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Abstract. We describe numerical experiments that suggest the existence of com-
pact constant mean curvature surfaces. Our surfaces come in three dihedrally sym-
metric families with the genus ranging from 3 to 5, 7 to 10, and 3 to 9, respectively;
there are further surfaces with the symmetry of the Platonic polyhedra and genera
6, 12, and 30. We use the algorithm of Oberknapp and the second author that
defines a discrete version of Lawson’s conjugate surface method.

Surfaces with constant mean curvature H have been studied for a long time. Un-

til recently most known boundaryless or complete surfaces were minimal (H = 0);

the only surfaces with non-zero constant H were Delaunay’s surfaces of revolu-

tion [Delaunay 1841]. Compact surfaces have attracted particular attention. Whereas

the maximum principle rules out the existence of compact minimal surfaces, some con-

structions for H �= 0 are known by now. As we describe below, the resulting compact

surfaces are rather complicated and also not quite as explicit as one might hope. In

the present work we compute surfaces which are geometrically simpler: they are small

and have a large symmetry group.

Let us assume H is a nonzero constant and normalize it to 1 by a scaling; we use the

shorthand notation cmc for this case. The simplest compact cmc surface is the unit

sphere. The sphere is known as the unique embedded cmc surface [Alexandrov 1958],

and also the unique immersed cmc sphere [Hopf 1956]. Both results focused much

attention to the existence problem for further compact cmc surfaces. It is also inter-

esting that the sphere is the only complete cmc surface which is a minimum for the

variational problem for constant mean curvature [Barbosa and do Carmo 1976]: find

critical levels of area for a given enclosed volume. The partial differential equation

H =const. can be considered the Euler equation to the variational problem.

Wente’s existence proof for cmc tori [Wente 1986] was a surprising event which

triggered further discoveries. Pinkall and Sterling [Pinkall and Sterling 1989] charac-

terize all immersions that cover cmc tori, and Bobenko [Bobenko 1991] gives explicit

formulae for their induced metrics in terms of theta functions. These immersions

lead to compact cmc tori only if all periods vanish, otherwise to non-compact pe-

riodic surfaces. It is known that the period condition is in fact satisfied in some
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cases [Ercolani et al. 1993]. In his numerical work Heil [Heil 1995] evaluates the theta

functions and studies the period problem.

Kapouleas [Kapouleas 1991] constructs a large class of compact cmc surfaces for

every genus g ≥ 3. Kapouleas glues pieces of Delaunay surfaces onto spheres and

proves existence of nearby smooth cmc surfaces by an implicit function theorem

argument. The Delaunay pieces must be long, and all necksizes tiny – how long

and how thin precisely is the result of delicate estimates and hence practically not

accessible. In [Kapouleas 1995] surfaces of every genus g ≥ 2 are constructed using

g Wente tori that are glued together at a single lobe. Similar to the case of Kapouleas’

Delaunay-like surfaces the fused Wente tori are almost degenerate: they have a large

number of almost spherical lobes joined by necks of large Gauß curvature.

We use the algorithm of Oberknapp and Polthier [Oberknapp and Polthier] to

construct compact surfaces numerically. This algorithm gives a discrete version of

the conjugate surface construction which was introduced by Lawson [Lawson 1970].

Lawson constructed two doubly periodic cmc surfaces with his method. Many

other complete surfaces, periodic as well as with finite topology, were constructed

by Karcher [Karcher 1989] and the first author [Große-Brauckmann 1993] with ex-

tensions of the conjugate surface method.

Lawson’s conjugate surface method generates symmetric surfaces by planar reflec-

tion from a simply connected fundamental domain. For all our surfaces this domain

is bounded by five planar arcs and depends on two parameters. On the other hand

there are two period conditions to satisfy. To solve these two period problems rig-

orously is a serious problem for our domains (see 2), and this is the main reason

why we must rely on a numerical method. All other steps in our existence pro-

gram can be theoretically proved similar to the non-compact examples constructed

in [Große-Brauckmann 1993].

In our present paper we complete the studies started with the three examples of our

previous paper [Große-Brauckmann and Polthier 1996] in the sense that we determine

maximal families of similar surfaces; the surfaces are isolated and the families are

finite. Our three previous surfaces were chosen rather close to the degenerate spherical

situation, i.e. with thin necks, so that existence could be expected from Kapouleas’

work [Kapouleas 1991] but not predicted. Most surfaces we present now have large

necks. Thus they are further away from Kapouleas’ class of surfaces, and they are

also numerically easier to deal with.

In a way made precise in Sect. 4.2 our surfaces can be characterized by an underlying

graph consisting of edges and vertices. Spheres or k-fold necks are located at the

vertices, and one Delaunay neck on each edge of the graph. Our cmc surfaces have the

symmetry of the underlying graph. These symmetries are given by discrete subgroups
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Figure 1. A surface of genus 6 with the symmetry of a tetrahedron.
One bubble is removed. Six unduloidal necks join the four outer bubbles
pairwise. The central bubble looks like a shell punctured in four points
to connect it nodoidally to each outer bubble.

of O(3) generated by reflections: we have examples with dihedral symmetry and with

the symmetry group of the Platonic polyhedra.

