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1

Introduction to Polyhedral Meshes

Polyhedral meshes belong to the most basic structures for the rep-
resentation of geometric shapes not only in numerics and computer
graphics. Especially the Þniteness of the set of vertices and of their
combinatorial relation makes them an ideal tool to reduce inÞnite di-
mensional problems to Þnite problems. In this section we will review
the basic combinatorial and topological deÞnitions and state some of
their differential geometric properties.
In practice, a variety of different triangle and other polyhedral meshes
are used. In this introduction we restrict ourselves to simplicial com-
plexes, or conforming meshes, where two polygons must either be
disjoint or have a common vertex or a common edge. Or for short,
a polygon is not allowed to contain a vertex of another polygon in
the interior of one of its edges. This restriction avoids discontinuity
problems in the shape, so-called hanging nodes. Further, we restrict
our discussion to piecewise linear meshes although many concepts ex-
tend to meshes with piecewise higher order polynomial order. Often
it is too restrictive to work solely in the space of conforming triangu-
lations, and, in later chapters, we will enlarge the function space to
include discontinuous, non-conforming meshes as well.
In many situations a property of a polyhedral surface can be asso-
ciated to depend either on the geometric shape or on the combina-
torial respectively topological properties of the mesh. Therefore, it



1.1. Simplicial Complexes 1. Introduction to Polyhedral Meshes

is important to distinguish between the topology of a mesh and its
geometric shape which is determined by the geometric position of the
vertices. For example, assume that all points of a compact surface are
collapsed to a single geometric position, then we would still like to
derive the topological genus from the combinatorial properties of the
surface. This forces us to introduce slightly more abstract deÞnitions
of polyhedral surfaces.
Introductions to polyhedral manifolds are given in most books on
algebraic topology, for example by Munkres [81], in the book by
Ziegler [120] on combinatorial aspects of polytopes, or by Bloch [12]
on topological and differential geometric problems. But note, there
are slight differences depending on the purpose. The standard ap-
proach in topology introduces simplices and simplicial complexes as
embeddings into Euclidean space while we allow immersions with
self-intersections. Good sources of applications of polyhedral mani-
folds to problems in differential geometry are also the books by A.D.
Alexandrov and Zalgaller [1] and Reshetnyak [103].

1.1 Simplicial Complexes

We begin the introduction of polyhedral surfaces with a combinatorial
point of view, that means, for the moment we do not care about the
speciÞc nature of points but consider them as abstract entities. In
the combinatorial setup the most basic entities of polyhedral shapes
are points, line segments, triangles, tetrahedrons, and their higher
dimensional analogues, called simplices:

DeÞnition 1 Let V = {v0, .., vm} be a Þnite set of m + 1 abstract
points. The (unordered) set [v0, .., vm] is called a combinatorial m−
simplex, or short, a combinatorial simplex. The number m is called
the dimension of the simplex.Low dimensional simplices.

DeÞnition 2 A face f of a simplex σ = [v0, .., vm] is a simplex de-
termined by a non-empty subset of {v0, .., vm}. A k−face has k + 1
points. A proper face is any face different from σ.

Faces of a triangle.

For example, a 0−simplex is a combinatorial point, a 1−simplex is a
line segment, a 2−simplex is a triangle, and a 3−simplex is a tetra-
hedron. There exist seven faces of a triangle [v0, v1, v2]: the triangle
itself [v0, v1, v2], its three edges [v0, v1], [v1, v2], [v2, v0] and its three
points [v0], [v1], [v2], where the last six faces are proper. A 0−simplex
has no proper face.

2



1. Introduction to Polyhedral Meshes 1.1. Simplicial Complexes

To perform the transition from combinatorics to geometry, we use the
so-called standard simplex which serves as geometric representative
associated to each combinatorial simplex:

DeÞnition 3 The standard simplex ∆m ⊂ Rm+1 is the convex hull
of the endpoints {e0, .., em} of the unit basis vectors in Rm which are
given by ei = (0, .., 0, 1, 0, .., 0). Formally,

∆m =

(
mX
i=0

λiei

¯̄̄̄
¯ 0 ≤ λi ≤ 1,

mX
i=0

λi = 1

)
.

Note, the standard simplex not only is a set of points but includes the
�interior� points. For example, the standard triangle ∆2 in R3 is the
planar triangle spanned by the three points (1, 0, 0), (0, 1, 0), (0, 0, 1).
Nevertheless, the standard simplex is simply a technical term. It pro-
vides the ground to formulate that any set of m + 1 points in a
Euclidean space Rn deÞnes a geometric simplex:

DeÞnition 4 A geometric simplex σ = [po, .., pm] is a set V =
{po, .., pm} of m+1 points in Rn, where n might be different from m,
together with an affine map

ϕ : ∆m → convHull(p0, .., pm)

ϕ(ei) = pi.

The number m is called the dimension of the simplex.

The difference between an abstract and a geometric simplex is the
existence of the geometric realization provided by the map ϕ, that
means, the embedding of the simplex in a vector space.

DeÞnition 5 Let V = {v1, v2, ..} be a set of abstract points. Then
an abstract simplicial complex K is a set of simplices S formed by
Þnite subsets of V such that if σ ∈ S is a simplex, then every subset
τ ⊂ σ is also a simplex of K.
If two, or more, simplices of K share a common face, they are called
adjacent or neighbours. The boundary of K is formed by any proper
face that belongs to only one simplex, and its faces.

Simplicial Complex.

The simplicial complex K formally represents the connectivity of a
mesh, and its simplices represent the points, edges, triangles, and
higher dimensional simplices. The number of points in a complex may
be inÞnite. By associating the set of abstract points with geometric

3



1.1. Simplicial Complexes 1. Introduction to Polyhedral Meshes

points in some Rn we obtain a geometric shape consisting of piece-
wise ßat simplices. Note, the following deÞnition does not require an
embedding but allows that the geometric realization may have self-
intersections. By allowing immersions this deÞnition is non-standard
in the sense of algebraic topology which usually requires embeddings.

DeÞnition 6 A simplicial complex (K,V ) of an abstract simplicial
complex K is a geometric realization uniquely given by

1. a set of geometric points V = {p1, p2, ..} ⊂ Rn with a bijection

Φ : V→ V

vi → pi.

2. for each k−simplex σ = [pi0 , .., pik ] an affine map from the
standard simplex

ϕ : ∆k → convHull(pi0 , .., pik)

ϕ(ej) = pij .

The above deÞnitions ensure a strict separation between the combi-
natorial properties of a mesh speciÞed by K and its geometric shape
determined by V , which is also expressed by adding V to the notation
of the simplicial complex (K,V ). The identiÞcation of abstract and
geometric vertices is uniquely performed by the bijection Φ which
relates the abstract points V of K and the set of geometric points
V . Any embedding of the abstract complex K into a Euclidean space
induces a topology on the simplicial complex.

DeÞnition 7 The underlying (topological) space |K| of a simplicial
complex K immersed into Rn is the topological space consisting of the
subset of Rn that is the union of all geometric realizations of simplices
in K with the topology induced from any embedding of K.

Important examples of simplicial complexes are simplicial disks and
balls.

