
JTourBus: Simplifying Program Understanding by Documentation
that Provides Tours Through the Source Code

Christopher Oezbek, Lutz Prechelt
Freie Universität Berlin
Institut für Informatik

Takustr. 9, 14195 Berlin, Germany
{oezbek, prechelt}@inf.fu-berlin.de

Abstract

Many small and medium-sized systems have little or no
design documentation, which makes program understand-
ing during maintenance enormously more difficult when
performed by outsiders. Thus, if only minimal design docu-
mentation is available, which form should it take to max-
imize its usefulness? We suggest that it is helpful if the
documentation describes a tour through the source code,
leading the user directly to relevant details. This work re-
ports an evaluation of this conceptual idea in the form of a
controlled experiment with 59 student subjects working on
a difficult program understanding task in the context of the
27 KLOC JHotDraw graphics framework. One group re-
ceived a plain text documentation, the other received tour-
structured documentation which they navigated by using an
Eclipse plugin called JTourBus that we constructed for the
experiment. The results indicate that program understand-
ing can be achieved somewhat faster (albeit not more cor-
rectly) with JTourBus than with a plain text document.

Keywords: program understanding, design documenta-
tion, delocalized concern

1 Introduction

A substantial part of maintenance effort is spent on pro-
gram comprehension [14], that is, understanding the basic
ideas, sufficiently understanding the design of the affected
parts of the system and locating the spots where changes
should be applied. This is particularly pronounced if it is
not the original author who faces this task. If neither prior
knowledge of the system’s design nor suitable design doc-
umentation are available, the programmer has to rely on re-
verse engineering, and program understanding becomes an
extremely laborious process. Therefore, design documenta-
tion plays a crucial role during the maintenance phase.

Even large systems are notorious for having design doc-
umentation that is sufficiently outdated to be ignored by the
maintenance programmers [10]. Presumably, a large frac-
tion of small and medium size systems (10 to 200 KLOC)
has little or no design documentation.

In the long run, CASE tools and model driven architec-
ture promise to remedy this situation by making it easy to
produce useful design documents as a by-product of devel-
oping an application. However, so far most projects still
employ other kinds of solutions, typically in the form of nat-
ural language text, possibly complemented by a high-level
architecture diagram and perhaps a few class diagrams.

1.1 Research question

We assume the following context: We consider small or
mid-sized projects with a primary software designer, that
have released at least one version of the product and that so
far have not produced any durable design documentation.
Now the designer decides to invest a small amount of time
(less than one day) in order to produce at least a minimal
introductory design documentation covering the most im-
portant aspects for an initial orientation in the source code.

Our baseline format is a plain text file written in what-
ever organization the designer considers most appropriate
for the software. Now we would like to improve on this. If
a graphical representation or diagram of the architecture ex-
ists in addition, all the better, but due to the assumed short-
ness of time, it is extremely unlikely that a diagram will
be produced and text will have to provide the core of the
documentation. We will hence not consider graphical doc-
umentation in this context at all.

As an example for this scenario consider Open Source
Software projects (see [2] for an overview). A first ver-
sion of a project might have been released with little if
any design documentation but the author is interested in
leveraging the collaborative maintenance skills of the Open

mailto:oezbek@inf.fu-berlin.de
mailto:prechelt@inf.fu-berlin.de


Source community to make the bugs of his/her project
“shallow”[7]. How to efficiently make the project com-
prehensible to outsiders then becomes a key factor. An
industrial scenario might be given by a project started by
a small number of developers under time pressure with-
out writing documentation. With changing teams, for in-
stance prompted by moving from development to mainte-
nance stage, the need for introductory documents arises.

Our research question is thus: What is the most useful
format and organization that minimal textual design docu-
mentation should take?

2 Tours through source code

Our answer to this question originates in two observa-
tions. First, it seems superfluous, even counter-productive,
to duplicate explanation already available in the source code
instead of relying on the scaffolding provided by it. Second,
many types of design documentation attempt to provide a
high-level overview in order to actually give insight into the
low-level code structure that often suffers from delocaliza-
tion [11] and from technical and algorithmic complexities.

2.1 Concept

The basic idea is to organize design documentation as a
set of tours, one for each important aspect of the design.1 A
tour consists of several stops in a particular order. A tour
browser presents the tours and supports navigation from
stop to stop. A stop is a pair of (1) a particular spot in
the source code and (2) a fragment of documentation at-
tached to this spot. By connecting stops into tours, delocal-
izations can be reconnected, and by putting stops into the
source code, the source code provides a lot of detail and
background information and thus is reused as documenta-
tion scaffolding.