Which considerations guided our search for cmc surfaces, and which further sur-

faces can be expected to exist? There are necessary conditions to satisfy: most

important is Kusner’s balancing formula discussed in Section 4. We view this con-

dition as a condition on the edge length of the underlying graph. Furthermore, the

Delaunay surfaces and their dihedrally symmetric generalizations with k ends (Sec-

tion 5) indicate that further constraints than those given by the balancing formula

are present. In particular a comparison with these surfaces leads to an explanation

why our families only range over finitely many genera.
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Figure 2. A dihedrally symmetric noidal surface of genus 9. We call
the central 9-fold junction noidal because it is related to the minimal
9-noid. We find similar surfaces for all genera from 3 to 9.

Figure 3. Part of the same surface with a view of the nodoidal necks
connecting adjacent outer bubbles. The boundary is thickened with
small tubes.
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Figure 4. The underlying graph G8 for the two genus 8 surfaces
depicted in Figure 19 and 21. Vertices represent bubbles and edges
necks.

The numerical algorithm of Oberknapp and Polthier generalizes an algorithm for

discrete harmonic maps and minimal surfaces by Pinkall and Polthier [Pinkall and Polthier 1993].

There are two steps, one is to minimize area (in fact discrete Dirichlet energy) in S3,

the other is to conjugate the discrete surface to a cmc surface in R3. The algo-

rithm is implemented as part of the graphical environment grape developed by the

Sonderforschungsbereich 256 at the University of Bonn. The algorithm works with

discrete data, and we cannot estimate how close the resulting polyhedral surfaces are

to smooth cmc surfaces. Although we are confident that we correctly determined the

range of genera for which our types of surfaces exist some care is appropriate with

regard to the exact shape of our surfaces. We hope future proofs will support our

experimental results.

1. Results

1.1. Dihedrally symmetric surfaces. In Table 1 we summarize the class of sur-

faces with genus g and dihedral symmetry group Dg × Z2. Slightly abusing notation

we let this be the symmetry group of a planar regular g-gon considered as a subset

of R3; the Z2-factor stands for reflection in the plane of the g-gon. 4g copies of a

fundamental domain such as the one shown in Fig. 6 combine to the entire compact

surface. There are also 4g cake piece shaped fundamental cells of R3 for these groups;

as indicated by Fig. 6 such a cell does not contain an entire fundamental domain of

the surface.

The soul of the surfaces is a planar graph Gg, consisting of a regular g-gon with

g additional edges (spokes) joining the midpoint to each vertex; Figure 4 shows G8.

By the balancing formula (see 4.1 below) g must be at least 3. The graph Gg has

only two independent lengths and we let its length quotient qg = 2 sin(π/g) be the

quotient of the polygonal edge length over the length of the spokes.
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genus necks on length polygonal neck
g

centre
spokes polygon quotient qg circumference

Figure

3 1 + 0.73 0.66 16
4 nodoidal unduloidal 1 + 0.41 0.36 17
5 1 + 0.18 0.16 [GP1996]

(6) (degenerate 7 spheres) 1 (0)
7 spheroidal 1 − 0.13 not studied
8 1 − 0.23 0.23 19
9 unduloidal nodoidal 1 − 0.32 0.41 –
10 1 − 0.61 0.63 –

(≥ 11) surfaces do not exist
3 2(1 − 0.13) 0.07 [GP1996]
4 2(1 − 0.29) 0.21 18
5 2(1 − 0.41) 0.31 –
6 2(1 − 0.5) not studied
7

noidal unduloidal nodoidal
2(1 − 0.57) not studied

8 2(1 − 0.62) 0.65 21
9 2(1 − 0.66) 0.71 2

(≥ 10) surfaces do not exist

Table 1. Surfaces with dihedral symmetry Dg ×Z2, graph Gg and at
most one neck per edge of the graph. [GP1996] stands for our previous
paper [Große-Brauckmann and Polthier 1996].

For certain genera we obtain two different surfaces. These pairs are most clearly

distinguished by the geometry of their centre in a way which is apparent from Fig. 19

and 21. Furthermore, the type which we call spheroidal has two different neck dis-

tributions which depend on the genus, in fact on the sign of qg − 1. In the following

sections we will make the terminology used in Table 1 more precise and explain this

fact.

By their symmetry the dihedrally symmetric surfaces have umbilics on the two

points contained in the vertical axis of rotation. Using the Gauss-Bonnet formula it

can be shown there are no further umbilics.

In the following sections we will explain why the experimental existence of certain

surfaces implies the existence of others. Hence it was not necessary to carry out

experiments for all surface candidates, and we marked surfaces we could skip with

“not studied” in our tables. In Table 1 we also include a degenerate cmc surface

consisting of seven spheres with symmetry D6×Z2. Since q6 = 1 these spheres match

in the sense that they touch tangentially on points of G6.

Experimental Result 1. The fourteen dihedrally symmetric complete compact cmc sur-

faces listed in Table 1 exist. These are all cmc surfaces with graph Gg and at most

one neck per edge of the graph.
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genus graph necks on length polyhedral neck
g contains

centre
spokes polyhedral quotient circumference Figure

6 tetrahedron 1 + 0.63 0.48 1
12 cube 1 + 0.15 0.38 23
12 octahedron spheroidal

nodoidal unduloidal
1 + 0.14 0.33 –

30 icosahedron 1 + 0.05 0.2 [GP1996]
30 dodecahedron unduloidal nodoidal 1 − 0.29 not studied
6 tetrahedron 2(1 − 0.18) not studied
12 cube 2(1 − 0.42) 0.25 24
12 octahedron noidal unduloidal nodoidal 2(1 − 0.43) not studied
30 icosahedron 2(1 − 0.53) 0.15 –

(30) dodecahedron 2(1 − 0.64) surface does not exist

Table 2. Surfaces with Platonic symmetry. The edges of the Platonic
polyhedra with spokes to their centre form the graphs; the surfaces have
at most one neck per edge.

