solutions. However, for the joint analysis, we
re-graded all solutions to ensure consistency. Correlating
the centrally-graded scores with those of the individual
sites revealed only marginal correspondence. For one
task (at FUB) the correlation was perfect, but most
correlations were in the range 0.25–0.75, and one was
only 0.13.29 Thus, care should be taken when comparing
correctness scores between studies.

3) CO tasks 2 and 3 were combined in E repl and E joint,
but not in E orig. The combination involved adding
times and averaging correctness scores [20, p. 179].

4) In E repl, Vokáč et al. initially applied time correc-
tions to adjust for participants who spent long periods
resolving a technical nuance (e.g., finding a missing
closing brace) [20, pp. 163–164]. However, they found
the corrections to have little impact on the results and
subsequently eliminated them from the analysis. When
incorporating data from E repl, time corrections should
be ignored.

5) E orig, E repl, and one site from E joint (UA) tested par-
ticipants on the ST and BO programs. These programs
could also be included in the combined analysis using
the Bayesian methods shown in this paper, which allow
for missing data.

6) Several variables, which we could not statistically model
using E joint data alone, could be investigated in the
combined analysis. These variables include: student
vs. professional status, paid vs. unpaid compensation,
voluntary participation vs. participation by assignment,
C++ vs. Java, and computer-based format vs. paper-
based format.

X.3 Historical/Case Study Investigations of Moderators

In addition to further replicating the PatMain experiment, it
would be interesting to review the design pattern literature
for data on potential moderators. Many studies likely contain
at least some traces of information on moderators, the
synthesis of which may reveal significant insights. The results
of such a literature review could be used to corroborate
E joint’s findings, or even to generalize and extend them.

Another alternative would be industry case studies. It
may be possible to find software projects involving main-
tenance tasks, wherein some parts of the software have
been constructed with patterns and some parts without. We
could then assess whether various moderators appear salient
in practice. Such studies would only be observational, but
in connection with experiments, they could help establish
external validity. If enough is known about the identity of
the developers, open source repositories may prove useful in
this regard.

29. Pearson product-moment correlation coefficients.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 49

X.4 Taxonomy of Interfering Variables
We have considered many different types of interfering vari-
ables in this paper. Some are inherent to the problem domain,
whereas others are artifacts of the experimental setup. Some
probably only influence overall variance, whereas others
directly moderate the main effect. Some also overlap (e.g.,
site and culture), and many can be considered of one type or
another, depending on one’s frame of reference. As such, it
may be beneficial to develop a structured understanding of
interfering variables—e.g., to develop a taxonomy of variable
types, along with methods for identifying and resolving each
of the types. A literature review of interfering variables
in software engineering experiments may be helpful in
this regard. Also, it may be helpful to review how other
disciplines deal with such variables.

X.5 Design Pattern Properties
According to Vokáč et al., “each design pattern. . . has its own
nature, so that it is not valid to characterize design patterns
as useful or harmful in general” [20, p. 191]. If this conclusion
is true, as our results suggest, then presumably some set of
design pattern properties must exist (e.g., complexity), which
if understood, could be used to better predict a pattern’s
impact on software maintenance. Via the PatMain studies,
we are in the process of directly investigating several patterns.
However, if we could understand the properties on which the
usefulness of patterns depend, we could potentially predict
outcomes for new and untested patterns.

For example, we find that the threshold of experience
required for Abstract Factory to be beneficial during mainte-
nance is greater than that required for Decorator. Similarly,
the Visitor pattern (which was not tested in E joint) was
found by E repl to be especially problematic, more so
than both Decorator and Abstract Factory. Possibly pattern
complexity explains these findings. If so, complexity is an
example of a property that could be used to further generalize
experimental findings.

X.6 Studies of Motivation
In our study, we found strong evidence to suggest that
motivation affects the variance of developers. Based on our
findings, we would expect intrinsically motivated develop-
ers to manifest less variance than extrinsically motivated
developers. However, it is not clear whether these findings
translate to industry. If they do, then a better understanding
of developer motivations could enable greater control over
the consistency (and therefore predictability) of software
development outcomes.

Any study of motivation would need to develop (or
borrow from other fields) a theoretical framework for dif-
ferentiating types of motivation. Psychology or the social
sciences may be a good place to start. Concerns include:
whether an intrinsic/extrinsic distinction is the most effective
characterization of motivation for the context of software
engineering, as well as whether secondary motivations are
as important as primary motivations in predicting developer
performance.



50 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

APPENDIX Y
FREQUENTIST STATISTICAL RESULTS

For a description of the frequentist models, see Section 2.3.
Tables 25–40 present results based on the full dataset (53
participants). Tables 41–58 present results for the same
models, but after applying participant filtering (as described
in Section 3.1). Statistical source code (SAS 9.3) and output
are included in the lab package. All p-values are two-sided.
Variables not appearing in the results tables have been
removed via model tuning due to lack of significance. For a
description of the tuning process, see Appendix M.

Y.1 Results Layout

Column headers are defined for all tables as follows:
• Effect: Explanatory variable.
• Level: Level for a categorical explanatory variable.
• Level Diff: Two categorical levels compared, the first

minus the second.
• F Value: f-statistic.
• Pr>F: Two-sided p-value, computed using the f distri-

bution.
• Estimate: Parameter estimate.
• Orig Scale: The parameter estimate converted back

to the original scale (time models only).
• t Value: t-statistic.
• Pr>|t|: Two-sided p-value, computed using the t distri-

bution.
• Adj P: Two-sided p-value, adjusted to account for

multiple comparisons (Tukey-Kramer). Has no effect
for binary categorical variables.

• Ratio: As explained below, back-transforming differ-
ence estimates yields ratios.

Y.2 Results Interpretation

Since we log-transformed the time variable, we must back-
transform the results. When time ln is the response variable,
back-transformation requires computing ex, where x is the
log-scale estimate. In these cases, we must back-transform
four types of estimates: slope estimates (e.g., Table 26),
marginal means (e.g., Table 27), differences between marginal
means (e.g., Table 28), and differences between interaction
levels (e.g., Table 46).

When the log-scale estimate, x, represents a difference,
i.e., x= y−z, back-transformation yields a ratio rather than
an interval, as in ex = ey−z = ey/ez . Thus, the linear (or ad-
ditive) effect on the log scale becomes a multiplicative effect
on the original scale. In decimal form the back-transformed
differences are essentially multiplicative factors that scale the
response variable up or down by some percentage depending
on whether the value is greater or less than one.

Note that interval differences can be computed on the
original scale if y and z are known, as in ey−ez (e.g.,
Table 28). However, if y and z are not marginal means, then
their estimates depend on an arbitrary selection of values
for all other variables in the model. In this case, shifting
other variables also shifts y and z. On the log scale, such
shifts are linear, so differences remain constant, but on the
original scale shifts translate into multiplicative changes.

Consequently, interval differences are only meaningful on
the original scale when computed from marginal means.

Slope is a measure of change in one variable in response
to change in another variable and can be represented as
∆response/∆covariate. For the slope estimates shown in the
tables, ∆covariate = 1. Thus, the log-scale slope estimates rep-
resent differences (i.e., ∆response/∆covariate = ∆response/1
= ∆response), such that back-transformation yields ratios:

e∆response = ey−z = ey/ez

Thus, on the log scale, a slope estimate represents the linear
change in time ln expected to occur in response to a 1-unit
linear change in the associated covariate; but on the non-log
scale, a slope estimate represents the multiplicative change in
time expected to occur in response to a 1-unit linear change
in the covariate.

Further, since ∆covariate = 1 for the slopes shown in the
tables, back-transformation via ex yields estimates relative to
1-unit changes in the covariates. To obtain estimates relative
to other values for ∆covariate, simply back-transform the log-
scale estimate using the more general formula exd, where d
is the desired ∆covariate. For example, in the first footnote (*)
of Table 26, d= 1, such that back-transformation is computed
as e−0.1091∗1; but in the second footnote (†), d= 10, such that
back-transformation is computed as e0.0022∗10.

When time ln is a covariate instead of the response
variable (which occurs for slope estimates in the correctness
models; e.g., Table 30), interpretation is handled differently.
Since time ln is the covariate, interpretation of slope esti-
mates requires back-transforming ∆covariate by computing
e∆covariate. As mentioned above, ∆covariate = 1 by default and
back-transformation of differences yields ratios.

Thus, on the original scale, the slope estimates shown in
the tables represent the linear change in correctness expected
to occur in response to a multiplicative increase in non-log
time of e1 (≈ 2.7). To obtain a slope estimate relative to a
multiplicative factor other than e1, compute ln(θ)x, where x
is the slope estimate given in the table and θ is the desired
multiplicative factor. For example, Table 30 indicates that a 1-
unit increase in time ln yields an average correctness increase
of about 7.17 percentage points. Alternatively, on the original
scale, an approximately 2.7-fold increase in time yields an
average correctness increase of about 7.17 percentage points.
Or stated more intuitively, a 2-fold increase in time yields
an average correctness increase of about ln(2)7.17 = 4.97
percentage points.