DeÞnition 8 A simplicial n-ball Bn is a simply connected simplicial
complex such that |Bn| is homeomorphic to the solid unit ball in Rn,
and a simplicial n-sphere Sn is homeomorphic to the boundary sphere
of the solid unit ball in Rn+1. For n = 2, B2 is also called a simplicial
disk, and S2 is a simplicial sphere. For n = 1, S1 is a simplicial
circle.

4



1. Introduction to Polyhedral Meshes 1.1. Simplicial Complexes

For example, an icosahedron is a simplicial sphere, and any simply
closed polygon is a simplicial circle.
In some cases it makes sense to identify a simplicial complex (K,V )
with its underlying set |K| in a Euclidean space Rn, for example, a
polytope can always be recovered from its set of vertices. In the gen-
eral case one should keep in mind that (K,V ) has more the character
of an immersion. For example, if the immersion of a polygonal circle
intersects geometrically at a point shaping a Þgure-eight then it may
still be a combinatorial respectively topological circle. Note that the
topology of such a shape cannot be recovered solely from its shape.

Star of an edge and a vertex.

DeÞnition 9 Let (K,V ) be a simplicial complex. Then a subset L ⊂
K is a subcomplex of K if L is a simplicial complex itself. For ex-
ample, let σ ∈ K be a simplex, then

starσ := {η ∈ K that contains σ, and all faces of η}
and

linkσ := {η ∈ starσ | η ∩ σ = ∅} .
are subcomplexes of K.

Simplicial surfaces extend the notion of a topological 2-manifold to
the simplicial world.

DeÞnition 10 A simplicial surface S is a simplicial complex con-
sisting of a Þnite set T of triangles such that

1. Any point p ∈ S lies in at least one triangle T ∈ T.
2. The star of each point p ∈ S is a simplicial disk.

Note, in the deÞnition one may allow a denumerable set of triangles
under the additionally assumption that the simplicial complex is lo-
cally Þnite, that is, the star of each vertex consists of a Þnite number
of triangles.
A polyhedral surface is more general than a simplicial surface and
may include ßat faces with more than three vertices. The margin Þg-
ure illustrates several pitfalls and degenerate situations which arise
in practical implementations. The Þrst row shows two non-manifold
situations. The second row is a hanging node where adjacent faces
do not join a common edge. The third row shows a valid simplicial
surface consisting of four triangles where the pairwise adjacency of
triangle pairs is indicated by two small lines.The right Þgure is a

=

Degenerate situations and
non-manifold surfaces.

sketch to show how the middle edge belongs to all four triangles.

5



1.2. Topological Properties 1. Introduction to Polyhedral Meshes

Care must be taken to avoid the Þrst two situations in practical im-
plementations. The third situation can be resolved with an additional
neighbourhood information.

DeÞnition 11 Let M ⊂ Rn be a topological surface. Then a simpli-
cial surface S triangulates M if there exists a homeomorphism

t : |S|→M.

The simplicial complex S together with the homeomorphism t is called
a triangulation of M .

Smooth surfaces and simplicial surfaces are related through the fol-
lowing theorem, compare [78]:

Theorem 12 The following facts hold for two-dimensional surfaces:
(1) Any compact topological surface M in Rn can be triangulated, i.e.
there exists a simplicial surface which triangulates M .
(2) If a topological surface is triangulated by two simplicial surfaces
K1 and K2, then K1 and K2 have simplicially isomorphic subdivi-
sions.

Often it is useful to enumerate the highest-dimensional simplices of
a complex in a special way.

DeÞnition 13 A shelling of a simplicial ball Bn is a listing of its
n−simplices {σ1, .., σm} such that for all 1 ≤ k ≤ m the subset
{σ1, .., σk} is a simplicial ball.

Any simplicial disk is shellable [78], but this result does not hold in
higher dimensions. For example, see [107] for an unshellable subdivi-
sion of a tetrahedron.

Octahedron

1.2 Topological Properties

Euler Characteristic and Genus

Certain properties of a polyhedral surface S do not depend on the
combinatorial triangulation but are already determined by the topo-
logical properties of |S|. For example, let v denote the number of
points, e the number of edges and f the number of faces of S. Then
the Euler characteristic χ(S) is deÞned by

Cube with hole.

6



1. Introduction to Polyhedral Meshes 1.2. Topological Properties

χ(S) = v − e+ f (1.1)

For example, χ(Octahedron) = 2 or χ(Cube with a hole) = 0. This
counting procedure extends to higher dimensional simplicial com-
plexes.

DeÞnition 14 Let K be a simplicial complex, and let fi(K) denote
the number of i−simplices of K. Then the Euler-Poincaré character-
istic is deÞned as

χ(K) =
X
i≥0
(−1)ifi(K).

Note, that these concepts do not require a simplicial complex but
extend to polyhedral complexes.
The Euler characteristic is a topological invariant. In higher dimen-
sions the proof involves machinery from algebraic topology but for
surfaces the invariance is easily shown: Let M be a compact topo-
logical surface with two different triangulations (K1, t1) and (K2, t2).
Then we know that K1 and K2 have simplicially isomorphic subdivi-
sions, and therefore have equal Euler number. But note, the inverse of
this theorem is not true: if the Euler characteristics of two simplicial
complexes K1 and K2 are the same then |K1| and |K2| need not be
homeomorphic.
Therefore one speaks of the Euler characteristic of a compact 2-
dimensional manifold M , which may be determined by an arbitrary
triangulation T of M . For example, χ(Sphere) = 2, χ(Torus) = 0 or
χ(Projective Plane) = 1.

The cross cap is a realization
of the projective plane.

Orientable surfaces without boundary may be classiÞed by the genus,
a different topological invariant. Simply speaking, a surface M with
genus g(M) is topologically equivalent, i.e. homeomorphic, to a sphere
with g handles attached. For orientable surfaces the Euler character-
istic and the genus are equivalent invariants with the relation

2− 2g(M) = χ(M). (1.2)

If M is a triangulation without boundary then, counting multiplici-
ties, each face contributes three edges and each edge belongs to two
face which leads to

3f = 2e.

Therefore, on simplicial surfaces with many triangles

χ(M) = v − f
2
= v − 1

3
e

7



1.3. Distance and Metric 1. Introduction to Polyhedral Meshes

we have roughly about two times more faces than vertices, and three
times more edges than vertices.

Triangulations with Boundary

Many practical applications use triangulations with a boundary where
each component is a simply connected closed polygon. The Euler
characteristic helps to verify the combinatorics of triangulations in
this context too. Let b be the number of boundary components of
a triangulation, and assume all boundaries are pairwise disjoint, i.e.
they have no vertex in common. Then the Euler characteristic χ(M)
is deÞned as above and is a topological invariant of the manifold with
boundary, i.e. M is homeomorphic to a compact surface with Euler
characteristic χ(M) + b from which b discs are removed. In this case
we associate to M the genus of its closed companion.
Let us note simple examples which can be used to verify the correct-
ness of a triangulation:

1. LetM be a planar bounded triangulation with b boundary com-
ponents. Then we have

2− χ(M) = b (1.3)

since M can be closed to a sphere with χ(S2) = 2 by pasting
with b simply connected faces.