We hypothesize advantages of this approach for both the
author and the user of a design document. As a benefit to the
author, the documentation may become shorter: program
identifiers and obvious code structures provide information
that can now be omitted from the documentation text. This
reduces the redundancy of documentation against the code
and thus also makes it more resilient to code changes. A dis-
advantage is the distributed nature of the text, which makes
it harder for the author to produce a coherent document.

There are several potential advantages for the user of the
document. First, tours provide additional flexibility for flu-
ent switching between different comprehension strategies

1Such aspects are usually domain and technology dependent. Some
recurring examples include error handling, logging, synchronization, stor-
age/persistence, change propagation, undo handling, configuration, start
up and shut down.

by moving high-level and low-level information closer to-
gether. Second, a tour plus a tour browser provide design-
aware browsing support. This is more efficient than the un-
derstanding approaches a programmer would normally use
(namely deciding what needs to be investigated next and
then using IDE features such as outline or class hierarchies
for navigation). Third, tour stops allow for opportunistic
contextualization of individual code parts: for instance, if
the user is reading GUI controller code and finds a tour stop
describing its data storage behavior, tours make it easy to
switch to the larger context of data storage design in gen-
eral. For a detailed discussion of tool support for program
comprehension see [12].

The tour browser therefore (1) must provide support for
creating and changing tours and (2) must allow all stops in
the source code belonging to a certain tour to be enumerated
and navigated easily and efficiently.

2.2 Implementation

For an implementation of the tour idea we chose the tar-
get programming language Java and Eclipse as an IDE. The
resulting tool - JTourBus - was first based on the new Java
1.5 concept of annotations, but the syntax for annotating
Java elements multiple times with the same kind of anno-
tation is cumbersome, thus making it difficult for the same
code location to be present in tours more than once. A sec-
ond disadvantage is that the compiler needs to know about
the annotation, thus adding an import dependency to the
code. These reasons prompted us to embed the tour doc-
umentation syntax into JavaDoc instead. To attach a tour
stop to a Java element like a field, method or class, doc-
umentation authors now add a tag @JTourBusStop into
the JavaDoc documentation and provide the following three
parameters: A number to indicate the position in a tour, the
name of the associated tour and a description of the stop.
An example stop attached to a method comment is shown
in Figure 1.

Technically, we experimented with using the Eclipse
Java Model, the Eclipse abstract syntax tree and a regular
expression based on the Eclipse search engine and found
the latter to be more efficient and compatible with the in-
cremental compile semantics offered by Eclipse. As an ad-
ditional side benefit of using regular expressions, tour stops
may occur anywhere in the source code and are not bound to
JavaDoc comments. To summarize the architecture, JTour-
Bus is realized as a plugin for the Eclipse OSGi framework
and will hook itself into the JavaCore element change mech-
anism. Any change performed to a Java source file will then
prompt a background search for @JTourBusStop tags,
which will update the internal model and the view presented
in the bottom of Figure 1. We are confident that JTourBus
can be easily ported to other IDEs and text editors, as it re-

2



quires only a Perl-compatible regular expression engine and
a means for displaying the results.

2.3 Usability and benchmarking

Two iterations were performed to optimize the usability
of JTourBus for both documentation authors and users. Dur-
ing these iterations we eliminated problems such as the fol-
lowing: Some pilot users preferred context menus instead
of icon buttons and were puzzled when not finding them.
For tour authors we added reordering support via drag and
drop and the ability to rename stops by using the context
menu. The last usability test before the experiment received
no complaints from the pilot testers. The resulting interface
and an example tour stop are shown in Figure 1.

With the incremental compilation support, JTourBus
does not incur a noticeable delay except for the initial build
of the tour roster. As a benchmark test, we added 18 stops
into the source code of the Eclipse JFace API (which in-
cludes 39 KLOC code and 38 KLOC comments in 223
classes) and measured an average scanning time of less than
one second for files already opened and under ten seconds
when the whole set of files needed to be read from disk first
(measured on a 1.7 GHz Pentium M).

To support larger projects we would like to add persis-
tence support in a future version. The Eclipse platform al-
ready supports this feature transparently for plug-ins using
the IMemento interface. We will also need to support hier-
archical ordering of tours to accommodate larger numbers
of tours.

2.4 Related work

2.4.1 Wiki Tours

JTourBus was inspired by the tour bus principle used on
Wiki Wiki sites like Wikipedia or the C2 Wiki2 to connect to
other distant wikis in a handy fashion and provide a helpful
“What’s interesting?” view for newcomers.