We would like to remark that the graphs Gg admit further surfaces with more than

one neck per edge; in particular Kapouleas’ construction [Kapouleas 1991] applies to

some large number of bubbles. Also, in Sect. 7 we suggest further graphs which could

lead to dihedrally symmetric surfaces.

1.2. Surfaces with Platonic symmetry. There are three singular discrete sub-

groups of O(3), given by the symmetry groups of the Platonic polyhedra. These

groups are generated by reflections and we call them Platonic symmetry groups. The

graph consists of the edge graph of a Platonic polyhedron with further edges (spokes)

joining the vertices to the centre of the polyhedron. We obtain surfaces whose geom-

etry is similar to the dihedrally symmetric surfaces.

Experimental Result 2. The nine complete compact cmc surfaces with Platonic

symmetry listed in Table 2 exist. The surface with noidal centre and graph derived

from the dodecahedron does not exist with one neck per edge.

As in the planar case we let the length quotient be the edge length of the poly-

hedron inscribed to the unit sphere. It is not the length quotient alone but also

the combinatorics of the polyhedron that influence the polyhedral necksize listed in

Table 2.

The genus of the surfaces with Platonic symmetry is the number of handles attached

to the central sphere, that is the number of edges of the polyhedron. The outernmost

point of each polyhedral bubble is umbillic, as well as further points on the central

bubble.
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2. The conjugate surface construction

The conjugate surface construction for cmc surfaces generalizes a similar construc-

tion for minimal surfaces. Lawson established a local relation of cmc surfaces in R3

and spherical minimal surfaces in S3:

Theorem 3. [Lawson 1970, p.364] (i) For a simply connected minimal surface M ⊂
S3 there exists an isometric cmc surface M̃ ⊂ R3 and vice versa.

(ii) Furthermore, M is bounded by a polygon Γ of great circle arcs in S3 if and only

if M̃ is bounded by geodesic curvature lines.

Let us suppose that a fundamental domain of a cmc surface with respect to a

group of reflections is simply connected. Its boundary consists of piecewise planar

geodesic curvature arcs. Thus by (ii) the Plateau solution to a suitable great circle

polygon in S3 can produce such a fundamental cmc domain, and this domain can

then be reflected to a complete cmc surface. Which spherical polygon do we have to

take? The angles π/(k + 1) (with k ∈ N) at the vertices of the fundamental domain

and the position of the normal at the vertices are needed to prescribe all angles of

the spherical polygon. These data are immediate from the symmetry type of the

fundamental cmc domain and determine the spherical polygon up to its lengths.

In general a polygon with fixed angles and n edges has n − 3 free parameters for

γ5

γ4

γ3

γ2

γ1

Figure 5. The fundamental domain for the spheroidal surface of
genus 8 (see Figure 19). A polygon of five great circle arcs in S

3 bounds
the minimal surface patch. The patch is close to a great sphere S2 ⊂ S3,
or, in the chosen stereographic projection, close to a plane. There are
two helicoidal regions, one connecting the triangle to the two-gon, the
other in a neighbourhood of γ2.
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the lengths. Not all lengths can be prescribed to any given value though. The

set of lengths attained for a given set of angles can be determined using formulas of

spherical trigonometry. The construction is explained in more detail in [Lawson 1970],

[Karcher 1989], [Große-Brauckmann 1993].

For two reasons the conjugate surface construction will only lead to sufficiently sym-

metric cmc surfaces: first, the fundamental domain must be simply connected; sec-

ond, the theoretical or numerical Plateau solution we take is a stable minimizer, and

thus the fundamental domain must be small enough to be stable (see [Große-Brauckmann and Polthier

4.2]).

γ5 γ4

γ3

γ2

γ1

Figure 6. The isometric conjugate cmc patch. Its five boundary
arcs are contained in three different planes that meet pairwise in the
lines shown. Thirtytwo reflected copies generate the compact surface
depicted in Figure 19. The almost-planar regions of the previous figure
give spherical regions whilst the helicoidal regions result in necks. These
can be nodoidal (at γ2), or unduloidal (in between γ3 and γ5) depending
on the sense of rotation of the helicoids.

Period problem. The spherical boundary polygons we consider in the present work

are pentagons. Thus our fundamental cmc domains are bounded by five planar arcs

which are contained in five planes. Two pairs of planes are parallel by construction,

and only if they coincide the surface generated by reflection is compact - otherwise

the surface will be doubly periodic. We solve this period problem by adjusting the
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γ5 γ4

γ3

γ2

γ1

Figure 7. Period problem. The two parameter family of patches
gives rise to two periods: one is given by the distance between the
vertical planes containing γ2 and γ4, the other between the horizontal
planes containing γ1 and γ3. Unlike the previous figure the patch shown
has non-zero periods so that repeated reflection results in a doubly
periodic cmc surface.