2. In general, an oriented polyhedral surface M with genus g and
with b missing disks has b boundary components and fulÞlls

2− 2g − χ(M) = b. (1.4)

Note, that both identities provide an easy way to calculate the num-
ber of boundary components if the genus is known, or to validate a
given mesh if the genus and the number of boundaries are known.

1.3 Distance and Metric

For metric measurements the interior of simplicial faces must be
uniquely deÞned. Therefore, we prefer simplicial instead of polyhe-
dral surfaces, or assure that we work with piecewise ßat polygons.
The metric of a surface may, for example, be induced from an immer-
sion into a Euclidean space, or the metric may be deÞned in a more

8



1. Introduction to Polyhedral Meshes 1.4. Discrete Gauß Curvature

abstract way, say, by assigning a length to each edge which fulÞlls the
triangle identity on each triangle. In a locally Euclidean metric the
distance between two points is measured along curves whose length
is measured segment-wise on the open edges and triangles:

DeÞnition 15 A curve γ on a simplicial complex M is called recti-
Þable, if for every simplex σ ∈ M the part γ|σ is rectiÞable w.r.t. to
the smooth metric of σ. Then the length of γ is given by

L(γ) :=
X
σ∈M

L(γ|ûσ). (1.5)

as the sum of the lengths on each open simplex.

The area of a simplicial surface is deÞned in a similar way:

DeÞnition 16 Let M be a simplicial surface. Then we deÞne

areaM :=
X
T∈M

areaM|T . (1.6)

Most of our considerations apply to a more general class of length
spaces. Each face may have an arbitrary metric as long as the metrics
of two adjacent faces are compatible, i.e. if the common edge has the
same metric in both faces, and the triangle inequality holds.
In many practical applications simplicial complexes have a metric
induced from an immersion into a Euclidean Rn. For example, take
a polyhedral surface in R3 and consider the two adjacent faces of an
edge. Each face has the metric induced from R3, i.e. the length of any
curve on a face is equal to the length of the same curve measured in
R3. In this case, any neighbourhood of a point on the edge is isometric
to a planar domain, since both faces can be unfolded to R2.
When considering the approximation of a smooth surface M with
a sequence of polyhedral surfaces {Mh,i} one should be aware that
higher order terms such as area may not converge as expected. The
Schwarz example is a sequence of polyhedral surfaces which converges
uniformly to a cylinder while the corresponding area grows to inÞnity.

1.4 Discrete Gauß Curvature

For a smooth surface S embedded into R3 the curvature measures
the inÞnitesimal bending of the surface compared to the ßat tangent

9



1.4. Discrete Gauß Curvature 1. Introduction to Polyhedral Meshes

plane. Instead of comparing the surface with the tangent plane, we
can equally consider the turn of the normal vector along the surface.
Formally, this is measured by the Gauß map g : S → S2 which assigns
to each point p on a surface S the tip of its normal vector n(p) after
it was parallel translated to the origin of R3, see Figure 1.1. The total
Gauß curvature K(Ω) of a domain Ω ⊂ S is then given by the area of
its spherical image including multiplicities: K(Ω) = area g(Ω). The
Gauß curvature K(p) at a point p on S is deÞned as the limiting
value

K(p) = lim
ε→0

area g(Uε(p))

areaUε(p)
(1.7)

for open neighbourhoods Uε(p) of radius less than ε of p. Note, if
the surface S is twice differentiable, then the Gauß curvature can be
expressed in terms of the partial derivatives of the metric tensor of S
or as product K(p) = κ1(p)κ2(p) of the two principal curvatures at
p.

FIGURE 1.1. The Gauß map assigns to each point p ∈ S of a surface its
normal vector n(p) ∈ S2. At edges and vertices of a polyhedral surface the
image of the Gauß map is the spherical convex hull of the normal vectors
of adjacent faces.

The Gauß curvature of a general manifold is a central intrinsic prop-
erty of the geometry and is fully determined by the Riemannian met-
ric. It inßuences, for example, the parallel translation of tangent vec-
tors along curves of the manifold.
On a polyhedral surface, the discrete Gauß curvature is concentrated
at the isolated vertices since all other points on the surface have
a neighbourhood isometric to a planar Euclidean domain with zero
curvature. But at vertices the limit value in Equation 1.7 will not
exist unless the surface is planar. Therefore it is more appropriate
to work with the concept of total Gauß curvature in the polyhedral
case.
On a polyhedral surface, the neighbourhood of a vertex is isometric to
a cone. Before deÞning a discrete Gauß curvature we study simplicial

10
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cones in more detail. Metrically, each cone is characterized by the
total vertex angle:

DeÞnition 17 Let S be a polyhedral surface and p ∈ S a vertex. Let
{f1,..., fm} be the set of faces of star p, and let θi be the vertex angle
of the face fi at the vertex p, see Figure 1.2. Then the total vertex
angle θ(p) is given by

θ(p) =
mX
i=1

θi(p). (1.8)

Interior points p of a face or of an open edge have a neighbour-
hood which is isometric to a planar Euclidean domain, and we deÞne
θ(p) = 2π in these cases.

FIGURE 1.2. ClassiÞcation of vertices on a polyhedral surface according
to the excess of the vertex angle, and their unfolding to a planar domain.

All points of a polyhedral surface can be classiÞed according to the
sign of the vertex angle excess 2π − θ(p):
DeÞnition 18 A vertex p of a polyhedral surface S with total vertex
angle θ(p) is called Euclidean, spherical, or hyperbolic if its angle
excess 2π − θ(p) is = 0, > 0, or < 0. Similarly, interior points of a
face or of an open edge are always Euclidean.

The neighbourhood of a vertex can be isometrically unfolded to a
(partial or multiple) covering of a part of the Euclidean plane. There

11



1.4. Discrete Gauß Curvature 1. Introduction to Polyhedral Meshes

exist three situations as shown in Figure 1.2 which metrically charac-
terize the vertex. For example, the tip of a convex cone is a spherical
vertex and a saddle point is hyperbolic. On the other hand, a spherical
vertex need not be the tip of a convex cone. The isometric unfolding
of sets of a polyhedral surface is a common procedure to study the
geometry.
The vertex angles determine the discrete Gauß curvature directly in
metrical terms of the polyhedral surface S. For simplicity we restrict
here to surfaces without boundary, compare Remark 21 for the Gauß
curvature at boundary vertices.

DeÞnition 19 The discrete Gauß curvature K(p) of an interior ver-
tex p on a polyhedral surface S is deÞned as the vertex angle excess

K(p) = 2π − θ(p) (1.9)

= 2π −
mX
i=1

θi(p).

The total Gauß curvature K(S) of the polyhedral surface S is the
sum of the Gauß curvatures of all vertices of K

K(S) =
X

p∈K(0)

K(p).

An immediate consequence is that Euclidean vertices have curvature
K = 0, spherical vertices have K > 0, and hyperbolic vertices have
K < 0. For example, the vertices of a cube each have Gauß curvature
π
2 .
As a justiÞcation of this Þrst deÞnition of a discrete curvature term,
let us note the following remarkable consequence. The total Gauß
curvature, above derived from the local geometric properties of the
vertex stars, is related to the Euler characteristic and, therefore, has
a global topological signiÞcance for the polyhedral surface.

Theorem 20 (Simplicial Gauß-Bonnet) Let S be a compact poly-
hedral surface in Rn without boundary. Then

K(S) = 2πχ(S).