2.4.2 Plain JavaDoc

Java’s ubiquitous JavaDoc in-source documentation format
bears some similarity to the characteristics of JTourBus, but
also has important differences.

First, tour-like linking between documentation frag-
ments can be realized in JavaDoc in two ways, via the @see
tag or via the @category tag.3 @see tags have the dis-
advantage of requiring fully qualified identifiers for classes

2See the topics TourBus and TourBusStop in the Usemod.com Meatball
wiki.

3@category is part of the Java Specification Request 260, which is
in an early stage of discussion.

and interfaces not explicitly referred to by the class defini-
tion, which makes link writing cumbersome for the author.
And indeed, @see tags are often automatically generated
when overriding methods or to discuss other (mostly stati-
cal) relationships between elements. In contrast, JTourBus
links tour stops implicitly by tour name. The @category
tag allows grouping of Java elements but does not order
them in any way.

Second, and more importantly, all JavaDoc documenta-
tion is usually read in its processed form as HTML pages
and is then not connected to the actual source code. Worse,
if the documentation is minimal, it is hardly useful without
connection to the source code and will then hardly be used
at all [10]. For instance, out of the 59 participants of the
experiment described below, only 18 used the JavaDoc.

2.4.3 Concern tools

There are several other tools available which tackle the
problems of delocalization of concerns. Most of them use
one of two strategies: First, there are tools that attempt to
physically undo the delocalization and unify concerns, most
notably aspect-oriented programming [5]. Second, there
are tools that leave program structure untouched but present
concerns in a more accessible fashion, usually by automatic
extraction and visualization [8].

JTourBus is similar to the second category, but its goals
are related to documentation rather than code and its storage
medium is the source code file itself rather than external
files.

2.4.4 TagSEA

TagSEA provides support for collaborative documentation
construction based on the idea of social tagging: Many de-
velopers independently mark source code locations with ar-
bitrary keywords (tags) to “enhance navigation, coordina-
tion, and capture of knowledge relevant to a software devel-
opment team” [13]. TagSEA has been recently extended to
include tours (which are called routes and stored in sepa-
rate files rather than embedded in the source code), but no
validation of the usefulness of routes for users has been per-
formed so far [13].

3 Empirical evaluation

In order to assess whether documentation based on
JTourBus will indeed be more useful than plain text doc-
umentation (meaning either improved correctness of under-
standing or reduced time required, or both), we performed
a controlled experiment comparing these two forms of pre-
sentation. We specifically tested for (1) improved correct-
ness of understanding and (2) faster understanding.

3

http://www.usemod.com/cgi-bin/mb.pl
http://www.usemod.com/cgi-bin/mb.pl
http://www.jcp.org/en/jsr/detail?id=260


Figure 1. Screenshot of the JTourBusRoutes view in Eclipse after jumping to the second stop of the
second tour. The example is taken from the source code used in the experiment.

3.1 Experiment overview

The experiment population consisted of 114 computer
science majors who had just finished a senior-year soft-
ware engineering class (see Section 3.5 for details) and were
asked to solve a difficult program understanding task re-
garding the 27 KLOC JHotDraw drawing editor framework
(Section 3.2), which is written in Java. Since participation
was voluntary a total of 59 valid data points could be col-
lected.

The task was to describe where source code changes
would need to be applied in order to implement a particu-
lar, single requirements change (Section 3.4). Only a small
number of the subjects had some prior acquaintance with
JHotDraw, most, however, had never worked with it and its
source code before.

The subjects were randomly assigned into two groups,
one solving the task with a minimal design documentation
consisting of two JTourBus tours (group T), the other using
an alternative documentation consisting of a single plaintext
file with two paragraphs (group P).

We carefully ensured that in terms of direct information
content both documentations were equivalent (Section 3.3).
Also, the documents were prepared by neutral outsiders.

We collected data on each subject’s background, time
taken for solving the task, quality of the solution (mostly
just correct/incorrect) and also coarse-grained information
about activities of the subjects during the experiment (Sec-
tion 3.6). The latter is not discussed in this article, though.

3.2 Software to be understood: JHot-
Draw

The task to be solved in the experiment involves under-
standing some aspect of JHotDraw, which is a graphical ed-
itor framework originally developed for teaching purposes
by Erich Gamma and Thomas Eggenschwiler. JHotDraw is
an advanced classroom example of clean and heavy use of
object-oriented design patterns [3].

JHotDraw as used in the experiment consists of 26,895
lines of Java code (plus 33,791 lines of comments plus 8348
empty lines using the Eclipse built-in source format) in 448
classes. The code is documented using JavaDoc comments.