5 − 3 = 2 free parameters of the pentagon until the two pairs of planes coincide.

Consequently our cmc surfaces are experimentally isolated.

In a more general sense all generators of the fundamental group give rise to periods.

For our symmetric surfaces many of these periods agree; others, like the period of the

unduloidal neck in Figure 7, are closed by symmetry. Thus the symmetry assumption

reduces the number of different periods to two, regardless of the genus. Besides tori

we do not know any compact surfaces that give rise to one period problem only.

This makes two periods the simplest case to consider, while there are certainly many

surfaces that pose three or more period problems.

To close the periods in a rigorous way one would have to give a loop in the parameter

space so that the periods (viewed as a map to R
2) can be estimated to have nonzero

winding number about the origin. Then continuity of the family in its parameters

would imply the existence of a surface with 0 periods. Continuity of the surfaces is

experimentally observed, however, it is difficult to prove. The standard proof is to

recover a surface as graph; it fails in the example of the spherical domain depicted in

Fig. 5, since the two helicoidal regions are not graph with respect to any one direction.
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3. The algorithm

Fundamental pieces of cmc surfaces are rarely stable if they are considered as a so-

lution to a free boundary value problem, see [Große-Brauckmann and Polthier 1996]

for a discussion. Hence only sufficiently small fundamental domains can be obtained

by minimization of area under a volume constraint. A more general approach sug-

gested by R. Kusner is to minimize the energy
∫
(H − 1)2; this can be done with

Brakke’s Surface Evolver [Brakke 1992] [Große-Brauckmann]. At present the com-

pact surfaces of this paper seem out of reach for that approach.

Generalizing the algorithm of Pinkall and Polthier [Pinkall and Polthier 1993] for

discrete (or polyhedral) harmonic maps and minimal surfaces, Oberknapp and the

second author developed an algorithm that defines a discrete version of Lawson’s

conjugate surface construction. We refer to [Oberknapp and Polthier] and only point

out two main ideas here.

Instead of minimizing the area functional the algorithm iterates the minimization

of Dirichlet energy for discrete maps between discrete surfaces in S
3 and produces

a sequence of harmonic maps. Their images converge rapidly to a discrete minimal

surface in S3 provided no triangles degenerate. In a second step the algorithm defines

a conjugation method for discrete harmonic maps similar to the conjugation of smooth

harmonic maps. Applying the conjugation to the above sequence of discrete harmonic

maps produces a sequence of so-called ’conjugate’ harmonic maps which map discrete

surfaces in S3 to discrete surfaces in R3. The conjugation is exact on the discrete level.

This fact is especially remarkable since in the smooth case the conjugation process

uses C1 information of the spherical minimal surface, which is of course not directly

available for polyhedral surfaces. The images of the discrete conjugate harmonic maps

converge to a discrete cmc surface in R3. An amazing result of the algorithm is that

the boundary behaviour of the smooth case (Thm. 3(ii)) if fulfilled exactly by the

discrete surfaces.

The resulting polyhedral surface is polygonal and not triangular. An interesting

open problem is to give a discrete variational definition of “discrete cmc” for the

above polygonal surfaces. Let us point out just one problem: a non-flat polygon can

be filled in with surfaces in many ways, and thus the volume of a polygonal complex

is not immediate. Since a variational characterization requires the notion of area and

volume, it depends on the choice of surface. However, the characterizing property

of the discrete surfaces the algorithm produces is that their spherical conjugates are

discrete minimal surfaces in the sense that any variations of the vertices in S
3 do not

decrease area; this means Lawson’s Theorem 3 can be taken as the definition of the

discrete constant mean curvature, as could be done in the smooth case as well.

To apply the algorithm amounts to the following steps.
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• Determine the angular information of the desired cmc patch with n planar

geodesic boundary arcs. Guess n edge lengths and fix n− 3 of these. Taking

the remaining three lengths as an initial condition, a rootfinder then finds a

closed spherical polygon Γ with n great circle arcs as boundary.

• Solve the Plateau problem for Γ. In our examples the Gauß curvature varies

considerably within a patch. Therefore interactive local refinement of the

triangulation is necessary in regions of high curvature.

• The conjugation algorithm transforms a discrete minimal surface in S
3 into

a euclidean cmc surface.

• Check periods of the resulting cmc surface. If necessary repeat the previous

steps with a different set of n − 3 fixed initial lengths.

The algorithm can also give information on non-existence: when we try to adjust

the n − 3 lengths to obtain a surface with vanishing periods it can happen that we

leave the range of existence for the boundary polygons.

The periods depend on the triangulation. Experiments described in [Oberknapp and Polthier]

have shown this dependence to be surprisingly weak. Even so, we took care to adap-

tively triangulate those surface for which the period problem leads to polygons close

to the boundary of existence.

4. Forces and balanced graphs

4.1. Balancing of forces. Kusner’s balancing formula gives a necessary condition

on cmc surfaces derived from the first variation formula for a cmc surface; see

e.g. [Korevaar et al. 1992]. The formula applies in general to 1-cycles γ contained

in a cmc surface M and their bounding 2-chains D. Here, we have in mind that γ is

a curve running once around a neck and D is a disk capping the neck. Considering all

necks attached to a bubble then gives a condition at each bubble of a cmc surface.