Proof. First we triangulate S without affecting either side of the
equation. Since S is compact without boundary we then have

3f = 2e

12



1. Introduction to Polyhedral Meshes 1.4. Discrete Gauß Curvature

where v, e, f denotes the number of vertices, edges and faces of the
surface S. Therefore we obtainX

p∈K(0)

K(p) =
X

p∈K(0)

(2π −
X

σ∈star p(2)
θ(p, σ))

= 2πv −
X

σ∈star p(2)

X
p∈K(0)

θ(p, σ)

= 2πv − πf
= 2πv − 2πe+ 2πf
= 2πχ(S)

where K(i) denotes the i−dimensional simplices of a complex K. ¤

Remark 21 The Gauß curvature at boundary vertices of a bounded
domain can be deÞned in different ways. [1] suggests to use the angle
defect to π while we prefer to use the difference to the total vertex
angle if the domain is part of a larger polyhedral surface. This view
allows us to extend the theorem in Chapter 2 to bounded regions on
surfaces by including the geodesic curvature of the simplicial boundary
curve, see Theorem 43. We postpone this more general result until we
have introduced the notion of discrete geodesic curvature of curves on
polyhedral surfaces.

Minimizing the Gauß Curvature

We consider the Plateau problem for the Gauß curvature which starts
with a given boundary curve γ and looks for a disk or punctured
higher genus patch spanned by γ which minimizes the Gauß curva-
ture. By the smooth version of Gauß-Bonnet [24], the total Gauß
curvature of any spanned patch M can be estimated from below by
the total curvature of γ:Z

M

Kda = 2πχ(M)−
Z
γ

κgds ≥ 2πχ(M)−
Z
γ

κds (1.10)

since the geodesic curvature is always smaller than the curvature of
a curve 0 ≤ κg ≤ κ.
Therefore, in the smooth situation a curvature minimizing patch M
can be immediately constructed:

1. create a small strip along γ which is tangent to the osculating
plane and which has zero width along segments with vanishing
curvature.

13
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2. arbitrarily extend the strip to a patch with assumed genus.

The tangency condition ensures that within the strip the geodesic
curvature of γ is pointwise equal to its curvature, and we obtain
equality in Equation 1.10, i.e. M is curvature minimizing.
In the smooth case the ambiguity of the extension of the strip to the
interior can be removed by looking for a curvature minimizing cone
over the curve, at least up to some extend. Let p be the center of the
cone connected with straight lines to γ. Assume γ(t) is parametrized
by arclength. Let b := p−γ−hp− γ, γ0i γ0 be parallel to the co-normal
vector along γ of the current cone, then the total geodesic curvature
is given by Z 2

0

κgdt =

Z 2

0

¿
γ00,

b

|b|
À
dt.

It is maximized by variation of p in direction of the gradient

d

dp

Z 2

0

κgdt =

Z 2

0

1

|b|
µ
γ00 −

¿
γ00,

b

|b|
À
b

|b|
¶
dt.

In the polyhedral case we start with a polygonal curve γh and given
mesh connectivity, say by an initial surfaceMh,0. Then it is generally
not possible to Þnd a strip with the combinatorics induced by Mh,0

such that γh has vanishing discrete normal curvature. But minimizing
the Gauß curvature of the polyhedral surface will lead to a polyhedral
immersion which approximates best the osculating plane along the
boundary.
Let p be an interior vertex of the polyhedral surface and θi the vertex
angle at p of a triangle ∆i with edges ci = ai− bi and such that ai,bi
emanate from p. Then the gradient of the vertex angle θi is given by

∇pθi =
sin2 θi
area∆i

µ
ai + bi
2

+
1

2
cot θiJci

¶
=

sin2 θi
area∆i

(Mi − p)

where Mi is the center of the circumcircle. Similarly, if q is a vertex
adjacent to p, and θ the vertex angle at p then we have

∇qθ =
X

∆∈star pq

J∆(p− q)
|p− q|2

where J∆ denotes the rotation by π
2 in the oriented plane of the

triangle ∆. Summarizing, we obtain:

14
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Lemma 22 The gradient of the polyhedral Gauß curvature is given
by

∇pK(p) =
X
i

sin2 θi
area∆i

(p−Mi)

and

∇qK(p) =
X

∆∈star pq

J∆(q − p)
|q − p|2 .

where Mi is the center of the circumcircle.

These equations suffice to apply the conjugate gradient method for
minimizing the Gauß curvature of Mh.

1.5 Grids in Numerics and Graphics

In recent years an enormous effort went into the design of efficient
grids in numerics and computer graphics. Adaptive grids and hierar-
chical representations became very important in numerical applica-
tions, and are nowadays complemented with subdivision surfaces in
computer graphics modeling packages. Among the current issues is
the construction of specialized encodings for efficient data compres-
sion.
This section recalls some important types of meshes used in numerical
computations and computer graphics. The choice of a suitable grid
depends on a number of criteria such as the shape of the domain, the
type of the numerical method, or even the hardware, for example, to
support parallelization of algorithms.
Structured grids tessellate a rectangle [xmin, xmax]× [ymin, ymax] ⊂ R2
into regular quadrilaterals of the same size h = (hx, hy). The grid Ωh

Ωh =

½
(xi, yj)

¯̄̄̄
xi = xmin + ihx i ∈ [0,m− 1]
yj = ymin + jhy j ∈ [0, n− 1]

¾
is implicitly determined by the two extremal vertices (xmin, ymin) and
(xmax, ymax) and the number of subdivisions (m,n). Multiblock grids
use several structured grids at possibly different resolutions to cover
the different regions of the domain. Multigrids and sparse grids are
hierarchical representations which allow a considerable reduction of
the number of grid points.
Parametric grids are obtained as images of other grid types under a
continuous map Φ and thus are suitable for the discretization of more
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general domains. Important examples of parametric maps are Möbius
maps and the Schwarz-Christoffel map, both are angle-preserving,
i.e. conformal maps. Circle packings, remarkably applied by Thurston
and others to problems with three-manifolds, are nowadays a promis-
ing concept in practical implementations, for example, for the ßat-
tening of rather general surfaces [63].
Unstructured or irregular grids may consist of rather general non-
overlapping polygons. Such grids are determined by a set of points,
i.e. the vertices of the polygons,

P = {P0, P2, ..., P9}

and connectivity information where each polygon is given as an or-
dered list of its vertices, or more efficient, of its vertex indices

Unstructured Grid.

E0 = {0, 1, 2}
E1 = {2, 1, 3, 4}
E2 = {5, 6, 3, 1}
E3 = {3, 6, 7, 8, 9, 4}.

Additional information of a structured grid may be stored in order
to achieve faster access of information, or to clarify ambiguous situa-
tions. For example, a list of neighbour faces which have common edge
with the current face. The following neighbour array has for each ele-
ment Ei a list of indices of adjacent elements Ni where Ni[j] denotes
the element adjacent to the edge Ei[j +1]Ei[j +2] of Ei (indices are
modulo number of vertices of Ei).

N0 = {1,−1,−1}
N1 = {2, 3,−1, 0}
N2 = {3, 1,−1,−1}
N3 = {−1,−1,−1,−1, 1, 2}.