JHotDraw contains several applications that instanti-
ate the framework. For the experiment task we chose
JavaDrawApp, which is a vector-based graphical draw-
ing editor with undo support, multiple views and about a
dozen different figure primitives. We slightly simplified the
source code by removing the references to the other appli-
cations and by refactoring all test classes into a separate
source folder.

JHotDraw has found some use in the academic world,
most notably with research on aspect mining [1], aspect
refactoring [4] and in teaching.

The two subject groups had to receive different versions
of JHotDraw in our experiment. The plain text group P re-
ceived the original, unmodified JHotDraw, while the tour
group J received an extended version as described below.
The full source code of both versions can be found on the
web [6].

4



3.3 The documents: Tours and Plaintext

With respect to the nature of the documentation provided
to the subjects, we took great pains to reach the following
goals:

• We attempted to produce documents which resembled
those a software designer might have written whose
goal it was to provide the best possible information for
conceivable maintenance tasks — and to do so within
a very limited time frame.

• In particular, the J and P version of the documenta-
tion should mention the same facts, i.e., contain equiv-
alent information, and should have been created using
roughly the same amount of time.

• and the selection of this information should not be bi-
ased towards favoring JTourBus.

In order to avoid bias, we did not produce the documents
ourselves but rather employed three top students of a previ-
ous software engineering class. The first and second author
wrote the J and P documentation together, to the best of
their capabilities, but without knowing the task the subjects
would be given. They were given a verbal introduction into
the design of JHotDraw and received all the design docu-
mentation that was part of JHotDraw: a PowerPoint pre-
sentation containing an architecture overview diagram and
a few notes.

A third author then reworked both of the resulting doc-
uments. He was told to modify both documents in such
a way that they contained equivalent information and none
would favor its users over the other. Using this collaborative
process helped to ensure that the quality of the documents
would be sufficient to be used in the experiment, yet small
enough to fit the requirement for minimal design documen-
tation that can be efficiently produced. The documents then
were corrected regarding spelling and grammar and refor-
mated for the experiment.

The result of this process was a text file of 99 lines for the
P group and 107 lines of additional comments (forming 2
tours with a total of 15 stops) scattered across the JHotDraw
source code for the J group. The difference between the
groups results from syntactic overhead in the stop headers
(see Figure 1) and reformating.

3.4 The experiment task

When drawing a polyline figure, JavaDrawApp does
not provide handle points for resizing this figure. The task
was to find out which methods in which classes needed to
be modified in order to provide resizing support for polyline
figures.

This means the task is a corrective maintenance activ-
ity and tests the first two stages of the corrective activity
[14], namely understanding the existing system and genera-
tion of a solution hypothesis. The later stages of correcting
the problem, i.e. evaluation of the hypothesis, repairing the
code and testing the changes, were explicitly not part of the
task. Rather, the subjects were asked to simply name the
methods in need of change.

Finding a solution involved several steps: The partici-
pants first had to gain a basic understanding of the relation-
ship of tools, figures and handles. Since the task description
only told the participants that the ScribbleTool creates
a scribble but lacked the class name PolyLineFigure,
the participants had to discover this on their own. The
task description as a next step provided the hint that the
triangle figure sports resize handles. We were confi-
dent that participants would discover the interface method
handles() common to all figures and port the sin-
gle crucial line from the TriangleFigure method to
the PolyLineFigure. The second part of the an-
swer was the location where a figure is actually resized
(basicDisplayBox), which is more difficult to find.

3.5 Subjects

The 59 subjects of the experiment were 45 graduate stu-
dents and 11 undergraduate students (3 unknown), most of
them in their fifth to seventh semester. All participants were
enrolled in the software engineering class at the time of the
experiment and had a background in using Java as the prin-
cipal programming language in teaching at Freie Univer-
sität, Berlin.

In a questionnaire administered at the beginning of the
experiment, the subjects self-reported experience with pro-
gramming in general, Java, Eclipse, dealing with large soft-
ware projects, and JHotDraw. It was also possible to relate
the experiment results to the results of the following final
exam in the course Software Engineering for 54 of the 59
students. Of all the participants, 21 had worked on an ex-
ercise sheet handed out the week before which contained
a task similar in style to the one given in the experiment,
but using JUnit rather than JHotDraw. Additional docu-
mentation was not provided for this exercise, so the par-
ticipants used JTourBus for the first time during the exper-
iment. Around half of the participants (27) had watched
several videos about advanced code browsing techniques in
Eclipse.