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 51

TABLE 25
CO time, unfiltered (52 participants)

Type 3 Tests of Fixed Effects

Effect F Value Pr>F

site 8.46 <0.001

order 8.03 0.007

task 270.93 <0.001

devExp 3.28 0.076

correctness 3.40 0.071

variant 0.01 0.925

TABLE 26
CO time, unfiltered (52 participants)

Solution for Fixed Effects

Effect Level Estimate t Value Pr>|t|

intercept - 6.8147 21.79 <0.001

site BYU −0.5129 −3.10 0.003

site FUB 0.0029 0.02 0.988

site UA −0.5069 −2.83 0.007

site UPM 0 - -

order 1 0.2732 2.83 0.007

order 2 0 - -

task 1 1.2887 16.46 <0.001

task 2 0 - -

devExp - −0.1091* −1.81 0.076

correctness - 0.0022† 1.84 0.071

variant ALT −0.0094 −0.09 0.925

variant PAT 0 - -

*A 1-unit increase in developer experience yields
an average time decrease of about 10.3%.
†A 10-point increase in correctness yields an

average time increase of about 2.2%.

TABLE 27
CO time, unfiltered (52 participants)

Marginal Means (Least Squares Estimates)

Effect Level Estimate Orig Scale*

site BYU 6.7265 834

site FUB 7.2423 1397

site UA 6.7324 839

site UPM 7.2394 1393

order 1 7.1217 1239

order 2 6.8485 942

task 1 7.6295 2058

task 2 6.3408 567

variant ALT 6.9805 1075

variant PAT 6.9898 1086

*Computed as ex, where x is the log-
scale estimate.

TABLE 28
CO time, unfiltered (52 participants)

Differences for Marginal Means

Effect Level Diff Estimate t Value Adj P* Orig Scale†

site BYU−FUB −0.5158 −4.01 0.001 −563

site BYU−UA −0.0060 −0.05 1.000 −5

site BYU−UPM −0.5129 −3.10 0.016 −559

site FUB−UA 0.5098 3.52 0.005 558

site FUB−UPM 0.0029 0.02 1.000 4

site UA−UPM −0.5069 −2.83 0.033 −554

order 1−2 0.2732 2.83 0.007 296

task 1−2 1.2887 16.46 <0.001 1491

variant ALT−PAT −0.0094 −0.09 0.925 −10

*Adjusted for multiple comparisons (Tukey-Kramer).
†Computed as ex − ey , where x and y are log-scale marginal

means (see Table 27 above).



52 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 29
CO correctness, unfiltered (52 participants)

Type 3 Tests of Fixed Effects

Effect F Value Pr>F

site 5.20 0.003

devExp 2.78 0.101

time ln 2.64 0.110

variant 2.90 0.095

TABLE 30
CO correctness, unfiltered (52 participants)

Solution for Fixed Effects

Effect Level Estimate t Value Pr>|t|

intercept - −70.60 −1.73 0.090

site BYU 37.31 2.94 0.005

site FUB 51.72 3.82 <0.001

site UA 29.92 2.17 0.035

site UPM 0 - -

devExp - 7.41* 1.67 0.101

time ln - 7.17† 1.63 0.110

variant ALT 12.17 1.70 0.095

variant PAT 0 - -

*A 1-unit increase in developer experience
yields an average correctness increase of about
7.4 percentage points.
†A 2x increase in work time yields an average

correctness increase of about 5.0 percentage
points.

TABLE 31
CO correctness, unfiltered (52 participants)

Marginal Means (Least Squares Estimates)

Effect Level Estimate

site BYU 53.93

site FUB 68.35

site UA 46.55

site UPM 16.62

variant ALT 52.45

variant PAT 40.28

TABLE 32
CO correctness, unfiltered (52 participants)

Differences for Marginal Means

Effect Level Diff Estimate t Value Adj P*

site BYU−FUB −14.42 −1.52 0.436

site BYU−UA 7.39 0.80 0.855

site BYU−UPM 37.31 2.94 0.025

site FUB−UA 21.80 2.09 0.169

site FUB−UPM 51.72 3.82 0.002

site UA−UPM 29.92 2.17 0.147

variant ALT−PAT 12.17 1.70 0.095

*Adjusted for multiple comparisons (Tukey-Kramer).



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 53

TABLE 33
GR time, unfiltered (51 participants)

Type 3 Tests of Fixed Effects

Effect F Value Pr>F

site 3.62 0.019

order 10.91 0.002

task 34.40 <0.001

devExp 20.00 <0.001

correctness 12.94 <0.001

variant 6.18 0.016

TABLE 34
GR time, unfiltered (51 participants)

Solution for Fixed Effects

Effect Level Estimate t Value Pr>|t|

intercept - 7.8042 18.06 <0.001

site BYU −0.4337 −2.00 0.051

site FUB 0.0846 0.36 0.722

site UA −0.0794 −0.34 0.736

site UPM 0 - -

order 1 0.4348 3.30 0.002

order 2 0 - -

task 1 0.8358 5.87 <0.001

task 2 0 - -

devExp - −0.3573* −4.47 <0.001

correctness - 0.0057† 3.60 <0.001

variant ALT −0.3343 −2.49 0.016

variant PAT 0 - -

*A 1-unit increase in developer experience yields
an average time decrease of about 30.0%.
†A 10-point increase in correctness yields an

average time increase of about 5.9%.

TABLE 35
GR time, unfiltered (51 participants)

Marginal Means (Least Squares Estimates)

Effect Level Estimate Orig Scale*

site BYU 6.6131 745

site FUB 7.1314 1251

site UA 6.9674 1061

site UPM 7.0468 1149

order 1 7.1571 1283

order 2 6.7223 831

task 1 7.3576 1568

task 2 6.5218 680

variant ALT 6.7725 873

variant PAT 7.1069 1220

*Computed as ex, where x is the log-
scale estimate.

TABLE 36
GR time, unfiltered (51 participants)

Differences for Marginal Means

Effect Level Diff Estimate t Value Adj P* Orig Scale†

site BYU−FUB −0.5183 −2.97 0.023 −506

site BYU−UA −0.3543 −2.05 0.184 −317

site BYU−UPM −0.4337 −2.00 0.201 −404

site FUB−UA 0.1640 0.85 0.832 189

site FUB−UPM 0.0846 0.36 0.984 101

site UA−UPM −0.0794 −0.34 0.986 −88

order 1−2 0.4348 3.30 0.002 452

task 1−2 0.8358 5.87 <0.001 888

variant ALT−PAT −0.3343 −2.49 0.016 −347

*Adjusted for multiple comparisons (Tukey-Kramer).
†Computed as ex − ey , where x and y are log-scale marginal

means (see Table 35 above).



54 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 37
GR correctness, unfiltered (51 participants)

Type 3 Tests of Fixed Effects

Effect F Value Pr>F

task 4.89 0.032

time ln 9.55 0.003

variant 1.00 0.322

TABLE 38
GR correctness, unfiltered (51 participants)

Solution for Fixed Effects

Effect Level Estimate t Value Pr>|t|

intercept - −65.67 −2.02 0.049

task 1 20.80 2.21 0.032

task 2 0 - -

time ln - 15.29* 3.09 0.003

variant ALT 8.28 1.00 0.322

variant PAT 0 - -

*A 2x increase in work time yields an average
correctness increase of about 10.6 percentage
points.

TABLE 39
GR correctness, unfiltered (51 participants)

Marginal Means (Least Squares Estimates)

Effect Level Estimate

task 1 64.29

task 2 43.49

variant ALT 58.03

variant PAT 49.75

TABLE 40
GR correctness, unfiltered (51 participants)

Differences for Marginal Means

Effect Level Diff Estimate t Value Pr>|t|

task 1−2 20.80 2.21 0.032

variant ALT−PAT 8.28 1.00 0.322



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 55

TABLE 41
CO time, filtered (42 participants)

Type 3 Tests of Fixed Effects

Effect F Value Pr>F

site 13.53 <0.001

order 9.36 0.004

task 218.26 <0.001

patKnow 3.96 0.053*

correctness 2.76 0.104

variant 5.95 0.019*

patKnow×variant 5.12 0.029

*Results for patKnow and variant are
not meaningful outside the interaction.
See Tables 43 and 46 instead.

TABLE 42
CO time, filtered (42 participants)

Solution for Fixed Effects

Effect Level Estimate t Value Pr>|t|

intercept - 7.1296 23.28 <0.001

site BYU −0.5887 −3.41 0.002

site FUB 0.0833 0.45 0.657

site UA −0.3234 −1.57 0.125

site UPM 0 - -

order 1 0.2819 3.06 0.004

order 2 0 - -

task 1 1.2974 14.77 <0.001

task 2 0 - -

patKnow - −0.2527† −2.86 0.007

correctness - 0.0023* 1.66 0.104

variant ALT −0.8617† −2.44 0.019

variant PAT 0† - -

patKnow×variant ALT 0.2388† 2.26 0.029

patKnow×variant PAT 0† - -

*A 10-point increase in correctness yields an average
time increase of about 2.3%.
†Results for patKnow and variant are not meaningful

outside the interaction. See Tables 43 and 46 instead.

TABLE 43
CO time, filtered (42 participants)

Slopes for patKnow×variant (from Table 42)

Effect Variant Level Estimate t Value Pr>|t| Ratio

patKnow ALT −0.0139 −0.17 0.866 0.986*

patKnow PAT −0.2527 −2.86 0.007 0.777†

*For ALT tasks, a 1-unit increase in pattern knowledge yields
an average time decrease of about 1.4%.
†For PAT tasks, a 1-unit increase in pattern knowledge yields

an average time decrease of about 22.3%.