The naming convention has its origin in triangle meshes where the
edge Ei[j + 1]Ei[j + 2] is opposite to the vertex Ei. The above rule
allows us to use the same programming code for both, simplicial as
well as polyhedral surfaces.
In Chapter 8 we will introduce a hierarchical representation of irregu-
lar grids which allows a continuous interpolation between adaptively
reÞned irregular meshes. This solves the interpolation problem in an-
imations and for a set of adaptive geometries which depend on one
or more parameters.
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An alternative to vertex based formats are facet-edges formats. Here
a set of edges is given as above by specifying pairs of vertex indices.
Then higher dimensional cells are deÞned through their boundary,
that means a two-dimensional element is determined by a set of edge
indices. Such formats are useful if all cells of a cell-complex play an
active role and have associated information.
The winged edge format was introduced by Baumgart [11] as a redun-
dancy free representation format to store polyhedral meshes of faces
with an arbitrary and varying number of edges. It is an edge-based
format where each edge contains references to two vertices P1 and P2,
and references E1 respectively E2 to an adjacent edge on each of the
two neighbouring faces. Boundary edges have one empty edge refer-
ence. It is assumed that each face has a unique orientation provided
by an orientation of its edges. Therefore, faces are implicitly given by
following the E1 or E2 reference of an arbitrary known edge of the
face. Note, the orientation of each individual face does not require
that the whole surface is oriented.
Compared to the unstructured grid representation introduced above
the winged edge format basically requires the same amount of storage:
let E be the number of edges and F be the number of faces. In the
winged edge format each edge has four integer references which leads
to a storage of size 4E. By the relation 3F = 2E for triangular
meshes, the amount 4E is equal to 6F for irregular meshes which
store 3 vertex references and 3 links to adjacent faces per face.
Non-manifold meshes may have more than two faces sharing an edge.
In this case both the winged-edge format as well as the surface mesh
format fail unless additional information is supplied.
Progressive meshes introduced by Hoppe [60] are based on vertex-
split and edge-collapse operations for adaptive reÞnement and coars-
ening. In recent years these data types have been very popular in
computer graphics especially since they allow topology changes. They
are a special class of multi-resolution grids or hierarchical grids which
store different levels of resolution of a shape. Often a smooth transi-
tion between different hierarchical resolutions is incorporated in the
data structure. Normal meshes [53] were designed to describe shapes
locally as graph over a coarser resolution of the same mesh. This tech-
nique is especially suitable for subdivision surfaces or multi-resolution
surfaces obtained from a wavelet decomposition where the Þner res-
olutions are obtained algorithmically.
The fast and incremental transmission of shapes over low-bandwidth
connections plays an increasing role nowadays. Here specialized rep-
resentations of meshes allow a compressed encoding. For example, the
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algorithm by Taubin and Rossignac [115], which is incorporated into
the MPEG-4 standard, encodes the connectivity of a triangle mesh
with about 2−3 bits per vertex compared to 96 bits used in the index
based representation mentioned above.

1.5.1 Delaunay Triangulation

In numerics and visualization long thin triangles are often avoided
since their occurrence may spoil the numerical error and lead to arte-
facts in rendered images. This is mainly due to the fact that linear
interpolation of values given at the vertices of such a triangle may
not have a good approximation property in the center. Although in
some cases long thin triangles are appropriate, like in the cylindrical
shape in the Þgure, we make the following DeÞnition.

Cylinder with thin triangles.

DeÞnition 23 Let P be the set of vertices of a triangulation T and
A(T ) = (α1, α2, ...), αi 6 αj if i < j, the angle vector of all vertex
angles in T . Then the triangulation T is called angle-optimal if for
all triangulations T 0 the angle vector A(T ) is lexicographically larger
than A(T 0) (A(T ) > A(T 0)), i.e. there exists an index i such that

αj = α
0
j for all j<i, and αi > α

0
i.

The lexicographic order of an angle vector of a triangulation can be
increased by successive operations called edge-ßips. This technique
also avoids the computation of vertex angles.

Lemma 24 Consider two adjacent coplanar triangles with vertices
p1, p2, p3 and p2, p3, p4 and common edge p2, p3. If p4 lies inside the
circumcircle through p1, p2, p3 then the angle-vector can be increased
by exchanging edge p2, p3 with edge p1, p4 ( edge ßip). Furthermore, if
the four points lie on a common circle, then both diagonal edges are
Þne.

p3

p1

p2

p4

p3

p1

p2

p4

Edge ßip criterium.
Proof. Thales theorem allows to restrict the proof to a most sym-
metric situation from which the lemma follows by checking angles.
Let a = (a1, a2) be the coordinates of four vertices of a planar, convex
quadrilateral {a, b, c, d}, then it is easy to check that the edge bd must
be ßipped if and only if

det


a1 a2 a21 + a

2
2 1

b1 b2 b21 + b
2
2 1

c1 c2 c21 + c
2
2 1

d1 d2 d21 + d
2
2 1

 > 0
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¤
For non-planar quadrilaterals in space a possible criterion is: the edge
bd must be ßipped if

α+ δ > β + γ.

DeÞnition 25 A planar triangulation T of a point set P is Delaunay
if the circumcircle of each triangle does not contain any point of P
in its interior. This condition for being Delaunay is called the sphere
test.

Obviously, any Delaunay triangulation is edge-optimal, and Lawson
[71] showed that an edge-optimal triangulation is a Delaunay trian-
gulation. Any angle-optimal triangulation is edge-optimal and there-
fore a Delaunay triangulation, and Delaunay triangulations are angle-
optimal, if no four adjacent vertices of P lie on a circle. If four vertices
of P lie on a circle then, at least, the Delaunay triangulation max-
imizes the minimum angle over all triangulations of P . Since any
two triangulations of a planar point set can be transformed into each
other [70], one can convert any initial triangulation to a Delaunay
triangulation with the following edge swapping algorithm of Lawson
[71]:

Algorithm 26 (Lawson 1977) Let P be a given planar point set
and a triangulation T 0. Then the triangulation can be converted to
a Delaunay triangulation T by a Þnite number of edge-ßips, and T
maximizes the minimal angle. Furthermore, if no four vertices of P
lie on a common circle then T is angle-optimal.

This algorithm is ensured to terminate since the number of possible
angles in a triangulation is Þnite and in each edge ßip the minimal
angle is increased. We call such a triangulation edge-optimal. The
algorithm is rather slow but stable and easy to implement.

Remark 27 There should be some caution when using edge ßips on
non-planar surfaces in 3d space. On curved surfaces edge-ßips may
easily lead to degenerate situation even if care is taken on the va-
lence of vertices. For example, the torus shown in the side Þgure is
converted into a degenerate shape using a few edge-ßips.

A 3d geometry may degener-
ate through edge ßips.

If there is no initial triangulation of a point set P then there exist
different algorithms for the direct construction of a Delaunay trian-
gulation. For example, the algorithm of Watson [118] is based on
inserting a point in an already existing Delaunay triangulation
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1. Construct a triangle which covers the convex hull of the given
point set P . This single triangle is a simple Delaunay triangu-
lation, and it will be removed later.