Participants were randomly assigned into the groups J
(JTourBus condition, 30 participants) and P (Plaintext con-
dition, 29 participants). The participants did not know in
advance which group they belonged to; in fact they did not
even know there were several groups.

5



3.6 Experiment setup and conduct

The experiment was carried out in February 2006. It was
announced as a voluntary practical exercise in a third-year
software engineering course at the end of the semester. The
topic of the exercise explicitly was not part of the exam the
week afterwards. Participants were informed that their data
on this exercise would be anonymously collected and that
their participation was voluntary and could be terminated at
any time. Participants then had the choice to agree by pro-
viding their consensus or abort the experiment. We did not
tell participants until debriefing that there were two groups.

Each participant worked in one session. All participants
of a session started at the same time and were allowed to
leave when they had finished. Sessions were officially set
for 90 minutes, but participants were free to stay as long as
they wanted. An instructor/supervisor was present in each
room for moral support, but did not play an active or impor-
tant role.

After login to a specially prepared account, each par-
ticipant found a ready-to-go Eclipse installation with JHot-
Draw already loaded. The participants were able to execute
and test JHotDraw if they wanted to. They were guided
through the experiment by a web-based instruction system,
which also collected the subject background survey data,
consensus, and answers. Depending on their group, partic-
ipants additionally received information on how to access
the corresponding documentation. For the J group this in-
cluded a guide on how to use JTourBus.

Time and performance data was collected fully automat-
ically and non-disruptively through additional instrumenta-
tion software running in each account and invisible to the
participants [9].

3.7 Results

Here we consider the difference between the subject
groups J and P with respect to the correctness of their an-
swers and to the time required for working on the experi-
ment task. We also search for other variables that can ex-
plain some of the variance observed. The statistical evalua-
tion was performed with R 2.2.

3.7.1 Correctness of answer

When reviewing the answers provided by the participants,
we found no useful way of categorizing beyond the dis-
crimination of incorrect and correct. Although many (in
fact most) of the correct answers mentioned only one of
the two places where changes needed to be applied, we
counted them as completely correct, because the task de-
scription called for answering with the “first hypothesis that
you think is correct”.

In total numbers, in the J group (P group, respectively)
there were 8 (8) participants who answered correctly, 13
(16) who did so incorrectly and 9 (5) who did not answer at
all or explicitly gave up after trying.

For the incorrect answers, a closer inspection revealed
that 11 (J 5, P 6) participants did not understand the rela-
tionship between Tools, Figures and Handles sufficiently to
answer correctly and 4 participants (2 J, 2 P) gave answers
relating to the Zoom functionality which is not related to
Resizing.

The modest fraction of correct answers indicates the high
difficulty of the task. Yet more than 75% of the participants
were able to understand the software sufficiently well to for-
mulate a hypothesis and declare that they would now move
on to verifying this hypothesis.

The results thus indicate that JTourBus has neither in-
creased the fraction of correct answers nor seriously dis-
rupted the understanding process. We note though, that
more people did not answer in the J group than in the P
group.4 This may be a real effect of the added complex-
ity from tool usage, and it may be advisable to take these
people out of consideration for further analysis steps; see
below. If correctness is identical for J and P, the benefit of
tours, if present, should be visible in the time taken for solv-
ing the task (whether correctly or not and either including
or excluding the no-answer givers-up). In Section 3.7.2 we
will see that tours do indeed save time.

But what other explanation can we find for the differ-
ences in correctness, if JTourBus does not make one over-
all? We attempted to find explanatory variables to predict
whether a solution would be correct by constructing deci-
sion trees via recursive partitioning. When applying sensi-
ble fit-versus-generalization tradeoff criteria, the best such
tree uses only one predictor variable, namely the number
of points achieved in the course exam at the end of the
semester (after the experiment had been conducted). See
Figure 2 for the resulting tree: Of the 16 correct answers,
14 (or 88%) were given by students from the top two fifths
of the class (who had 41 or more out of 90 possible points
in the exam). Thus, this simple criterion predicts correct
solutions with 88% accuracy and incorrect solutions with
79% accuracy. All other plausible predictors such as a sub-
ject’s experience in programming or knowledge about Java,
Eclipse or even JHotDraw were not significantly useful.

3.7.2 Working time

Overall, the working time used for the task was 8.8 minutes
less for the J group than for the P group (Welch-corrected
normal-theory 90% confidence interval: 1.5 to 16.2 min-
utes), which is 23% of the average time; see also Figure 3.