TABLE 44
CO time, filtered (42 participants)

Marginal Means (Least Squares Estimates)

Effect Level Estimate Orig Scale*

site BYU 6.6045 738

site FUB 7.2764 1446

site UA 6.8698 963

site UPM 7.1932 1330

order 1 7.1269 1245

order 2 6.8450 939

task 1 7.6347 2069

task 2 6.3373 565

*Computed as ex, where x is the log-
scale estimate.

TABLE 45
CO time, filtered (42 participants)

Differences for Marginal Means

Effect Level Diff Estimate t Value Adj P* Orig Scale†

site BYU−FUB −0.6720 −5.85 <0.001 −707

site BYU−UA −0.2653 −1.73 0.321 −224

site BYU−UPM −0.5887 −3.41 0.008 −592

site FUB−UA 0.4067 2.80 0.038 483

site FUB−UPM 0.0833 0.45 0.970 115

site UA−UPM −0.3234 −1.57 0.409 −368

order 1−2 0.2819 3.06 0.004 306

task 1−2 1.2974 14.77 <0.001 1503

*Adjusted for multiple comparisons (Tukey-Kramer).
†Computed as ex − ey , where x and y are log-scale marginal

means (see Table 44 above).

TABLE 46
CO time, filtered (42 participants)
Differences for patKnow×variant

PatKnow* Variant Diff Estimate t Value Pr>|t| Ratio†

1.7 (min) ALT−PAT −0.4544 −2.45 0.019 0.635

3.3 (mean) ALT−PAT −0.0826 −0.89 0.381 0.921

5.4 (max) ALT−PAT 0.4304 1.73 0.091 1.538

*Values shown are rounded to fit the table.
†Computed as ex, where x is the log-scale estimate. Since each

estimate (x) represents a difference (y−z), back-transformation
yields a ratio (ex = ey−z = ey/ez). E.g., when patKnow is at
its minimum value, the ALT/PAT ratio is 0.635, meaning ALT
tasks require 36.5% less time than PAT tasks, on average.



56 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 47
CO correctness, filtered (42 participants)

Type 3 Tests of Fixed Effects

Effect F Value Pr>F

site 4.53 0.008

patKnow 4.11 0.049

variant 0.41 0.523

TABLE 48
CO correctness, filtered (42 participants)

Solution for Fixed Effects

Effect Level Estimate t Value Pr>|t|

intercept - −11.46 −0.65 0.520

site BYU 40.70 3.16 0.003

site FUB 43.79 3.13 0.003

site UA 24.30 1.49 0.144

site UPM 0 - -

patKnow - 10.57* 2.03 0.049

variant ALT 4.76 0.64 0.523

variant PAT 0 - -

*A 1-unit increase in pattern knowledge yields
an average correctness increase of about 10.6
percentage points.

TABLE 49
CO correctness, filtered (42 participants)
Marginal Means (Least Squares Estimates)

Effect Level Estimate

site BYU 66.12

site FUB 69.21

site UA 49.72

site UPM 25.42

variant ALT 55.00

variant PAT 50.24

TABLE 50
CO correctness, filtered (42 participants)

Differences for Marginal Means

Effect Level Diff Estimate t Value Adj P*

site BYU−FUB −3.09 −0.34 0.986

site BYU−UA 16.40 1.37 0.524

site BYU−UPM 40.70 3.16 0.015

site FUB−UA 19.49 1.72 0.324

site FUB−UPM 43.79 3.13 0.016

site UA−UPM 24.30 1.49 0.453

variant ALT−PAT 4.76 0.64 0.523

*Adjusted for multiple comparisons (Tukey-Kramer).



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 57

TABLE 51
GR time, filtered (42 participants)

Type 3 Tests of Fixed Effects

Effect F Value Pr>F

site 8.97 <0.001

order 4.60 0.038

task 22.63 <0.001

patKnow 12.30 0.001

correctness 23.30 <0.001

variant 5.44 0.025

TABLE 52
GR time, filtered (42 participants)

Solution for Fixed Effects

Effect Level Estimate t Value Pr>|t|

intercept - 7.0909 19.08 <0.001

site BYU −0.3862 −1.65 0.107

site FUB 0.4631 1.75 0.087

site UA 0.5660 1.84 0.073

site UPM 0 - -

order 1 0.3030 2.14 0.038

order 2 0 - -

task 1 0.7334 4.76 <0.001

task 2 0 - -

patKnow - −0.3569* −3.51 0.001

correctness - 0.0086† 4.83 <0.001

variant ALT −0.3409 −2.33 0.025

variant PAT 0 - -

*A 1-unit increase in pattern knowledge yields
an average time decrease of about 30.0%.
†A 10-point increase in correctness yields an

average time increase of about 9.0%.

TABLE 53
GR time, filtered (42 participants)

Marginal Means (Least Squares Estimates)

Effect Level Estimate Orig Scale*

site BYU 6.4258 618

site FUB 7.2751 1444

site UA 7.3780 1600

site UPM 6.8120 909

order 1 7.1242 1242

order 2 6.8212 917

task 1 7.3394 1540

task 2 6.6060 740

variant ALT 6.8023 900

variant PAT 7.1432 1265

*Computed as ex, where x is the log-
scale estimate.

TABLE 54
GR time, filtered (42 participants)

Differences for Marginal Means

Effect Level Diff Estimate t Value Adj P* Orig Scale†

site BYU−FUB −0.8493 −4.64 <0.001 −826

site BYU−UA −0.9522 −4.07 0.001 −983

site BYU−UPM −0.3862 −1.65 0.364 −291

site FUB−UA −0.1029 −0.46 0.968 −156

site FUB−UPM 0.4631 1.75 0.311 535

site UA−UPM 0.5660 1.84 0.270 692

order 1−2 0.3030 2.14 0.038 325

task 1−2 0.7334 4.76 <0.001 800

variant ALT−PAT −0.3409 −2.33 0.025 −366

*Adjusted for multiple comparisons (Tukey-Kramer).
†Computed as ex − ey , where x and y are log-scale marginal

means (see Table 53 above).



58 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 55
GR correctness, filtered (42 participants)

Type 3 Tests of Fixed Effects

Effect F Value Pr>F

time ln 34.87 <0.001

variant 1.39 0.245

TABLE 56
GR correctness, filtered (42 participants)

Solution for Fixed Effects

Effect Level Estimate t Value Pr>|t|

intercept - −117.67 −3.88 <0.001

time ln - 25.40* 5.91 <0.001

variant ALT 9.69 1.18 0.245

variant PAT 0 - -

*A 2x increase in work time yields an average
correctness increase of about 17.6 percentage
points.

TABLE 57
GR correctness, filtered (42 participants)
Marginal Means (Least Squares Estimates)

Effect Level Estimate

variant ALT 66.45

variant PAT 56.76

TABLE 58
GR correctness, filtered (42 participants)

Differences for Marginal Means

Effect Level Diff Estimate t Value Pr>|t|

variant ALT−PAT 9.69 1.18 0.245



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 59

APPENDIX Z
BAYESIAN STATISTICAL RESULTS

For a description of the Bayesian models, see Section 2.3.
Table 59 presents results based on the full dataset (53
participants). Table 60 presents results for the same models,
but after applying participant filtering (as described in
Section 3.1). Statistical source code (R 2.15.2) is included
in the lab package.

Z.1 Results Layout
The Bayesian tables are abbreviated versions of a Microsoft
Excel file, which is provided in the lab package (Bayesian-
AnalysisResults.xlsx). The numbers at the right margin map
the table rows to the Excel file. The Excel file adds additional
data and visualizations. Coding and comprehension tasks
are abbreviated in the tables as ‘t1’ and ‘t2’. All other
abbreviations are as previously defined. All probabilities
are rounded—i.e., none are exactly 1 or 0.

Results for the time and correctness models are repre-
sented as columns in the tables (labeled T1–T6 and C1–
C6, respectively). Rows are grouped by bold subheadings,
which identify two types of information. On the far left,
the subheadings identify the variable or interaction under
consideration (e.g., the results on rows 37–40 were computed
from the program×variant interaction). At center and on
the right, the subheadings identify the specific effect being
analyzed—which effect corresponds to the variable listed
on the left, or if an interaction is listed on the left, then it
corresponds to a variable within the interaction. For example,
on row 36, “compare: variant” means that ALT and PAT are
being compared, and since the interaction program×variant is
listed on the left, ALT and PAT are being compared separately
for the CO and GR programs.

For each comparison, we provide two types of values:
probabilities and differences. Probabilities are listed in black
and labeled p(x> y), meaning the posterior probability that
condition x takes longer (models T1–T6) or scores higher
(models C1–C6) than condition y. Differences are listed in
gray and labeled x− y, meaning the average difference in
time or correctness between conditions x and y (computed as
the difference between posterior distribution means).

Z.2 Results Interpretation
In addition to the “Results Interpretation” discussion in
Section 2.3, note the following two concerns:

• Since the Bayesian analysis is based on binary variables,
insignificant comparisons are those for which the prob-
abilities are near 0.5. Thus, a probability of 0.25 is as
significant as a probability of 0.75. Probabilities less than
0.5 simply indicate that the reverse comparison is more
likely. The directionality of the comparisons shown in
the tables (i.e., x> y as opposed to y > x) is arbitrary.
To reverse a comparison, compute 1−p for probabilities
and −x for differences.

• Since statistical power is influenced by both model size and
by the distribution of observations over model parameters [31,
p. 347], probabilities should not be directly compared
across models. Instead, cross-validation requires check-
ing that two models support similar conclusions.