2. Insert a point of P in the existing triangulation and make the
triangulation again Delaunay.

3. If all points of P have been inserted then remove the original
triangle, otherwise continue with step 2.

The crucial work is done in step 2. If the new vertex lies inside a
triangle then the triangle is split into three new triangles and the three
old edges must be legalized. If the new vertex lies on an edge, then
both triangles are bisected and the four old edges must be legalized.
Of course, the legalization must be continued if edges are ßipped. A
further optimization considers sorting the point set P .
It is possible to build the Delaunay triangulation of a set of n points
in Rd in O(n logn + nd d2e) expected time. The second term is the
maximum number of possible simplices. In practice, the running time
is much faster. A brute force algorithm starts with a simplex whose
vertices are �at inÞnity�, and adds a new vertex at each step while
maintaining the Delaunay property through edge ßips.
It should be noted that the Delaunay triangulation of a point set
P contains interesting subgraphs, for example, the minimum span-
ning tree of P which connects all points of P with a set of edges of
minimum total length.

1.5.2 Voronoi Diagrams

The Voronoi diagram of a set of points P ⊂ Ω ⊂ Rd is a partitioning
of Ω into cells where each cell ci consists of the set of points q ∈ Rd
which are closest to pi. Finding a Voronoi diagram is often also called
the Post Office Problem. A good introduction is the book by de Berg
et al. [27] on computational geometry.
A promising strategy for tessellating the domain Ω with a given set
of points P might associate to each point p a catchment area V (p)
of points closer to p than to any other point of P . For example, if
P is the locations of good suppliers and Ω the region with people
demanding goods, then for each supplier p the Voronoi region V (p) is
the area where people most efficiently go to location p for shopping.
Formally,
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DeÞnition 28 If P is a point set in a domain Ω and p ∈ P . Then
the Voronoi region V (p) ⊂ Ω is

V (p) =

½
r ∈ Ω

¯̄̄̄
d(p, r) = min

q∈P
d(q, r)

¾
.

The Voronoi diagram V (P ) consists of the boundaries of all Voronoi
regions V (p) with p ∈ P .
The boundaries of all Voronoi regions are the Voronoi graph of the
Voronoi diagram. Each interior point on an edge of the Voronoi graph
has the same distance to exactly two points p, q of P , and it is closer
to p and q than to any other point in P . Each vertex v of the Voronoi
graph is the center of the circumcircle of n points p1, p2, p3, .., pn of
P where n is the number of edges at v, respectively the number
cells at v, and the circumcircle contains no point of P in its interior.
If all vertices of the Voronoi graph have valence 3 then each triple
(p1, p2, p3) is a Delaunay triangle.

Theorem 29 Let V (P ) be the Voronoi diagram of a planar point set
P and let {pi, pj , pk} ⊂ P represent three sites.

1. A point q is a vertex of V (P ) if and only if its largest empty
circle C(q) contains three or more points of P on its boundary.

2. The bisector between two sites pi and pj is an edge of the dia-
gram if and only if there exists a point q on the bisector such
that the circle C(q) with center q through pi and pj contains no
other point of P in its interior and on its boundary.

The best algorithms to compute the vertices of the Voronoi diagram
of a set of n-sites P spend O(n log n) time.
The Delaunay graph of a point set P is a triangulation dual to the
Voronoi diagram, and each edge of the Voronoi diagram is the mid-
perpendicular of a Delaunay edge connecting both sites.

1.5.3 α−Shapes
α−shapes were introduced in the plane by Edelsbrunner et al. [39]
in 1983 to provide a continuous transition from the set of vertices
through a growing shape to the convex hull. The original deÞnition
was later extended to three-dimensional space [40]. Let P be a set
of points and T its Delaunay triangulation. Each simplex σ ∈ T
is assigned a size s(σ) which is the radius of the smallest sphere
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enclosing σ. σ is called conßict-free if the smallest sphere does not
contain any other point of P other than the vertices of σ.

DeÞnition 30 The α−shape of a point set P with α ∈ R+0 is a sub-
complex

P
α of the Delaunay triangulation T consisting of all sim-

plices σ ∈ T with size s(σ) < α and which are conßict-free, as well
as all their subsimplices.

The 0−shape consists of the set P of all vertices, and the ∞−shape
consists of the convex hull of P . If P is Þnite then the family of
α−shapes is Þnite too.

1.6 Finite Element Spaces

Piecewise polynomial functions on simplicial surfaces conceptually
fall into the category of Þnite element spaces. Here we brießy recall
the most basic function spaces relevant for our later work. See the
books [26][20] for an introduction.

φ

p

Basis function on manifold.

DeÞnition 31 On a simplicial surface Mh we deÞne the function
space Sh of conforming Þnite elements:

Sh :=
©
v :Mh → Rd

¯̄
v ∈ C0(Mh) and v is linear on each triangle

ª
Sh is a Þnite dimensional space spanned by the Lagrange basis func-
tions {ϕ1, .., ϕn} corresponding to the set of vertices {p1, ..., pn} of
Mh, that is for each vertex pi we have a function

ϕi :Mh → R, ϕi ∈ Sh
ϕi(pj) = δij ∀i, j ∈ {1, .., n}
ϕi is linear on each triangle.

(1.11)

Then each function uh ∈ Sh has a unique representation

uh(p) =
nX
j=1

ujϕj(p) ∀ p ∈Mh

where uj = uh(pj) ∈ Rd. The function uh is uniquely determined by
its nodal vector (u1, ..., un) ∈ Rdn.
Sometimes we will also use piecewise higher-order polynomial repre-
sentations described in a similar way with different basis functions.
Note that any component function of a function v ∈ Sh has bounded
Sobolev H1 norm.
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1.6.1 Non-Conforming Finite Elements

In our later investigations the following space of non-conforming Þnite
elements, see [26][20] for a detailed discussion, plays an important
role. Since these spaces include discontinuous functions their use is
often titled as a variational crime in the Þnite element literature.
In our settings, non-conforming functions naturally appear as the
correct spaces for our later considerations on constant mean curvature
surfaces.

DeÞnition 32 For a simplicial surface Mh, we deÞne the space of
non-conforming Þnite elements by

S∗h :=

½
v :Mh → Rd

¯̄̄̄
v|T is linear for each T ∈Mh, and
v is continuous at all edge midpoints

¾
The space S∗h is no longer a Þnite dimensional subspace of H

1(Mh)
as in the case of conforming elements, but S∗h is a superset of Sh.
Let {mi} denote the set of edge midpoints of Mh, then for each edge
midpoint mi we have a basis function

ψi :Mh → R ψi ∈ S∗h
ψi(mj) = δij ∀ i, j ∈ {1, 2, ..}
ψi is linear on each triangle.