To state the formula, let us assume that a set B ⊂ R
3 (we think of a bubble) is

bounded by an embedded subset Ω of the cmc surface M as well as a finite number

of disjoint disks Di ⊂ R3. Each disk Di is in turn bounded by a circle γi ⊂ ∂Ω. We

choose exterior normals νi to Di and exterior conormals ηi to γi, i.e. ηi is a normal

to γi tangent to Ω. Then the force associated to the neck is the vector

Wi =

∫
γi

ηi − 2

∫
Di

νi.(1)

The force can be shown to depend only on the homology class of γi. The balancing

formula for B now states that the forces of the adjacent necks are in equilibrium,∑
i

Wi = 0.(2)
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Figure 8. Notation for the balancing formula. For the bubble B the
pull arising from the two lateral unduloidal necks is balanced by the
force of the bottom nodoidal neck pushing the bubble upwards.

If a disk D is contained in a plane then its normal is constant and
∫

D
ν = area(D) ν.

Moreover, if the plane is a symmetry plane for the surface then the conormal is also

constant and
∫

γ
η = length(γ) η where η = ±ν. Thus we can express W in the form

W = (±length(γ)− 2 area(D)) ν.(3)

4.2. Balanced graphs. An edge graph can be associated to our surfaces and more

general to a class of (not necessarily compact) cmc surfaces [Kusner 1991]. This class

includes surfaces arising from special constructions, namely the symmetric Delaunay-

like surfaces of Kapouleas or the first author, but excludes tori for instance. The

picture to keep in mind is that each vertex of the graph represents a bubble, and

each edge a single neck or a piece of a Delaunay surface comprising several necks.

The graph is a topological retract of the surface and finite for compact cmc surfaces.

Figure 4 gives an example.

Each edge of the graph associated to a neck is taken to be parallel to its force vector.

Kusner [Kusner 1991] chooses the line extending the edge as follows (Kapouleas’

choice is different unless the surface is sufficiently symmetric). The homology class of

a neck is assigned a torque Ri(a) =
∫

γi
η × (x − a)− 2

∫
Di

ν × (x − a) ∈ R
3 which for

given coordinates x depends on a ∈ R3. Then it can be checked that |Ri(a)| attains
its minimum on a line {a0 + sWi|s ∈ R}; this is the line we want to define.

In general the set of these lines need not match in vertices, but in our case they

do so by symmetry. Restricting the lines to the portion in between these intersection

points gives a closed graph. Let us note that there is only one property of our graphs

which is not immediate from symmetry: this is the length of the radial edges of our

graphs. Thus scaling describes the only degree of freedom, and the minimization of

torque in the above definition determines it.
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Figure 9. Two necks of two different Delaunay unduloids: As the
unduloids deform from a chain of spheres to a cylinder their period
increases from 2 to π.

For a closed graph there is an elegant way to express the balancing property. Let

us label each edge of the graph associated to a cmc surface by a weight wi ∈ R of

the corresponding neck. We define wi by |wi| = |Wi| and let its sign be positive if the

force is outward (when calculated for the bubble at a bounding vertex), or negative,

if it is inward. Note that viewed from the opposite vertex the normals η and ν change

sign, so that inward and outward are well-defined. We will see below that by this

definition unduloidal necks are assigned positive and nodoidal necks negative weights.

Then for a given vertex the emanating edges ei considered as outward directed vectors

can be used to state the balancing formula in the form
∑

wiei/|ei| = 0. A weighted

graph with this property is called balanced.

¿From balancing many geometric properties of the graph follow. For instance if

only two edges emanate from a vertex they must form a straight line, and we can

omit the vertex. Thus the valence of each vertex can be assumed to be at least 3.

5. Comparision cmc surfaces and principles for existence

We discuss two classes of non-compact surfaces which serve for us as comparison

surfaces. We present these surfaces first and then draw conclusions in the form of

heuristic principles for existence.

5.1. Delaunay surfaces. The Delaunay surfaces are the non-compact cmc surfaces

of revolution. A meridian is generated by the trace which the focus of an ellipse

or hyperbola makes when these conical sections are rolled along a line. There are

embedded unduloids and immersed nodoids. When normalized to mean curvature 1

each of them forms a one-parameter family of simply periodic surfaces.

The unduloid family ranges in between the cylinder and a degenerate cmc surface,

a string of spheres. One choice of parameter is the extreme radius of the meridian:

the minimum is r and the maximum 1− r for the unduloids, with r running from 0
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Figure 10. Two Delaunay nodoid necks (only the bottom half of the
first shown): as the nodoids increase in diameter the period decreases
from 2 to 0.

(string of spheres) to 1/2 (cylinder). A different choice of parameter is the weight.

For a neck of an unduloid (3) gives the weight

wU = length(γ)− 2 area(D) = 2πr(1− r) > 0,

where r is the radius of the circle γ = ∂D. Hence wU decreases from π/2 for a cylinder

to 0 for the spheres.

The family of nodoids can also be parameterized with the extreme radii: these are

r and 1 + r with r ∈ R+. When r tends to infinity the nodoids leave every fixed

cylinder. The weights of nodoid necks

wN = −length(γ)− 2 area(D) = −2πr(1 + r) < 0(4)

range from 0 (string of spheres) to −∞. The period decreases from 2 for the sphere

limit to 0 when r tends to infinity.