60 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 59
Unfiltered Bayesian Results. See Appendix Z for a description of how to read and interpret this table.

T1 T2 T3 T4 T5 T6 C1 C2 C3 C4 C5 C6

order compare: order compare: order 11
p(1st > 2nd) 0.99 1.00 1.00 1.00 1.00 1.00 0.13 0.17 0.15 0.22 0.20 0.20 12

1st − 2nd 189 228 223 214 210 189 −3.4 −3.1 −3.5 −2.3 −2.6 −2.7 13

variant compare: variant compare: variant 33
p(PAT > ALT) 0.58 0.52 0.55 0.56 0.54 0.55 0.39 0.37 0.38 0.35 0.30 0.31 34

PAT − ALT 152 24 73 89 30 42 −5.1 −5.1 −4.3 −5.4 −5.7 −4.8 35

program×variant compare: variant compare: variant 36
p(CO PAT > CO ALT) 0.57 0.51 0.56 0.54 0.53 0.49 0.38 0.35 0.37 0.37 0.30 0.29 37

CO PAT − CO ALT 129 5 67 47 29 −13 −5.2 −5.6 −4.8 −5.2 −5.9 −5.4 38
p(GR PAT > GR ALT) 0.59 0.54 0.55 0.59 0.54 0.62 0.39 0.38 0.39 0.32 0.30 0.33 39

GR PAT − GR ALT 175 43 79 132 31 97 −5.0 −4.7 −3.7 −5.5 −5.4 −4.1 40

task×variant compare: variant compare: variant 41
p(t1 PAT > t1 ALT) 0.56 0.48 0.53 0.55 0.49 - 0.31 0.31 0.31 0.26 0.20 - 42

t1 PAT − t1 ALT 132 −17 26 86 −12 - −9.2 −7.3 −7.1 −9.0 −8.6 - 43
p(t2 PAT > t2 ALT) 0.60 0.56 0.58 0.57 0.59 - 0.47 0.42 0.45 0.44 0.40 - 44

t2 PAT − t2 ALT 172 65 121 92 72 - −1.0 −3.0 −1.5 −1.8 −2.7 - 45

program× task×variant compare: variant compare: variant 46
p(CO t1 PAT > CO t1 ALT) 0.56 0.52 0.61 0.61 0.57 - 0.33 0.34 0.30 0.32 0.23 - 47

CO t1 PAT − CO t1 ALT 111 33 129 126 62 - −7.8 −5.9 −7.5 −8.0 −8.0 - 48
p(GR t1 PAT > GR t1 ALT) 0.56 0.44 0.44 0.49 0.41 - 0.28 0.29 0.32 0.19 0.17 - 49

GR t1 PAT − GR t1 ALT 154 −66 −78 46 −86 - −10.5 −8.7 −6.7 −10.0 −9.3 - 50
p(CO t2 PAT > CO t2 ALT) 0.58 0.49 0.50 0.47 0.50 - 0.44 0.37 0.44 0.42 0.37 - 51

CO t2 PAT − CO t2 ALT 148 −23 5 −33 −4 - −2.5 −5.2 −2.2 −2.5 −3.8 - 52
p(GR t2 PAT > GR t2 ALT) 0.62 0.64 0.66 0.68 0.67 - 0.50 0.47 0.47 0.46 0.43 - 53

GR t2 PAT − GR t2 ALT 196 153 237 218 149 - 0.5 −0.7 −0.8 −1.1 −1.5 - 54

time or correctness compare: correctness compare: time 61
p(Low > High) 0.01 0.03 0.09 0.32 0.05 0.10 0.15 0.16 0.18 0.37 0.19 0.12 62

Low − High −232 −182 −135 −198 −155 −120 −4.4 −4.1 −4.0 −3.5 −3.6 −4.7 63

variant×patKnow compare: variant compare: variant 102
p(ALT Low > PAT Low) - 0.46 - - - - - 0.68 - - - - 103

ALT Low − PAT Low - −27 - - - - - 6.8 - - - - 104
p(ALT High > PAT High) - 0.49 - - - - - 0.59 - - - - 105

ALT High − PAT High - −22 - - - - - 3.5 - - - - 106

program×variant×patKnow compare: variant compare: variant 117
p(CO ALT Low > CO PAT Low) - 0.44 - - - - - 0.62 - - - - 118

CO ALT Low − CO PAT Low - −40 - - - - - 4.1 - - - - 119
p(CO ALT High > CO PAT High) - 0.54 - - - - - 0.67 - - - - 120

CO ALT High − CO PAT High - 31 - - - - - 7.0 - - - - 121
122

p(GR ALT Low > GR PAT Low) - 0.48 - - - - - 0.74 - - - - 123
GR ALT Low − GR PAT Low - −13 - - - - - 9.5 - - - - 124

p(GR ALT High > GR PAT High) - 0.44 - - - - - 0.50 - - - - 125
GR ALT High − GR PAT High - −74 - - - - - −0.1 - - - - 126

task×variant×patKnow compare: variant compare: variant 137
p(t1 ALT Low > t1 PAT Low) - 0.58 - - - - - 0.81 - - - - 138

t1 ALT Low − t1 PAT Low - 95 - - - - - 12.1 - - - - 139
p(t1 ALT High > t1 PAT High) - 0.45 - - - - - 0.56 - - - - 140

t1 ALT High − t1 PAT High - −62 - - - - - 2.5 - - - - 141
142

p(t2 ALT Low > t2 PAT Low) - 0.35 - - - - - 0.55 - - - - 143
t2 ALT Low − t2 PAT Low - −148 - - - - - 1.5 - - - - 144

p(t2 ALT High > t2 PAT High) - 0.53 - - - - - 0.61 - - - - 145
t2 ALT High − t2 PAT High - 19 - - - - - 4.5 - - - - 146

program× task×variant×patKnow compare: variant compare: variant 167
p(CO t1 ALT Low > CO t1 PAT Low) - 0.53 - - - - - 0.70 - - - - 168

CO t1 ALT Low − CO t1 PAT Low - 41 - - - - - 6.8 - - - - 169
p(CO t1 ALT High > CO t1 PAT High) - 0.42 - - - - - 0.63 - - - - 170

CO t1 ALT High − CO t1 PAT High - −107 - - - - - 5.0 - - - - 171
172

p(CO t2 ALT Low > CO t2 PAT Low) - 0.36 - - - - - 0.54 - - - - 173
CO t2 ALT Low − CO t2 PAT Low - −122 - - - - - 1.4 - - - - 174

p(CO t2 ALT High > CO t2 PAT High) - 0.67 - - - - - 0.72 - - - - 175
CO t2 ALT High − CO t2 PAT High - 169 - - - - - 9.1 - - - - 176

177
p(GR t1 ALT Low > GR t1 PAT Low) - 0.62 - - - - - 0.92 - - - - 178

GR t1 ALT Low − GR t1 PAT Low - 149 - - - - - 17.3 - - - - 179
p(GR t1 ALT High > GR t1 PAT High) - 0.49 - - - - - 0.50 - - - - 180

GR t1 ALT High − GR t1 PAT High - −17 - - - - - 0.1 - - - - 181
182

(continued on next page)



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 61

(Table 59 continued – Unfiltered Bayesian Results)

T1 T2 T3 T4 T5 T6 C1 C2 C3 C4 C5 C6

p(GR t2 ALT Low > GR t2 PAT Low) - 0.34 - - - - - 0.56 - - - - 183
GR t2 ALT Low − GR t2 PAT Low - −175 - - - - - 1.6 - - - - 184

p(GR t2 ALT High > GR t2 PAT High) - 0.39 - - - - - 0.49 - - - - 185
GR t2 ALT High − GR t2 PAT High - −131 - - - - - −0.2 - - - - 186

variant×devExp compare: variant compare: variant 212
p(ALT Low > PAT Low) - - 0.41 - - - - - 0.70 - - - 213

ALT Low − PAT Low - - −117 - - - - - 7.3 - - - 214
p(ALT High > PAT High) - - 0.48 - - - - - 0.53 - - - 215

ALT High − PAT High - - −30 - - - - - 1.3 - - - 216

program×variant×devExp compare: variant compare: variant 227
p(CO ALT Low > CO PAT Low) - - 0.42 - - - - - 0.66 - - - 228

CO ALT Low − CO PAT Low - - −92 - - - - - 5.9 - - - 229
p(CO ALT High > CO PAT High) - - 0.47 - - - - - 0.60 - - - 230

CO ALT High − CO PAT High - - −42 - - - - - 3.7 - - - 231
232

p(GR ALT Low > GR PAT Low) - - 0.40 - - - - - 0.75 - - - 233
GR ALT Low − GR PAT Low - - −141 - - - - - 8.7 - - - 234

p(GR ALT High > GR PAT High) - - 0.49 - - - - - 0.47 - - - 235
GR ALT High − GR PAT High - - −18 - - - - - −1.2 - - - 236

task×variant×devExp compare: variant compare: variant 247
p(t1 ALT Low > t1 PAT Low) - - 0.53 - - - - - 0.81 - - - 248

t1 ALT Low − t1 PAT Low - - 47 - - - - - 11.3 - - - 249
p(t1 ALT High > t1 PAT High) - - 0.42 - - - - - 0.58 - - - 250

t1 ALT High − t1 PAT High - - −98 - - - - - 2.9 - - - 251
252

p(t2 ALT Low > t2 PAT Low) - - 0.30 - - - - - 0.60 - - - 253
t2 ALT Low − t2 PAT Low - - −280 - - - - - 3.3 - - - 254

p(t2 ALT High > t2 PAT High) - - 0.53 - - - - - 0.49 - - - 255
t2 ALT High − t2 PAT High - - 38 - - - - - −0.3 - - - 256

program× task×variant×devExp compare: variant compare: variant 277
p(CO t1 ALT Low > CO t1 PAT Low) - - 0.34 - - - - - 0.76 - - - 278