(1.12)

The support of a function ψi consists of the (at most two) triangles
adjacent to the edge ei, and ψi is usually not continuous onMh. Each
function v ∈ S∗h has a representation

vh(p) =
X

edges ei

viψi(p) ∀ p ∈Mh

where vi = vh(mi) is the value of vh at the edge midpoint mi of ei.
Let Mh ⊂ Rm be a conforming triangulation with vertices V =
{p1, p2, ...} and edge midpoints E = {m1,m2, ...}. For a given triangle
t ∈Mh with vertices {pt1 , pt2 , pt3} and edge midpoints {mt1 ,mt2 ,mt3}
we have the following elementary correspondence

1

2

 0 1 1
1 0 1
1 1 0

 pt1
pt2
pt3

 =

 mt1

mt2

mt3

 (1.13)

respectively  −1 1 1
1 −1 1
1 1 −1

 mt1

mt2

mt3

 =

 pt1
pt2
pt3

 . (1.14)
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We will also use the term non-conforming surface to denote a simpli-
cial surface where adjacent triangles are connected at the midpoint
of their common edge but may be twisted. Later we also require
that the corresponding edge of two adjacent triangles must have the
same length. Non-conforming surfaces may be considered as images
of a non-conforming map from a conforming surface, therefore, we
often do not distinguish between a non-conforming surface and a
non-conforming map.
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3

Conjugation of Discrete Harmonic
Maps

Discrete harmonic maps appear as a basic model problem in Þnite
element theory and differential geometry for the discretization of
smooth concepts. Beyond that, discrete harmonic maps have a wide
range of non-trivial applications in computer graphics, for example
to smoothen noisy meshes, or in differential geometry to compute
constant mean curvature surfaces.
Several discrete operators on simplicial surfaces are related to discrete
harmonic maps. For example, the area gradient, the mean curvature,
or the divergence operator on vector Þelds. The main topic of this
section is the construction of pairs of conjugate discrete Laplace-
Beltrami harmonic maps on polyhedral surfaces. We start to derive
the deÞnitions and properties of discrete harmonic maps in a geomet-
ric setting which will then allow us to develop other discrete geomet-
ric operators and to solve problems related to minimal and constant
mean curvature surfaces in Chapters 4, 5 and 7.
Harmonic maps on surfaces also have practical importance, for ex-
ample, we derive in Chapters 4 and 5 efficient numerical algorithms
for solving free boundary value problems for unstable minimal sur-
faces and constant mean curvature surfaces. In the algorithms [87]
and [85], the conjugate of a minimal surface is obtained via the con-
jugation of a discrete harmonic map. Conjugate harmonic maps are
originally deÞned on the dual graph of the edge graph of the original



3. Conjugation of Discrete Harmonic Maps

surface but one should consider them as non-conforming functions.
The results of the present chapter provide a thorough understanding
of the geometric constructions used in Pinkall and Polthier [87] and
in Oberknapp and Polthier [85] by relating the discrete conjugation
of surfaces to non-conforming Þnite element spaces.
Convergence of conforming harmonic maps has been shown by Tsuchiya
[117]. As a more general result for surfaces, Dziuk and Hutchinson [36]
obtained optimal convergence results in the H1 norm for the Þnite el-
ement procedure of the Dirichlet problem of surfaces with prescribed
mean curvature. Compare Müller et al. [80] for harmonic maps on
planar lattices using the Þve-point Laplacian.
In a subsequent section we will apply the duality between discrete har-
monic maps and their conjugates to deÞne discrete conformal maps.
We will extend a conformal energy proposed by Hutchinson [64] to
the discrete spaces Sh × S∗h and show that the discrete holomorphic
maps have zero conformal energy, a property generically not available
for conforming piecewise linear maps.

FIGURE 3.1. Discrete mean curvature vector on a polyhedral surface given
as Laplace-Beltrami operator of the identity map from the surface to itself.

We start with a review of the Dirichlet problem of harmonic maps in
Section 3.1 followed by the discretization using conforming Lagrange
elements in Section 3.2. In Section 3.3 we discretize the same Dirichlet
problem using the non-conforming Crouzeix-Raviart elements, and
derive a pointwise expression of the discrete minimality condition.
Section 3.4 contains the main results of this chapter, namely, identi-
fying solutions in both Þnite element spaces as pairs of discrete conju-
gate harmonic maps. Applications of the results are given in Chapters
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4 and 5 to the conjugation of discrete minimal and constant mean
curvature surfaces.

3.1 Review of Smooth Harmonic Maps

On a Euclidean domain, the Laplace operator is given by the second
partial derivatives

∆ =
∂

∂x21
+ ...+

∂

∂x2n
.

Harmonic maps u : Ω → R on an open set Ω in Rn are solutions of
the Laplace equation

∆u = 0 in Ω (3.1)

which often appears with prescribed boundary conditions. Dirichlet
conditions prescribe Þxed boundary values in the form of a function
g

u|∂Ω = g on ∂Ω

and Neumann conditions prescribe the derivative of u in the direction
of the normal ν of the boundary

∂νu|∂Ω = µ on ∂Ω.

Dirichlet and Neumann boundary conditions may appear simultane-
ously on disjoint segments of the boundary.
The Laplace operator of vector-valued maps, and thereby the har-
monicity of vector-valued maps, is deÞned component-wise on each
coordinate function. For functions u :M → R on a manifold M with
a Riemannian metric g the Laplace-Beltrami operator ∆g is a gener-
alization of the Laplace operator. Assume normal coordinates around
a point p on M and let {e1, ..., en} be the induced orthonormal frame
in the tangent space of M , then

∆g = ∇e1∇e1 + ...+∇en∇en .

Harmonic maps also appear as minimizers of the Dirichlet energy

ED(u) =
1

2

Z
M

|∇u|2 dx (3.2)

with Dirichlet conditions (or Neumann) at the boundary, since the
Laplace equation 3.1 is the Euler-Lagrange equation of the Dirichlet
energy. To see this, let u(t) := u0+tφ :M → R be any C1-variation of
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a function u0 whose variation function has compact support φ|∂M =
0. Then by differentiation and integration by parts we obtain

d

dt |t=0
ED(u(t)) =

Z
M

< ∇u,∇φ >

= −
Z
M

∆u · φ+
Z
∂M

∂vu · φ

where v is the exterior normal along ∂M . Since φ has compact sup-
port, the last integrand vanishes identically. Since the above equation
holds for any C1-variation we derive

∇ED(u) = 0⇐⇒ ∆u = 0

from the fundamental lemma of the calculus of variations. The mini-
mizer umin is unique since

ED(umin + φ) = ED(umin) +ED(φ)

> ED(umin) ∀ φ|∂M = 0, φ 6= 0.

where the cross term vanishes because of the minimality condition
for umin.

3.2 Discrete Dirichlet Energy

There are different equivalent ways to introduce discrete harmonic
maps. Here we use the characterization of harmonic maps as mini-
mizers of the Dirichlet energy since this approach also provides an
efficient numerical algorithm to solve the boundary value problems
for discrete harmonic maps.

DeÞnition 52 Let Mh be a simplicial surface in Rm and Sh the set
of polyhedral maps on Mh. Then the Dirichlet energy of a function
uh ∈ Sh with uh :Mh → Rd is given by

ED(uh) :=
1

2

X
T∈Th

Z
T

|∇uh|2 dx. (3.3)

That is, the Dirichlet energy of uh is the sum of the Dirichlet energies
of the smooth atomic maps uh|T on each triangle T .
Now we consider critical points of the Dirichlet energy. For simplicity,
we restrict to interior variations which keep the boundary values Þxed.
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DeÞnition 53 A variation φ(t) ∈ Sh, t ∈ [0, ε), is a family of func-
tions differentiable in t such that each map uh ∈ Sh gives rise to a
family of maps uh(t) ∈ Sh with

uh(t) = uh + φ(t)

Basically, a variation of a function uh ∈ Sh is a modiÞcation of its
values at each vertex pi of the triangulation Mh given by uh(t)(pi) =
uh(pi) + φ(t)(pi). For simplicity, we restrict to Dirichlet boundary
conditions, that is, the variations φ(t) are zero along the boundary of
Mh.