4 but not significantly more: Fisher exact p = 0.36

6



Points
p < 0.001

1

≤ 40 > 40

Node 2 (n = 37)

Correct NoAnswer Wrong

0
0.2
0.4
0.6
0.8

1
Node 3 (n = 22)

Correct NoAnswer Wrong

0
0.2
0.4
0.6
0.8

1

Figure 2. Conditional tree for the correctness
of answers. The only admissible split found
is “more than 40 points in the exam”, which
constitutes a 22:32 split of the participants
and predicts correct solutions with 88% ac-
curacy and incorrect and no solutions with
79% accuracy.

Time spent on task

J

P

20 40 60

●
M

●
● ●●

● ●●● ●●● ●
● ●

●●●● ●●● ● ●● ●● ●● ●●

●
M

● ●●● ● ●●● ●● ● ●● ●●● ●
●● ●● ●● ●● ●●● ●

Figure 3. Time spent on task for groups J
and P. The fat dot marks the median, the box
and wiskers indicate the 10%, 25%, 75% and
90% quantiles, the M and its dashed line give
the mean plus or minus one standard error.
On average, the JTourBus group finished the
task 8.8 minutes faster.

Time spent on task

Correct, J

Correct, P

NoAnswer, J

NoAnswer, P

Wrong, J

Wrong, P

20 40 60

●
M

● ●● ●● ●● ●

●
M

●● ● ●●● ●
●

●
M

● ●● ●●
● ●● ●

●
M

● ●● ●●

●
M

●● ●● ● ●●● ●● ●● ●

●
M
●● ● ●●●● ●● ● ●●● ●● ●

Figure 4. Time spent on task for groups J
and P in each of the three correctness cat-
egories. The speed advantage of the J group
is pronounced only for incorrect/wrong an-
swers and for the givers-up, but not for cor-
rect answers.

However, the difference depends a lot on the correctness
of the answer, as is shown in Figure 4. The participants with
correct answers are hardly faster at all, while there is a big
difference not only for incorrect hypotheses, but also for the
participants who gave up (no answer).

To compare the time it took for sufficient comprehen-
sion to occur so that a hypothesis could be stated, we then
removed all participants who did not answer, i.e. gave up.
The remaining J group is still 6.2 minutes faster on aver-
age (Welch-corrected normal-theory 90% confidence inter-
val: 2.2 to 14.6 minutes), which is 16% of the average time.

Although ideally JTourBus would obviously speed up
correct answers as well, the overall effect is still useful, as
wrong initial hypotheses occur frequently in practice and
the quicker they are made, the faster they are challenged
(and hopefully finally discarded), so that the overall process
can progress.

Note also that the ‘wrong’ category of Figure 4 has a
much wider box (higher variance within the middle half of
the values) for the J group compared to the P group. This
probably stems from the unfamiliarity of the JTourBus tool
and the resulting working style. We expect that after an
initial learning stage the right end of the box would move
left, which would increase the JTourBus advantage.

In an attempt to explain some more of the observed vari-
ance in the groups, we built various linear models of work-
ing time, trying out many combinations of plausible predic-
tor variables. The influence of most variables we investi-
gated was either minor or very noisy. The best model we
found is shown in Table 1 and has a multiple r2 = 0.156,

7



that is, it explains 16% of the overall observed variance.

Estimate Std. Error p
(Intercept) 23.29 8.30 0.00

Group == P 11.72 4.47 0.01
JHotDraw -10.30 5.10 0.05

ReadingTime 1.00 0.60 0.10

Table 1. Linear model of time on task as a de-
pendent variable of membership in group J or
P, whether JHotDraw was known before the
experiment and the time spent reading the
experiment description and JHotDraw intro-
duction before moving on to the task.

Estimate Std. Error p
(Intercept) 27.60 10.11 0.01

Group == P 8.97 5.42 0.11
JHotDraw -6.93 6.09 0.26

ReadingTime 0.77 0.74 0.30

Table 2. As above, but excluding the data
from all those participants who provided no
answer.

This model suggests working time to be additively com-
posed of the following factors: First, a base time of 23 min-
utes. Second, for the P group a group penalty of 12 minutes
(0 for the J group). Third, for people with previous knowl-
edge of JHotDraw a time reduction of 10 minutes. This
factor guarantees that the obvious advantage of prior JHot-
Draw knowledge has not distorted the experiment results.
Fourth, for each minute that somebody took for reading the
experiment introduction and instructions (which does not
count into the work time) a corresponding minute of addi-
tional work time on the task proper. This factor explains
some of the variability that stems from people who either
work very thoroughly or are generally slow.