CO t1 ALT Low − CO t1 PAT Low - - −187 - - - - - 9.9 - - - 279
p(CO t1 ALT High > CO t1 PAT High) - - 0.44 - - - - - 0.64 - - - 280

CO t1 ALT High − CO t1 PAT High - - −72 - - - - - 5.1 - - - 281
282

p(CO t2 ALT Low > CO t2 PAT Low) - - 0.50 - - - - - 0.56 - - - 283
CO t2 ALT Low − CO t2 PAT Low - - 2 - - - - - 1.9 - - - 284

p(CO t2 ALT High > CO t2 PAT High) - - 0.49 - - - - - 0.57 - - - 285
CO t2 ALT High − CO t2 PAT High - - −11 - - - - - 2.4 - - - 286

287
p(GR t1 ALT Low > GR t1 PAT Low) - - 0.71 - - - - - 0.85 - - - 288

GR t1 ALT Low − GR t1 PAT Low - - 280 - - - - - 12.7 - - - 289
p(GR t1 ALT High > GR t1 PAT High) - - 0.40 - - - - - 0.52 - - - 290

GR t1 ALT High − GR t1 PAT High - - −124 - - - - - 0.6 - - - 291
292

p(GR t2 ALT Low > GR t2 PAT Low) - - 0.10 - - - - - 0.65 - - - 293
GR t2 ALT Low − GR t2 PAT Low - - −561 - - - - - 4.6 - - - 294

p(GR t2 ALT High > GR t2 PAT High) - - 0.58 - - - - - 0.41 - - - 295
GR t2 ALT High − GR t2 PAT High - - 88 - - - - - −3.0 - - - 296

variant× time or correctness compare: variant compare: variant 322
p(ALT Low > PAT Low) - - - 0.43 - - - - - 0.72 - - 323

ALT Low − PAT Low - - - −96 - - - - - 7.6 - - 324
p(ALT High > PAT High) - - - 0.45 - - - - - 0.59 - - 325

ALT High − PAT High - - - −82 - - - - - 3.1 - - 326

program×variant× time or correctness compare: variant compare: variant 337
p(CO ALT Low > CO PAT Low) - - - 0.50 - - - - - 0.74 - - 338

CO ALT Low − CO PAT Low - - - 26 - - - - - 9.8 - - 339
p(CO ALT High > CO PAT High) - - - 0.42 - - - - - 0.51 - - 340

CO ALT High − CO PAT High - - - −119 - - - - - 0.7 - - 341
342

p(GR ALT Low > GR PAT Low) - - - 0.35 - - - - - 0.69 - - 343
GR ALT Low − GR PAT Low - - - −218 - - - - - 5.4 - - 344

p(GR ALT High > GR PAT High) - - - 0.48 - - - - - 0.66 - - 345
GR ALT High − GR PAT High - - - −46 - - - - - 5.6 - - 346

task×variant× time or correctness compare: variant compare: variant 357
p(t1 ALT Low > t1 PAT Low) - - - 0.42 - - - - - 0.87 - - 358

t1 ALT Low − t1 PAT Low - - - −144 - - - - - 13.5 - - 359
p(t1 ALT High > t1 PAT High) - - - 0.48 - - - - - 0.62 - - 360

t1 ALT High − t1 PAT High - - - −28 - - - - - 4.5 - - 361
362

p(t2 ALT Low > t2 PAT Low) - - - 0.43 - - - - - 0.57 - - 363
t2 ALT Low − t2 PAT Low - - - −48 - - - - - 1.7 - - 364

p(t2 ALT High > t2 PAT High) - - - 0.42 - - - - - 0.56 - - 365
t2 ALT High − t2 PAT High - - - −137 - - - - - 1.8 - - 366

(continued on next page)



62 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

(Table 59 continued – Unfiltered Bayesian Results)

T1 T2 T3 T4 T5 T6 C1 C2 C3 C4 C5 C6

program× task×variant× time or correctness compare: variant compare: variant 387
p(CO t1 ALT Low > CO t1 PAT Low) - - - 0.61 - - - - - 0.93 - - 388

CO t1 ALT Low − CO t1 PAT Low - - - 120 - - - - - 18.0 - - 389
p(CO t1 ALT High > CO t1 PAT High) - - - 0.17 - - - - - 0.43 - - 390

CO t1 ALT High − CO t1 PAT High - - - −373 - - - - - −2.0 - - 391
392

p(CO t2 ALT Low > CO t2 PAT Low) - - - 0.40 - - - - - 0.56 - - 393
CO t2 ALT Low − CO t2 PAT Low - - - −69 - - - - - 1.6 - - 394

p(CO t2 ALT High > CO t2 PAT High) - - - 0.67 - - - - - 0.60 - - 395
CO t2 ALT High − CO t2 PAT High - - - 135 - - - - - 3.3 - - 396

397
p(GR t1 ALT Low > GR t1 PAT Low) - - - 0.23 - - - - - 0.80 - - 398

GR t1 ALT Low − GR t1 PAT Low - - - −409 - - - - - 9.1 - - 399
p(GR t1 ALT High > GR t1 PAT High) - - - 0.78 - - - - - 0.81 - - 400

GR t1 ALT High − GR t1 PAT High - - - 317 - - - - - 10.9 - - 401
402

p(GR t2 ALT Low > GR t2 PAT Low) - - - 0.47 - - - - - 0.58 - - 403
GR t2 ALT Low − GR t2 PAT Low - - - −28 - - - - - 1.8 - - 404

p(GR t2 ALT High > GR t2 PAT High) - - - 0.17 - - - - - 0.51 - - 405
GR t2 ALT High − GR t2 PAT High - - - −408 - - - - - 0.3 - - 406

variant× site compare: variant compare: variant 538
p(ALT BYU > PAT BYU) 0.45 - - - - - 0.71 - - - - - 539

ALT BYU − PAT BYU −66 - - - - - 8.2 - - - - - 540
p(ALT FUB > PAT FUB) 0.44 - - - - - 0.55 - - - - - 541

ALT FUB − PAT FUB −145 - - - - - 1.9 - - - - - 542
p(ALT UA > PAT UA) 0.45 - - - - - 0.61 - - - - - 543

ALT UA − PAT UA −87 - - - - - 5.3 - - - - - 544
p(ALT UPM > PAT UPM) 0.34 - - - - - 0.58 - - - - - 545

ALT UPM − PAT UPM −311 - - - - - 5.0 - - - - - 546

program×variant× site compare: variant compare: variant 599
p(CO ALT BYU > CO PAT BYU) 0.39 - - - - - 0.77 - - - - - 600

CO ALT BYU − CO PAT BYU −152 - - - - - 10.9 - - - - - 601
p(CO ALT FUB > CO PAT FUB) 0.54 - - - - - 0.53 - - - - - 602

CO ALT FUB − CO PAT FUB 74 - - - - - 1.5 - - - - - 603
p(CO ALT UA > CO PAT UA) 0.56 - - - - - 0.60 - - - - - 604

CO ALT UA − CO PAT UA 80 - - - - - 4.5 - - - - - 605
p(CO ALT UPM > CO PAT UPM) 0.23 - - - - - 0.56 - - - - - 606

CO ALT UPM − CO PAT UPM −521 - - - - - 3.8 - - - - - 607
608

p(GR ALT BYU > GR PAT BYU) 0.52 - - - - - 0.66 - - - - - 609
GR ALT BYU − GR PAT BYU 20 - - - - - 5.5 - - - - - 610

p(GR ALT FUB > GR PAT FUB) 0.34 - - - - - 0.56 - - - - - 611
GR ALT FUB − GR PAT FUB −363 - - - - - 2.3 - - - - - 612

p(GR ALT UA > GR PAT UA) 0.34 - - - - - 0.62 - - - - - 613
GR ALT UA − GR PAT UA −254 - - - - - 6.0 - - - - - 614

p(GR ALT UPM > GR PAT UPM) 0.44 - - - - - 0.60 - - - - - 615
GR ALT UPM − GR PAT UPM −102 - - - - - 6.1 - - - - - 616

task×variant× site compare: variant compare: variant 669
p(t1 ALT BYU > t1 PAT BYU) 0.41 - - - - - 0.74 - - - - - 670

t1 ALT BYU − t1 PAT BYU −125 - - - - - 9.4 - - - - - 671
p(t1 ALT FUB > t1 PAT FUB) 0.39 - - - - - 0.56 - - - - - 672

t1 ALT FUB − t1 PAT FUB −277 - - - - - 2.7 - - - - - 673
p(t1 ALT UA > t1 PAT UA) 0.52 - - - - - 0.74 - - - - - 674

t1 ALT UA − t1 PAT UA 26 - - - - - 11.2 - - - - - 675
p(t1 ALT UPM > t1 PAT UPM) 0.43 - - - - - 0.72 - - - - - 676

t1 ALT UPM − t1 PAT UPM −153 - - - - - 13.5 - - - - - 677
678

p(t2 ALT BYU > t2 PAT BYU) 0.50 - - - - - 0.68 - - - - - 679
t2 ALT BYU − t2 PAT BYU −6 - - - - - 7.1 - - - - - 680

p(t2 ALT FUB > t2 PAT FUB) 0.48 - - - - - 0.53 - - - - - 681
t2 ALT FUB − t2 PAT FUB −12 - - - - - 1.1 - - - - - 682

p(t2 ALT UA > t2 PAT UA) 0.39 - - - - - 0.48 - - - - - 683
t2 ALT UA − t2 PAT UA −199 - - - - - −0.6 - - - - - 684

p(t2 ALT UPM > t2 PAT UPM) 0.24 - - - - - 0.43 - - - - - 685
t2 ALT UPM − t2 PAT UPM −470 - - - - - −3.6 - - - - - 686

program× task×variant× site compare: variant compare: variant 791
p(CO t1 ALT BYU > CO t1 PAT BYU) 0.24 - - - - - 0.81 - - - - - 792