Figure 11 gives the 1-1 correspondence of Delaunay periods and weights. The

period can be considered the edge length of the balanced graph of a Delaunay surface

(with vertices located at each bubble).

5.2. Dihedrally symmetric k-unduloids. These surfaces with symmetry group

Dk × Z2 have k ends whose asymptotic axes are contained in a plane and make

an equal angle with one another. The dihedrally symmetric k-unduloids provide an

example that not all weights satifying the balancing formula do actually occur.
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Figure 11. The period of the Delaunay surfaces in dependence on
their weights. The immersed nodoids have negative weights −∞ < w <
0 and periods tending to 0 with w → −∞. The embedded unduloids
have positive weights 0 < w < π/2, and periods ranging from 2 to π.
The maximal weight π/2 is attained by the cylinder. Weight 0 can be
attributed to a degenerate Delaunay surface, a chain of unit spheres.
Figure by courtesy of M. Heil.

Theorem 4. [Große-Brauckmann 1993] There exists a continuous one-parameter

family of dihedrally symmetric k-unduloids for k ≥ 3. Furthermore, the ends are as-

ymptotic to unduloid ends and there is one dihedrally symmetric k-unduloid with ends

of weight wmax(k) := 2π(k − 1)/k2 and two for each weight w with 0 < w < wmax(k).

How do the surfaces look like when we run through the entire one parameter family?

The ends deform from rays of spheres (weight 0) to unduloids with some maximal

necksize (given by wmax(k)) and again back to spheres (weight 0). The central sphere

which is present at one end of the family (Figure 12) shrinks away over the family.

Thus, at the other end of the family the k chains of spheres touch with their first

sphere at the origin (the surface depicted in Figure 14 is still somewhat away from

this situation). To distinguish the two surfaces of the same weight we call the former

part of the family spheroidal and the latter noidal. The term noidal is justified by

a blow up of the surfaces close to the degenerate limit. If this blow up is done at

the right rate the centre of the surfaces converges to a dihedrally symmetric minimal

surface with k catenoid ends, the k-noid. This also holds for k = 2 when the limit of

small unduloid necks is a standard catenoid.

The maximal weight wmax(k) corresponds to a maximal asymptotic neck radius 1/k.

Note that its decay in k leaves enough room to attach the first necks of the ends at

the central sphere; for a slower growth the necks would interfere and new neck shapes

would have to develop for large k.

5.3. Construction Principles. The following heuristic principles guide our search

for balanced graphs and their cmc surfaces.

(i) Weights and lengths are related similar to the Delaunay case (Figure 11).
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Figure 12. A (non-compact) dihedrally symmetric 8-unduloid with
genus 0 and 8 unduloid ends. The first bubbles of the ends inter-
sect. There is a one-parameter family of such surfaces. This surfaces
is spheroidal in the sense that it has spherically shaped central bubble
and unduloid ends of small forces. Existence of this surface is proven
in [Große-Brauckmann 1993].

Figure 13. Sideview of one end; the first two and a half bubbles are shown.

(ii) An edge longer than 2 (but shorter than ≈ π) is represented by an unduloid

neck. If the length is larger than 4 we can take two unduloid necks enclosing

an unduloid bubble, etc.

(iii) Edges of length less than 2 are represented by nodoidal necks. Again addi-

tional bubbles could be inserted for lengths less than integer multiples of 2.

(iv) The weights resulting from the lengths must be compatible with the balancing

formula (2).

We note that (ii) and (iii) are a consequence of (i). We will also see that these

two principles must be relaxed somewhat: in Section 6.2 we will represent edges
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Figure 14. Another dihedrally symmetric 8-unduloid that with a
noidally shaped central bubble. The weights of the ends are larger than
those in Figure 12. As the weight tends to zero the middle junction
of the surface shrinks to a point. Existence of the surface is proven in
[Große-Brauckmann 1993].

Figure 15. Sideview of one end.

longer than 1 by an unduloid neck. At each vertex the balancing condition (iv)

imposes effectively one constraint on the weights and therefore on the lengths of the

emanating edges.

Similar to the Delaunay comparison principle (i) we want to include a comparison

for dihedrally symmetric necks to our list.

(v) The radial weight of a dihedrally symmetric k-fold neck is at most ≈ wmax(k).

Without the symmetry assumption it is unclear which range of weights one should

expect ([Große-Brauckmann and Kusner] [Große-Brauckmann and Polthier] discuss

this problem for some examples).
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We draw an important conclusion. Suppose all edges at a vertex point into a half-

space. This holds e.g. on the exterior vertices of a finite graph. Then (iii) implies that

both unduloidal and nodoidal necks should be present. By (i) and (ii) edges of lengths

both smaller and larger than 2 should emanate from the vertex. Similar conditions

could be formulated if we have in mind to place k necks enclosing k − 1 bubbles on

an edge.

6. Families of compact surfaces

We now want to apply the five guiding principles of the preceding section to the

graphs of our compact surfaces. No further constraints are present. Principle (iv),

the balancing formula, implies that the valence of each vertex is at least 3, so that

the graph G2 (see Sect. 1) does not arise from our construction.