Compare these results to the 8.8 minutes plain group dif-
ference mentioned above (which is 23% of the average time
and which, when interpreted as a model, explains 6.6% of
the variance). The group difference of 11.7 minutes as pos-
tulated by the extended model here is 30% of the average
time, and the model explains 16% of the variance. We con-
clude that this model strengthens the claim that tours and
JTourBus do indeed save a significant amount of the time
spent for program understanding.

However, let us make sure that this result, too, is robust
against the exclusion of the no-answer subgroups of partici-
pants. The resulting model is shown in Table 2. We see that
qualitatively the model remains intact, but the coefficients

are smaller and the noise bigger. However, the group co-
efficient is still as large as the bare group difference of 8.8
minutes for the full list of participants.

In summary, we find convincing evidence that a pro-
grammer yet unfamiliar with the software to be understood
can save program understanding time on the order of 20%
by using JTourBus. This holds at least for the task and pro-
grammer population given in this experiment.

3.8 Threats to validity

This section discusses which effects could make the re-
sults of the experiment as reported here incorrect (threats to
internal validity) or inapplicable to other situations (threats
to external validity) and how likely we consider these ef-
fects to be.

3.8.1 Internal validity

Internal validity is the degree to which the observed perfor-
mance differences between the groups arise only from the
experiment variable (form of documentation), rather than
other sources. As this experiment involves true randomiza-
tion and fairly large groups, it has the potential for perfect
internal validity. Nevertheless, several threats to internal va-
lidity come to mind:

• Information leaks into future sessions. Students were
asked to not discuss the nature of the experiment be-
fore all subjects had completed the experiment. A
question was included in the survey asking the students
whether they had learned anything about the experi-
ment in advance. We are confident that essentially no
leaks occurred that could have distorted the results.

• Subject motivation. It is possible that JTourBus may
have unfairly motivated (or demotivated) the subjects
just by being new and more technological than plain
text. At all times we have carefully avoided character-
izing JTourBus as particularly new, clever, cool or any
other positive quality. We believe motivation effects to
be negligible in our experiment.

• Biased documents. It is possible that despite all our
attempts at producing a fair pair of documents (as de-
scribed in Section 3.3), the documentation is biased in
favor or against one condition. We believe that doc-
ument bias, if present at all in the experiment, is too
small to be relevant.

• Usability problems. Rather than measuring the tour
idea, our experiment obviously measures our specific
implementation in the form of JTourBus. If that imple-
mentation has usability problems, the real difference
between the P and J conditions is larger than we have

8



seen in the experiment. We expect this problem to be
present, but modest.

• Learning effects. Program understanding based on
tours implies a somewhat different working style than
program understanding based on a plain text design
description. Furthermore, the manner of IDE usage
is different with JTourBus than without. Both differ-
ences disfavor the J group, because this was the first
time they worked with tours and JTourBus, and lack of
training will have hampered their actions. This prob-
lem is undeniably present in the experiment and we
cannot quantify its size.

3.8.2 External validity

External validity refers to the degree to which similar dif-
ferences between the J and P conditions can be expected in
different settings of program understanding with no prior
knowledge of the system and only minimal design docu-
mentation present. Such settings might involve different
subjects, target software systems, program understanding
tasks, workplace conditions, time pressure, etc.

We are fairly optimistic in this respect. There are cer-
tainly many factors that hugely change the program un-
derstanding performance in different settings. These in-
volve the inexperience of our subjects in both program un-
derstanding in general and the domain of graphical editor
frameworks in particular, their lack of human help, the po-
tentially much larger size of other target software systems,
the choice of the task given, the quality of the documents,
and many more.

However, we cannot see why these factors should greatly
influence the size of the relative difference in performance
between the two conditions J and P. The given task and sys-
tem were far from trivial and we expect whatever particular
phenomena have produced the J versus P difference in our
experiment to recur in most realistic settings.

4 Discussion, Conclusion, and Further Work

So is the tour idea a suitable answer to the question of
how to write minimal textual design documentation? Af-
ter all, it is only a 20 percent improvement over plain text
rather than a factor 10 improvement, and the correctness of
answers has not improved.

We think that, yes, tours (via JTourBus, TagSEA, or
some other way) are worth introducing when constructing
minimal design documentation, because tours have all the
same features that made Javadoc such a huge success: they
are technologically simple, easy to learn, have tight inte-
gration with the only documents of guaranteed relevance
(namely, the source code) and can provide good technical

support for navigation, which provides significant added
value.

Nevertheless, many things remain to be done:

• Compare tours with other forms of documentation,
most notably graphical representations such as UML
diagrams.