CO t1 ALT BYU − CO t1 PAT BYU −336 - - - - - 12.5 - - - - - 793
p(CO t1 ALT FUB > CO t1 PAT FUB) 0.62 - - - - - 0.53 - - - - - 794

CO t1 ALT FUB − CO t1 PAT FUB 199 - - - - - 1.4 - - - - - 795
p(CO t1 ALT UA > CO t1 PAT UA) 0.56 - - - - - 0.69 - - - - - 796

CO t1 ALT UA − CO t1 PAT UA 81 - - - - - 8.6 - - - - - 797
p(CO t1 ALT UPM > CO t1 PAT UPM) 0.32 - - - - - 0.64 - - - - - 798

CO t1 ALT UPM − CO t1 PAT UPM −388 - - - - - 8.8 - - - - - 799
800

p(CO t2 ALT BYU > CO t2 PAT BYU) 0.53 - - - - - 0.73 - - - - - 801

(continued on next page)



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 63

(Table 59 continued – Unfiltered Bayesian Results)

T1 T2 T3 T4 T5 T6 C1 C2 C3 C4 C5 C6

CO t2 ALT BYU − CO t2 PAT BYU 33 - - - - - 9.3 - - - - - 802
p(CO t2 ALT FUB > CO t2 PAT FUB) 0.45 - - - - - 0.53 - - - - - 803

CO t2 ALT FUB − CO t2 PAT FUB −51 - - - - - 1.6 - - - - - 804
p(CO t2 ALT UA > CO t2 PAT UA) 0.57 - - - - - 0.51 - - - - - 805

CO t2 ALT UA − CO t2 PAT UA 79 - - - - - 0.4 - - - - - 806
p(CO t2 ALT UPM > CO t2 PAT UPM) 0.14 - - - - - 0.48 - - - - - 807

CO t2 ALT UPM − CO t2 PAT UPM −653 - - - - - −1.2 - - - - - 808
809

p(GR t1 ALT BYU > GR t1 PAT BYU) 0.58 - - - - - 0.68 - - - - - 810
GR t1 ALT BYU − GR t1 PAT BYU 86 - - - - - 6.2 - - - - - 811

p(GR t1 ALT FUB > GR t1 PAT FUB) 0.16 - - - - - 0.60 - - - - - 812
GR t1 ALT FUB − GR t1 PAT FUB −754 - - - - - 4.0 - - - - - 813

p(GR t1 ALT UA > GR t1 PAT UA) 0.48 - - - - - 0.79 - - - - - 814
GR t1 ALT UA − GR t1 PAT UA −30 - - - - - 13.8 - - - - - 815

p(GR t1 ALT UPM > GR t1 PAT UPM) 0.54 - - - - - 0.81 - - - - - 816
GR t1 ALT UPM − GR t1 PAT UPM 83 - - - - - 18.2 - - - - - 817

818
p(GR t2 ALT BYU > GR t2 PAT BYU) 0.46 - - - - - 0.64 - - - - - 819

GR t2 ALT BYU − GR t2 PAT BYU −45 - - - - - 4.9 - - - - - 820
p(GR t2 ALT FUB > GR t2 PAT FUB) 0.51 - - - - - 0.52 - - - - - 821

GR t2 ALT FUB − GR t2 PAT FUB 27 - - - - - 0.7 - - - - - 822
p(GR t2 ALT UA > GR t2 PAT UA) 0.21 - - - - - 0.46 - - - - - 823

GR t2 ALT UA − GR t2 PAT UA −478 - - - - - −1.7 - - - - - 824
p(GR t2 ALT UPM > GR t2 PAT UPM) 0.34 - - - - - 0.39 - - - - - 825

GR t2 ALT UPM − GR t2 PAT UPM −287 - - - - - −6.0 - - - - - 826



64 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

TABLE 60
Filtered Bayesian Results. See Appendix Z for a description of how to read and interpret this table.

T1 T2 T3 T4 T5 T6 C1 C2 C3 C4 C5 C6

order compare: order compare: order 11
p(1st > 2nd) 0.96 0.98 0.98 0.97 0.97 0.97 0.13 0.15 0.12 0.15 0.10 0.19 12

1st − 2nd 141 175 180 164 157 142 −3.8 −3.6 −4.5 −3.6 −4.3 −3.1 13

variant compare: variant compare: variant 33
p(PAT > ALT) 0.61 0.58 0.60 0.64 0.63 0.58 0.41 0.41 0.40 0.37 0.33 0.32 34

PAT − ALT 206 104 152 217 133 69 −4.2 −3.5 −3.9 −4.6 −4.9 −4.8 35

program×variant compare: variant compare: variant 36
p(CO PAT > CO ALT) 0.61 0.59 0.63 0.64 0.67 0.50 0.43 0.45 0.42 0.42 0.39 0.40 37

CO PAT − CO ALT 213 129 196 188 195 −2 −3.2 −2.4 −3.2 −2.9 −3.2 −2.7 38
p(GR PAT > GR ALT) 0.60 0.57 0.57 0.63 0.58 0.66 0.39 0.37 0.38 0.31 0.27 0.24 39

GR PAT − GR ALT 200 79 108 245 71 140 −5.2 −4.7 −4.5 −6.3 −6.6 −7.0 40

task×variant compare: variant compare: variant 41
p(t1 PAT > t1 ALT) 0.62 0.57 0.61 0.68 0.64 - 0.35 0.37 0.36 0.29 0.27 - 42

t1 PAT − t1 ALT 242 105 176 328 168 - −7.5 −5.0 −5.5 −7.3 −6.8 - 43
p(t2 PAT > t2 ALT) 0.59 0.59 0.59 0.59 0.61 - 0.47 0.45 0.44 0.44 0.39 - 44

t2 PAT − t2 ALT 171 103 128 106 98 - −0.9 −2.1 −2.3 −2.0 −3.0 - 45

program× task×variant compare: variant compare: variant 46
p(CO t1 PAT > CO t1 ALT) 0.67 0.71 0.76 0.81 0.85 - 0.42 0.47 0.40 0.41 0.38 - 47

CO t1 PAT − CO t1 ALT 309 298 398 404 404 - −3.3 −1.4 −4.1 −3.6 −3.4 - 48
p(GR t1 PAT > GR t1 ALT) 0.58 0.44 0.47 0.55 0.44 - 0.27 0.27 0.33 0.18 0.16 - 49

GR t1 PAT − GR t1 ALT 174 −88 −46 251 −68 - −11.7 −8.5 −6.9 −10.9 −10.2 - 50
p(CO t2 PAT > CO t2 ALT) 0.56 0.48 0.49 0.47 0.48 - 0.44 0.42 0.44 0.44 0.41 - 51

CO t2 PAT − CO t2 ALT 117 −40 −6 −27 −14 - −3.2 −3.5 −2.4 −2.2 −2.9 - 52
p(GR t2 PAT > GR t2 ALT) 0.63 0.70 0.68 0.71 0.73 - 0.51 0.47 0.43 0.44 0.38 - 53

GR t2 PAT − GR t2 ALT 225 246 263 239 210 - 1.4 −0.8 −2.2 −1.8 −3.1 - 54

time or correctness compare: correctness compare: time 61
p(Low > High) 0.01 0.06 0.11 0.34 0.08 0.13 0.20 0.25 0.26 0.42 0.30 0.23 62

Low − High −216 −159 −123 −215 −130 −102 −4.0 −2.9 −3.0 −2.2 −2.2 −2.9 63

variant×patKnow compare: variant compare: variant 102
p(ALT Low > PAT Low) - 0.34 - - - - - 0.60 - - - - 103

ALT Low − PAT Low - −207 - - - - - 3.6 - - - - 104
p(ALT High > PAT High) - 0.50 - - - - - 0.58 - - - - 105

ALT High − PAT High - −1 - - - - - 3.5 - - - - 106

program×variant×patKnow compare: variant compare: variant 117
p(CO ALT Low > CO PAT Low) - 0.26 - - - - - 0.48 - - - - 118

CO ALT Low − CO PAT Low - −309 - - - - - −0.9 - - - - 119
p(CO ALT High > CO PAT High) - 0.56 - - - - - 0.63 - - - - 120