We first consider the dihedrally symmetric case. For the midpoint of Gg the bal-

ancing formula (2) is satisfied by symmetry. Indeed g radial edges emanate from

the central vertex and they all have the same (positive or negative) weight. For the

outer vertices all edges point into a halfspace and, as pointed out in Section 5.3, the

balancing formula implies that unduloidal and nodoidal necks should be present on

the adjoining edges. Which distribution is appropriate depends on the length quo-

tient qg. The radial and polygonal edges enclose an angle π/g, so that by the balancing

formula (2) the two polygonal weights wP (g) result in a radial weight wR(g)

wR(g) = −2 sin(π/g)wP (g).(5)

6.1. Dihedrally symmetric spheroidal surfaces. We view wR(g) and wP (g) as

functions of the lengths of Gg, with values approximately given by the Delaunay

weights. We look for a scaling of the graph Gg such that the induced weigths wR(g)

and wP (g) satisfy (5). For g = 6 the degenerate weights wR = wP = 0 satisfy this

equation, and the corresponding scaling of G6 with edge length 2 is the graph for the

degenerate surface consting of 7 touching spheres.

For 3 ≤ g ≤ 5 we have qg > 1. Thus there is a scaling of the graph Gg with radial

edges shorter than 2 and polygonal edges longer than 2. In view of principle (ii)

and (iii) this suggests unduloidal necks on the polygonal edges and nodoidal necks

on the spokes. Using the Delaunay comparison principle (i) we see the length of the

spokes must be approximately in the interval (2/qg, 2): the left endpoint corresponds

to polygonal edge length 2 so that the right hand side of (5) vanishes, whereas at

the right endpoint the left hand side of (5) vanishes. Thus the actual length can be

viewed to be the result of an intermediate value problem for (5).

Note that for the same radial edgelength both sin(π/g) and, assuming principle (i),

wP (g) are larger for g = 3 than for g = 4 and 5. Thus for (5) to hold the scaling of G3
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Figure 16. Spheroidal surface of genus 3. A sixth of the surface is

removed. As the tetrahedral surface of Figure 1 the three unduloidal

necks are contained in the central bubble (see the front end of the

unduloidal bubble on the right).

must be smallest. This gives the genus 3 surface the largest radial necks in agreement

with our experimental results.

If g is greater than 6 then qg < 1 so that the polygonal edges of Gg are shorter than

the spokes. To be consistent with principle (ii) and (iii) we need to flip unduloidal
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Figure 17. Spheroidal surface of genus 4. The outer bubbles are
connected by unduloidal necks and in turn have nodoidal necks joining
them to the central bubble. The outer bubbles look much like bent
unduloids and, like these, they are flatter than the centre bubble.

and nodoidal necks compared to the previous family. An intermediate value argument

similar to the above gives that Gg with spokes of unit length has to be scaled with some

factor in (2, 2/qg). We obtained existence for g = 8, 9, 10 with increasing necksizes.

For genus 7 the necks are thin and the surface is numerically harder to deal with

our algorithm; on the other hand Kapouleas’ theoretical existence result makes this

surface most likely to exist. Therefore we skipped g = 7.

6.2. Dihedrally symmetry noidal surfaces. Similar to the noidal and spheroidal

dihedrally symmetric k-unduloids of the same weight (Sect. 5.2) we obtain a further

set of cmc surfaces with the same graphs Gg. These have a noidal central bubble

and nodoidal polygonal necks. For this type there is only “half a neck” on each

spoke but still an entire neck on each polygonal edge. The critical length quotient

is therefore qg = 1
1/2

= 2. The difference 2 − qg is always positive (for g ≥ 3), and

by principle (i) we must have unduloidal spokes and nodoidal polygonal necks for

all g ≥ 3.
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Figure 18. A noidal of genus 4 for which nodoidal and unduloidal
necks are flipped relative to the previous surface. This surface has
a central 4-noidal neck, the outer bubbles are connected with nodoid
necks which are not visible in this view.

Our experiments covered genus 4, 5, 8, and 9; we skipped genus 6 and 7 because in

view of principle (v) existence is clear to us from the existence of the higher genera.

In [Große-Brauckmann and Polthier 1996] we mentioned the numerical complications

we faced when we tried to solve the period problem for the surface with g = 3, so

that we did not have enough experimental evidence to claim existence of the surface.

However, in view of the existence of similar surfaces with larger genus (and larger

necks) we do not doubt existence for genus 3 any more. This is in agreement with

principle (v): for large, not for small necksizes, existence is problematic.

How do the necksizes of a spheroidal and noidal surface relate for the common

genera 7 to 9? Clearly the scaling of the noidal graph is smaller. This makes the
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weight of a Delaunay resulting approximate max. weight wmax(k)
genus nodoid with period 2qg radial weight experimental of a dihedrally

g (cf. Fig. 11) assuming (5) radial weight symmetric k-unduloid
7 −0.23 0.20 (–) 0.77
8 −0.57 0.43 0.18 0.69
9 −0.96 0.62 0.29 0.62
10 −1.2 0.87 0.43 0.57
15 −4.4 1.8 – 0.39
20 −8.6 2.7 – 0.30
100 −248 16 – 0.06
500 −6700 84 – 0.01

Table 3. Weight comparison for the dihedrally symmetric surfaces

polygonal lengths of the noidal surfaces larger so that the nodoidal necks are larger.

By (5) the unduloidal necks must be larger too.