• Understand the suitability of the tour idea for types of
software other than frameworks and its scaling behav-
ior to smaller or larger software systems.

• Study the implication for authors of delocalized tours
when updating and writing them in contrast to other
types of documentation especially with regards to col-
laborative settings.

• Understand the user behavior underlying the 20 per-
cent time savings. Is program understanding with tours
done in a substantially different manner than with plain
text documentation? In which situations did partici-
pants save time?

• Experiment with different perspectives on tours such
as integration with HTML Javadoc or as a virtual text
document composed of the delocalized stops.

• Fine-tune the usability of JTourBus as an implementa-
tion of the tour idea, provide support for large projects
and allow for connecting non-textual documents into a
tour.

Acknowledgments

The authors would like to thank the students participat-
ing in the experiment, the pilot testers who volunteered to
review our experimental setup and Margaret-Anne Storey
for reviewing a preliminary version and providing many
helpful comments.

References

[1] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwe. A qualitative comparison of three aspect mining
techniques. In IWPC ’05: Proceedings of the 13th Interna-
tional Workshop on Program Comprehension, pages 13–22,
Washington, DC, USA, 2005. IEEE Computer Society.

[2] J. Feller and B. Fitzgerald. A framework analysis of the
open source software development paradigm. In Proceed-
ings of the 21st Annual International Conference on Infor-
mation Systems (ICIS 2000), pages 58–69, Brisbane, Aus-
tralia, 2000.

[3] E. Gamma, T. Eggenschwiler, and W. Kaiser. JHotDraw
homepage. http://www.jhotdraw.org/. Visited
2006-04-03.

9

http://www.jhotdraw.org/


[4] J. Hannemann, G. C. Murphy, and G. Kiczales. Role-
based refactoring of crosscutting concerns. In AOSD ’05:
Proceedings of the 4th international conference on Aspect-
oriented software development, pages 135–146, New York,
NY, USA, 2005. ACM Press.

[5] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In M. Akşit and S. Matsuoka, editors, Proceed-
ings European Conference on Object-Oriented Program-
ming, volume 1241, pages 220–242, Berlin, Heidelberg, and
New York, 1997. Springer-Verlag.

[6] C. Oezbek and L. Prechelt. JTourBus homepage.
http://www.inf.fu-berlin.de/inst/ag-se/
jtourbus/.

[7] E. S. Raymond. The Cathedral and the Bazaar. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1999.

[8] M. P. Robillard and G. C. Murphy. Concern graphs: Find-
ing and describing concerns using structural program depen-
dencies. In ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering, pages 406–416, Or-
lando, Florida, USA, May 2002. IEEE Computer Society.

[9] F. Schlesinger and S. Jekutsch. ElectroCodeoGram: An
environment for studying programming. In Workshop on
Ethnographies of Code, Infolab21, Lancaster University,
UK, March 2006.

[10] J. Singer. Practices of software maintenance. In ICSM
’98: Proceedings of the International Conference on Soft-
ware Maintenance, pages 139–145, Washington, DC, USA,
1998. IEEE Computer Society.

[11] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lam-
pert. Designing documentation to compensate for delo-
calized plans. Communications of the ACM, 31(11):1259–
1267, 1988.

[12] M.-A. Storey. Theories, methods and tools in program com-
prehension: Past, present and future. In IWPC ’05: Proceed-
ings of the 13th International Workshop on Program Com-
prehension, pages 181–191, Washington, DC, USA, 2005.
IEEE Computer Society.

[13] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby. Shared
waypoints and social tagging to support collaboration in
software development. In CSCW ’06: Proceedings of the
2006 20th anniversary conference on Computer supported
cooperative work, pages 195–198, New York, NY, USA,
2006. ACM Press.

[14] A. M. Vans, A. von Mayhauser, and G. Somlo. Pro-
gram understanding behavior during corrective maintenance
of large-scale software. Int. J. Human-Computer Studies,
51(1):31–70, 1999.

10

http://www.inf.fu-berlin.de/inst/ag-se/jtourbus/
http://www.inf.fu-berlin.de/inst/ag-se/jtourbus/

	Introduction
	Research question

	Tours through source code
	Concept
	Implementation
	Usability and benchmarking
	Related work
	Wiki Tours
	Plain JavaDoc
	Concern tools
	TagSEA


	Empirical evaluation
	Experiment overview
	Software to be understood: JHotDraw
	The documents: Tours and Plaintext
	The experiment task
	Subjects
	Experiment setup and conduct
	Results
	Correctness of answer
	Working time

	Threats to validity
	Internal validity
	External validity


	Discussion, Conclusion, and Further Work