CO ALT High − CO PAT High - 51 - - - - - 5.7 - - - - 121
122

p(GR ALT Low > GR PAT Low) - 0.41 - - - - - 0.72 - - - - 123
GR ALT Low − GR PAT Low - −105 - - - - - 8.1 - - - - 124

p(GR ALT High > GR PAT High) - 0.45 - - - - - 0.53 - - - - 125
GR ALT High − GR PAT High - −54 - - - - - 1.2 - - - - 126

task×variant×patKnow compare: variant compare: variant 137
p(t1 ALT Low > t1 PAT Low) - 0.37 - - - - - 0.65 - - - - 138

t1 ALT Low − t1 PAT Low - −193 - - - - - 5.8 - - - - 139
p(t1 ALT High > t1 PAT High) - 0.48 - - - - - 0.61 - - - - 140

t1 ALT High − t1 PAT High - −17 - - - - - 4.1 - - - - 141
142

p(t2 ALT Low > t2 PAT Low) - 0.30 - - - - - 0.54 - - - - 143
t2 ALT Low − t2 PAT Low - −221 - - - - - 1.4 - - - - 144

p(t2 ALT High > t2 PAT High) - 0.52 - - - - - 0.56 - - - - 145
t2 ALT High − t2 PAT High - 15 - - - - - 2.9 - - - - 146

program× task×variant×patKnow compare: variant compare: variant 167
p(CO t1 ALT Low > CO t1 PAT Low) - 0.16 - - - - - 0.44 - - - - 168

CO t1 ALT Low − CO t1 PAT Low - −504 - - - - - −2.1 - - - - 169
p(CO t1 ALT High > CO t1 PAT High) - 0.43 - - - - - 0.62 - - - - 170

CO t1 ALT High − CO t1 PAT High - −92 - - - - - 4.9 - - - - 171
172

p(CO t2 ALT Low > CO t2 PAT Low) - 0.37 - - - - - 0.51 - - - - 173
CO t2 ALT Low − CO t2 PAT Low - −115 - - - - - 0.3 - - - - 174

p(CO t2 ALT High > CO t2 PAT High) - 0.68 - - - - - 0.64 - - - - 175
CO t2 ALT High − CO t2 PAT High - 194 - - - - - 6.6 - - - - 176

177
p(GR t1 ALT Low > GR t1 PAT Low) - 0.59 - - - - - 0.86 - - - - 178

GR t1 ALT Low − GR t1 PAT Low - 118 - - - - - 13.7 - - - - 179
p(GR t1 ALT High > GR t1 PAT High) - 0.53 - - - - - 0.59 - - - - 180

GR t1 ALT High − GR t1 PAT High - 57 - - - - - 3.4 - - - - 181
182

(continued on next page)



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 65

(Table 60 continued – Filtered Bayesian Results)

T1 T2 T3 T4 T5 T6 C1 C2 C3 C4 C5 C6

p(GR t2 ALT Low > GR t2 PAT Low) - 0.23 - - - - - 0.58 - - - - 183
GR t2 ALT Low − GR t2 PAT Low - −328 - - - - - 2.4 - - - - 184

p(GR t2 ALT High > GR t2 PAT High) - 0.37 - - - - - 0.47 - - - - 185
GR t2 ALT High − GR t2 PAT High - −165 - - - - - −0.9 - - - - 186

variant×devExp compare: variant compare: variant 212
p(ALT Low > PAT Low) - - 0.35 - - - - - 0.70 - - - 213

ALT Low − PAT Low - - −224 - - - - - 7.9 - - - 214
p(ALT High > PAT High) - - 0.45 - - - - - 0.50 - - - 215

ALT High − PAT High - - −81 - - - - - −0.2 - - - 216

program×variant×devExp compare: variant compare: variant 227
p(CO ALT Low > CO PAT Low) - - 0.31 - - - - - 0.63 - - - 228

CO ALT Low − CO PAT Low - - −294 - - - - - 5.1 - - - 229
p(CO ALT High > CO PAT High) - - 0.43 - - - - - 0.53 - - - 230

CO ALT High − CO PAT High - - −98 - - - - - 1.4 - - - 231
232

p(GR ALT Low > GR PAT Low) - - 0.39 - - - - - 0.78 - - - 233
GR ALT Low − GR PAT Low - - −153 - - - - - 10.8 - - - 234

p(GR ALT High > GR PAT High) - - 0.46 - - - - - 0.46 - - - 235
GR ALT High − GR PAT High - - −63 - - - - - −1.7 - - - 236

task×variant×devExp compare: variant compare: variant 247
p(t1 ALT Low > t1 PAT Low) - - 0.39 - - - - - 0.73 - - - 248

t1 ALT Low − t1 PAT Low - - −183 - - - - - 9.2 - - - 249
p(t1 ALT High > t1 PAT High) - - 0.39 - - - - - 0.55 - - - 250

t1 ALT High − t1 PAT High - - −169 - - - - - 1.8 - - - 251
252

p(t2 ALT Low > t2 PAT Low) - - 0.32 - - - - - 0.68 - - - 253
t2 ALT Low − t2 PAT Low - - −265 - - - - - 6.7 - - - 254

p(t2 ALT High > t2 PAT High) - - 0.51 - - - - - 0.45 - - - 255
t2 ALT High − t2 PAT High - - 8 - - - - - −2.1 - - - 256

program× task×variant×devExp compare: variant compare: variant 277
p(CO t1 ALT Low > CO t1 PAT Low) - - 0.11 - - - - - 0.57 - - - 278

CO t1 ALT Low − CO t1 PAT Low - - −600 - - - - - 2.5 - - - 279
p(CO t1 ALT High > CO t1 PAT High) - - 0.36 - - - - - 0.64 - - - 280

CO t1 ALT High − CO t1 PAT High - - −196 - - - - - 5.6 - - - 281
282

p(CO t2 ALT Low > CO t2 PAT Low) - - 0.51 - - - - - 0.69 - - - 283
CO t2 ALT Low − CO t2 PAT Low - - 12 - - - - - 7.7 - - - 284

p(CO t2 ALT High > CO t2 PAT High) - - 0.50 - - - - - 0.42 - - - 285
CO t2 ALT High − CO t2 PAT High - - 0 - - - - - −2.9 - - - 286

287
p(GR t1 ALT Low > GR t1 PAT Low) - - 0.66 - - - - - 0.89 - - - 288

GR t1 ALT Low − GR t1 PAT Low - - 235 - - - - - 15.8 - - - 289
p(GR t1 ALT High > GR t1 PAT High) - - 0.41 - - - - - 0.46 - - - 290

GR t1 ALT High − GR t1 PAT High - - −143 - - - - - −2.1 - - - 291
292

p(GR t2 ALT Low > GR t2 PAT Low) - - 0.12 - - - - - 0.66 - - - 293
GR t2 ALT Low − GR t2 PAT Low - - −542 - - - - - 5.8 - - - 294

p(GR t2 ALT High > GR t2 PAT High) - - 0.51 - - - - - 0.47 - - - 295
GR t2 ALT High − GR t2 PAT High - - 16 - - - - - −1.3 - - - 296

variant× time or correctness compare: variant compare: variant 322
p(ALT Low > PAT Low) - - - 0.30 - - - - - 0.67 - - 323

ALT Low − PAT Low - - - −327 - - - - - 5.6 - - 324
p(ALT High > PAT High) - - - 0.43 - - - - - 0.60 - - 325

ALT High − PAT High - - - −106 - - - - - 3.7 - - 326

program×variant× time or correctness compare: variant compare: variant 337
p(CO ALT Low > CO PAT Low) - - - 0.33 - - - - - 0.65 - - 338

CO ALT Low − CO PAT Low - - - −204 - - - - - 5.4 - - 339
p(CO ALT High > CO PAT High) - - - 0.39 - - - - - 0.51 - - 340

CO ALT High − CO PAT High - - - −173 - - - - - 0.4 - - 341
342

p(GR ALT Low > GR PAT Low) - - - 0.26 - - - - - 0.69 - - 343
GR ALT Low − GR PAT Low - - - −451 - - - - - 5.7 - - 344

p(GR ALT High > GR PAT High) - - - 0.48 - - - - - 0.70 - - 345
GR ALT High − GR PAT High - - - −39 - - - - - 7.0 - - 346

task×variant× time or correctness compare: variant compare: variant 357
p(t1 ALT Low > t1 PAT Low) - - - 0.19 - - - - - 0.77 - - 358

t1 ALT Low − t1 PAT Low - - - −576 - - - - - 9.2 - - 359
p(t1 ALT High > t1 PAT High) - - - 0.45 - - - - - 0.64 - - 360

t1 ALT High − t1 PAT High - - - −79 - - - - - 5.3 - - 361
362

p(t2 ALT Low > t2 PAT Low) - - - 0.40 - - - - - 0.56 - - 363
t2 ALT Low − t2 PAT Low - - - −79 - - - - - 1.9 - - 364

p(t2 ALT High > t2 PAT High) - - - 0.42 - - - - - 0.56 - - 365
t2 ALT High − t2 PAT High - - - −133 - - - - - 2.1 - - 366

(continued on next page)



66 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, MONTH 2015

(Table 60 continued – Filtered Bayesian Results)

T1 T2 T3 T4 T5 T6 C1 C2 C3 C4 C5 C6

program× task×variant× time or correctness compare: variant compare: variant 387
p(CO t1 ALT Low > CO t1 PAT Low) - - - 0.26 - - - - - 0.76 - - 388

CO t1 ALT Low − CO t1 PAT Low - - - −331 - - - - - 9.4 - - 389
p(CO t1 ALT High > CO t1 PAT High) - - - 0.13 - - - - - 0.43 - - 390