6.3. Finiteness of the dihedrally symmetric families. The key to understanding

the upper limit g = 10 of the spheroidal family is to see how the radial weight

grows in the genus. Unlike the spheroidal case for g = 3, 4, 5 an estimate of the

radial forces is not straightforward from (5); indeed with increasing genus sin(π/g)

decreases, whereas the nodoidal weights |wP (g)| increase for shorter edges according

to principle (i). Hence it is not clear how the resulting weight −2 sin(π/g)wP (g)

depends on g; it could still be bounded for g → ∞.

Let us give an estimate for −2 sin(π/g)wP (g) based on the Delaunay comparison

principle (i). To simplify we assume that the scaling of the graph has spokes of

length 2. This gives the polygonal edge a length 2qg = 4 sin(π/g), i.e. we consider one

of the limiting cases of the intermediate value argument of 6.1. In Table 3 we list the

weight of a Delaunay nodoid with period 2qg. The values of wP resulting from (5)

are unbounded. However, from the Delaunay comparison we expect an upper bound

for the weight and thus only finitely many compact surfaces of the considered type

should exist.

More specifically, by principle (v) the weights should be no larger than approxi-

mately wmax(k). This holds up to genus 9, which is in rather good coincidence with

our experimentally determined limiting genus 10. We note that in fact the actual

lengths of the graphs are larger, so that the weights are smaller than the estimate

given in Table 3. For comparison we computed approximate experimental weights

by assuming that the polyhedral neck crosssection is a circle of the length stated

in Table 1, for which (4) gives the weight. The resulting weights are experimental

evidence for (v): up to genus 10 they are well below wmax(10), but for genus 11 the

weight expected from linear extrapolation would be larger than wmax(11).
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How does the limitation in genus appear in our experiments? We can still find

fundamental domains for higher genus, but we cannot close the periods. The reason

for this is that the range of existence for the boundary polygons is limited. This

range can be determined using spherical trigonometric formulas. For genus 10 we are

well away from the boundary of existence and for genus 11 the periods for existing

domains are sufficiently large to give us confidence that smooth cmc surfaces also

exist exactly up to (and including) 10.

We can also explain why the maximal genus 9 of the noidal surfaces is smaller than

the maximal genus 10 of the spheroidal family. As we pointed out in 6.2 the necksizes

of the noidal surfaces are larger than those of the spheroidal surfaces. Consequently

the noidal surfaces reach the limiting weight ≈ wmax(k) for a lower genus than the

spheroidal ones.

6.4. Platonic symmetry. The value for the length quotient listed in Table 2 sug-

gests four spheroidal surfaces with unduloidal polyhedral necks and nodoidal radial

necks, and our experiments gave existence for all these cases. The dodecahedron

has length quotient less than one and we expect a surface of genus 30 with 20 outer

bubbles with polyhedral nodoidal necks. We did not investigate this surface but its

existence seems very likely.

Similar to the dihedrally symmetric case there is a noidal family. The length

quotient for the dodecahedral surface is so far away from 2 that the radial necks

must be too large to exist – this explains why we could not close the periods for

the dodecahedral surface. However, the isosahedral and cubic surface exist. In view

of (v) we are confident that this implies existence for the surfaces with smaller weights:

these are the surfaces with tetrahedral and octahedral graph and symmetry.

7. Further classes

We would like to mention a few classes of graphs that could admit similar compact

cmc surfaces. We choose examples that are symmetric enough for our construction

to be applicable. Fig. 26.1 shows a square whose opposite vertices are joined by

two further edges (no vertex at the centre). Similarly, a regular 2k-gon (k ≥ 2)

whose opposite vertices are joined gives a graph with dihedral symmetry D2k × Z2;

the corresponding cmc surfaces would have genus k + 1. Fig. 26.2 shows a different

way to connect the vertices of G6: while the spokes are kept every other hexagon

point is joined. Similarly g + 1 points (g ≥ 5) give a graph with symmetry Dg × Z2,

for candidate surfaces of genus g. Instead of every other also every third, fourth,

etc. polygonal vertex could be joined, so that there are further similar families. In

Fig. 26.3 the modification of G6 is opposite: the polygonal edges of G6 are kept, but

there are two different vertices in the centre, each one joined to every other polygonal

vertex. More generally, a 2k-gon gives a graph of symmetry D2k × Z2 for surfaces
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Figure 19. Spheroidal surface of genus 8. The outer bubbles are
connected with nodoidal necks. The bubble in the middle is almost
spherical. Compare to Figure 12.

Figure 20. Three fundamental domains of the same surface give a
view of the nodoidal necks connecting adjacent bubbles.

of genus 2k − 1; again there are similar families with further central vertices. Other
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Figure 21. Noidal surface of genus 8. This surface has the same dis-
tribution of necks as the spheroidal surface, but the necks have greater
force and are larger. Close to its centre the surface resembles the dihe-
drally symmetric 8-unduloid depicted in Figure 14.

Figure 22. Three fundamental domains of the same surface.
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Figure 23. Spheroidal surface of genus 12 with cubical symmetry.

options that might soon leave the limits of our construction are to increase the number

of bubbles, or to decrease symmetry.

There are many beautiful graphs with Platonic symmetry, some of which lead to

further compact cmc surfaces. A description of these graphs is rather tedious, and

we leave the pleasure to find them to the reader.
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