CO t1 ALT High − CO t1 PAT High - - - −477 - - - - - −2.2 - - 391
392

p(CO t2 ALT Low > CO t2 PAT Low) - - - 0.40 - - - - - 0.54 - - 393
CO t2 ALT Low − CO t2 PAT Low - - - −77 - - - - - 1.4 - - 394

p(CO t2 ALT High > CO t2 PAT High) - - - 0.66 - - - - - 0.58 - - 395
CO t2 ALT High − CO t2 PAT High - - - 131 - - - - - 3.0 - - 396

397
p(GR t1 ALT Low > GR t1 PAT Low) - - - 0.12 - - - - - 0.79 - - 398

GR t1 ALT Low − GR t1 PAT Low - - - −821 - - - - - 8.9 - - 399
p(GR t1 ALT High > GR t1 PAT High) - - - 0.78 - - - - - 0.85 - - 400

GR t1 ALT High − GR t1 PAT High - - - 318 - - - - - 12.8 - - 401
402

p(GR t2 ALT Low > GR t2 PAT Low) - - - 0.41 - - - - - 0.58 - - 403
GR t2 ALT Low − GR t2 PAT Low - - - −82 - - - - - 2.4 - - 404

p(GR t2 ALT High > GR t2 PAT High) - - - 0.17 - - - - - 0.54 - - 405
GR t2 ALT High − GR t2 PAT High - - - −397 - - - - - 1.1 - - 406

variant× site compare: variant compare: variant 538
p(ALT BYU > PAT BYU) 0.39 - - - - - 0.68 - - - - - 539

ALT BYU − PAT BYU −147 - - - - - 7.0 - - - - - 540
p(ALT FUB > PAT FUB) 0.43 - - - - - 0.55 - - - - - 541

ALT FUB − PAT FUB −166 - - - - - 2.2 - - - - - 542
p(ALT UA > PAT UA) 0.43 - - - - - 0.61 - - - - - 543

ALT UA − PAT UA −140 - - - - - 6.2 - - - - - 544
p(ALT UPM > PAT UPM) 0.31 - - - - - 0.52 - - - - - 545

ALT UPM − PAT UPM −372 - - - - - 1.2 - - - - - 546

program×variant× site compare: variant compare: variant 599
p(CO ALT BYU > CO PAT BYU) 0.34 - - - - - 0.65 - - - - - 600

CO ALT BYU − CO PAT BYU −228 - - - - - 6.5 - - - - - 601
p(CO ALT FUB > CO PAT FUB) 0.54 - - - - - 0.54 - - - - - 602

CO ALT FUB − CO PAT FUB 75 - - - - - 1.7 - - - - - 603
p(CO ALT UA > CO PAT UA) 0.45 - - - - - 0.57 - - - - - 604

CO ALT UA − CO PAT UA −120 - - - - - 3.9 - - - - - 605
p(CO ALT UPM > CO PAT UPM) 0.22 - - - - - 0.51 - - - - - 606

CO ALT UPM − CO PAT UPM −579 - - - - - 0.7 - - - - - 607
608

p(GR ALT BYU > GR PAT BYU) 0.44 - - - - - 0.70 - - - - - 609
GR ALT BYU − GR PAT BYU −66 - - - - - 7.6 - - - - - 610

p(GR ALT FUB > GR PAT FUB) 0.32 - - - - - 0.56 - - - - - 611
GR ALT FUB − GR PAT FUB −407 - - - - - 2.7 - - - - - 612

p(GR ALT UA > GR PAT UA) 0.40 - - - - - 0.65 - - - - - 613
GR ALT UA − GR PAT UA −160 - - - - - 8.6 - - - - - 614

p(GR ALT UPM > GR PAT UPM) 0.41 - - - - - 0.53 - - - - - 615
GR ALT UPM − GR PAT UPM −165 - - - - - 1.8 - - - - - 616

task×variant× site compare: variant compare: variant 669
p(t1 ALT BYU > t1 PAT BYU) 0.33 - - - - - 0.74 - - - - - 670

t1 ALT BYU − t1 PAT BYU −243 - - - - - 9.5 - - - - - 671
p(t1 ALT FUB > t1 PAT FUB) 0.37 - - - - - 0.58 - - - - - 672

t1 ALT FUB − t1 PAT FUB −316 - - - - - 3.3 - - - - - 673
p(t1 ALT UA > t1 PAT UA) 0.41 - - - - - 0.66 - - - - - 674

t1 ALT UA − t1 PAT UA −156 - - - - - 9.3 - - - - - 675
p(t1 ALT UPM > t1 PAT UPM) 0.39 - - - - - 0.63 - - - - - 676

t1 ALT UPM − t1 PAT UPM −251 - - - - - 7.7 - - - - - 677
678

p(t2 ALT BYU > t2 PAT BYU) 0.46 - - - - - 0.61 - - - - - 679
t2 ALT BYU − t2 PAT BYU −51 - - - - - 4.5 - - - - - 680

p(t2 ALT FUB > t2 PAT FUB) 0.48 - - - - - 0.52 - - - - - 681
t2 ALT FUB − t2 PAT FUB −16 - - - - - 1.1 - - - - - 682

p(t2 ALT UA > t2 PAT UA) 0.44 - - - - - 0.56 - - - - - 683
t2 ALT UA − t2 PAT UA −124 - - - - - 3.1 - - - - - 684

p(t2 ALT UPM > t2 PAT UPM) 0.24 - - - - - 0.41 - - - - - 685
t2 ALT UPM − t2 PAT UPM −493 - - - - - −5.2 - - - - - 686

program× task×variant× site compare: variant compare: variant 791
p(CO t1 ALT BYU > CO t1 PAT BYU) 0.18 - - - - - 0.78 - - - - - 792

CO t1 ALT BYU − CO t1 PAT BYU −469 - - - - - 11.7 - - - - - 793
p(CO t1 ALT FUB > CO t1 PAT FUB) 0.62 - - - - - 0.55 - - - - - 794

CO t1 ALT FUB − CO t1 PAT FUB 209 - - - - - 2.2 - - - - - 795
p(CO t1 ALT UA > CO t1 PAT UA) 0.28 - - - - - 0.45 - - - - - 796

CO t1 ALT UA − CO t1 PAT UA −393 - - - - - −2.3 - - - - - 797
p(CO t1 ALT UPM > CO t1 PAT UPM) 0.25 - - - - - 0.52 - - - - - 798

CO t1 ALT UPM − CO t1 PAT UPM −584 - - - - - 1.4 - - - - - 799
800

p(CO t2 ALT BYU > CO t2 PAT BYU) 0.51 - - - - - 0.53 - - - - - 801

(continued on next page)



KREIN ET AL.: A MULTI-SITE JOINT REPLICATION OF A DESIGN PATTERNS EXPERIMENT USING MODERATOR VARIABLES TO GENERALIZE... 67

(Table 60 continued – Filtered Bayesian Results)

T1 T2 T3 T4 T5 T6 C1 C2 C3 C4 C5 C6

CO t2 ALT BYU − CO t2 PAT BYU 13 - - - - - 1.3 - - - - - 802
p(CO t2 ALT FUB > CO t2 PAT FUB) 0.45 - - - - - 0.53 - - - - - 803

CO t2 ALT FUB − CO t2 PAT FUB −60 - - - - - 1.2 - - - - - 804
p(CO t2 ALT UA > CO t2 PAT UA) 0.62 - - - - - 0.69 - - - - - 805

CO t2 ALT UA − CO t2 PAT UA 153 - - - - - 10.1 - - - - - 806
p(CO t2 ALT UPM > CO t2 PAT UPM) 0.18 - - - - - 0.50 - - - - - 807

CO t2 ALT UPM − CO t2 PAT UPM −574 - - - - - 0.0 - - - - - 808
809

p(GR t1 ALT BYU > GR t1 PAT BYU) 0.49 - - - - - 0.70 - - - - - 810
GR t1 ALT BYU − GR t1 PAT BYU −18 - - - - - 7.3 - - - - - 811

p(GR t1 ALT FUB > GR t1 PAT FUB) 0.12 - - - - - 0.61 - - - - - 812
GR t1 ALT FUB − GR t1 PAT FUB −842 - - - - - 4.5 - - - - - 813

p(GR t1 ALT UA > GR t1 PAT UA) 0.54 - - - - - 0.87 - - - - - 814
GR t1 ALT UA − GR t1 PAT UA 81 - - - - - 21.0 - - - - - 815

p(GR t1 ALT UPM > GR t1 PAT UPM) 0.54 - - - - - 0.74 - - - - - 816
GR t1 ALT UPM − GR t1 PAT UPM 82 - - - - - 14.0 - - - - - 817

818
p(GR t2 ALT BYU > GR t2 PAT BYU) 0.40 - - - - - 0.70 - - - - - 819

GR t2 ALT BYU − GR t2 PAT BYU −115 - - - - - 7.8 - - - - - 820
p(GR t2 ALT FUB > GR t2 PAT FUB) 0.52 - - - - - 0.52 - - - - - 821

GR t2 ALT FUB − GR t2 PAT FUB 29 - - - - - 0.9 - - - - - 822
p(GR t2 ALT UA > GR t2 PAT UA) 0.27 - - - - - 0.43 - - - - - 823

GR t2 ALT UA − GR t2 PAT UA −401 - - - - - −3.8 - - - - - 824
p(GR t2 ALT UPM > GR t2 PAT UPM) 0.29 - - - - - 0.32 - - - - - 825

GR t2 ALT UPM − GR t2 PAT UPM −412 - - - - - −10.4 - - - - - 826