DeÞnition 54 A critical point uh in Sh of the Dirichlet energy (3.3)
in Sh with respect to Dirichlet boundary conditions is called a discrete
harmonic map.

In the following we derive an explicit representation of the Dirichlet
energy of polyhedral maps and a system of equations for the discrete
minimizers which characterize discrete harmonic maps.
Let T = {p1, p2, p3} be a triangle of a simplicial surface and oriented
edges {c1, c2, c3} with ci = pi−1 − pi+1, and ϕi : T → R be the
Lagrange basis function at vertex pi with ϕi(pj) = δij . Then its
gradient is

Gradient of basis function.

∇ϕi|T =
1

2 areaT
Jci, (3.4)

where J denotes rotation by π
2 oriented such that Jci points into the

triangle. Note, that ϕ1+ϕ2+ϕ3 = 0 implies ∇ϕi = −∇ϕi−1−∇ϕi+1.
The basis functions have mutual scalar products given by­∇ϕi−1,∇ϕi+1® = − cotαi

2 areaT
(3.5)­

J∇ϕi,∇ϕi+1
®
=

1

2 areaT

|∇ϕi|2 =
cotαi−1 + cotαi+1

2 areaT
.

Since each function uh ∈ Sh has a representation

uh(p) =
nX
j=1

ujϕj(p) p ∈Mh,

where uj = uh(pj) denotes the function value of uh at the vertex pj
of Mh, on a single triangle T the gradient of uh|T : T −→ Rd is given
by

∇uh|T = 1

2areaT

3X
j=1

ujJcj . (3.6)
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Theorem 55 LetMh be a simplicial surface and Sh the set of contin-
uous and piecewise linear functions on Mh. Then the discrete Dirich-
let energy of any function uh ∈ Sh is given by

ED(uh) =
1

4

X
edges (xi,xj)

(cotαij + cotβij) |uh(pi)− uh(pj)|2 . (3.7)

Further, the minimizer of the Dirichlet functional (3.3) is unique and
solves
d

dui
ED(uh) =

1

2

X
xj∈n(xi)

(cotαij+cotβij)(uh(pi)−uh(pj)) = 0 (3.8)

at each interior vertex pi of Mh. The Þrst summation runs over all
edges of the triangulation, and the second summation over all edges
emanating from pi. The angles αij and βij are vertex angles lying
opposite to the edge (pi, pj) in the two triangles adjacent to (pi, pj).

Proof. Using the explicit representation (3.4) of the basis functions
and the identity ∇ϕi = −∇ϕi−1 − ∇ϕi+1, we obtain the Dirichlet
energy of uh|T :

ED(uh|T ) =
1

2

Z
T

−
3X
j=1

|uj+1 − uj−1|2
­∇ϕj−1,∇ϕj+1®

=
1

4

3X
j=1

cotαj |uj+1 − uj−1|2 .

Summation over all triangles of Mh and combining the two terms
corresponding to the same edge leads to equation 3.7.
At each interior vertex pi of Mh, the gradient of ED with respect to
variations of ui = uh(pi) in the image of uh is obtained by partial
differentiation and easily derived from

d

dui
ED(uh) =

Z
Ω

h∇uh,∇ϕii .

Since Sh is a Þnite dimensional space, the quadratic minimization
problem for the Dirichlet energy has a unique solution uh in Sh. ¤
The deÞnition of the Dirichlet energy of vector-valued maps Fh :
Mh → Nh ⊂ Rd is in full coherence with the deÞnition of Dirichlet
energy of scalar-valued maps. Namely, if the map Fh = (f1, .., fd) has
component functions fi :Mh → R then we have

ED(Fh) =
dX
i=1

ED(fi)
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since |∇Fh|2 = |∇f1|2 + .. + |∇fd|2. Vector-valued harmonic maps
are deÞned as critical values of the Dirichlet functional in the same
way as in the scalar-valued case. Therefore, the balancing condition
for scalar-valued harmonic maps directly gives a balancing formula
for vector-valued discrete harmonic maps too.
The following deÞnition includes more general boundary conditions.
Neumann boundary conditions constrain the derivative of a function
in direction of the exterior normal of the domain. Later we will make
use of other boundary conditions which are useful for maps from a
simplicial surface Mh to another surface Nh.

DeÞnition 56 A solution uh ∈ Sh of the Dirichlet problem (3.8) in
Sh is called a discrete harmonic map. To include symmetry properties
into this deÞnition we allow in some cases also variation of boundary
points:

� if a domain boundary arc and its corresponding image boundary
arc are straight lines, then the interior boundary points may
vary along the straight line in image space

� if both corresponding arcs are planar symmetry curves restricted
to planes we allow variation of interior boundary points in the
image plane. This models also free boundary value problems

� in all other cases the image boundary points remain Þxed.
Remark 57 At each vertex xi Equation (3.8) can be geometrically
interpreted as a balancing condition for the weighted edges emanating
from the vertex xi. The weight of each edge solely depends on the
angles in the base surface Mh, i.e. the weights depend only on the
conformal structure of Mh.

Examples of Discrete Harmonic Maps

Simple examples of discrete harmonic maps are derived from the ob-
servation that on the integer grid Z× Z in R2 the interpolants of
some smooth harmonic functions are discrete harmonic:

Example 58 On a rectangular Z× Z grid in R2, which is triangu-
lated by subdividing along either diagonal of each rectangle, the inter-
polating functions of

Re z,Re z2,Re z3, and Im z4

are discrete harmonic maps, and so are the interpolants of some other
polynomials.
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Example 59 On a rectangular Z× Z grid in R2, the weight of each
diagonal is cot π2 , and it vanishes independent of the chosen diagonal
in each square. Therefore, at each grid point (i, j) only the discrete
values of the Þve-point stencil

{(i, j), (i, j − 1), (i− 1, j), (i+ 1, j), (i, j + 1)} i, j ∈ Z

of the Þnite difference Laplacian contribute to the Dirichlet gradient.

The next example leads to discrete harmonic maps on a simplicial
surfaces using linear maps:

DeÞnition 60 Let Mh be a polyhedral surface in Rm. A map uh ∈
Sh(Mh) from Mh to Rd is called a linear map if uh is the restriction
u|M of a linear map u : Rm → Rd, i.e.

uh = u|M :Mh → Rd.

For example, any coordinate function xi : Mh → R on a polyhedral
surface Mh is a linear map, and, more general, let a ∈ Rm be a
constant vector, then

uh(p) := ha, pi ∀ p ∈Mh

is linear.
On an arbitrary simplicial surface Mh ⊂ Rm the following geometric
assumption on the underlying domain surface Mh leads to discrete
harmonic functions:

Example 61 All linear maps uh :Mh → Rd on a polyhedral surface
Mh are discrete harmonic if and only if Mh is a discrete minimal
surface.

Proof. Using the Lagrange basis functions ϕi :Mh → R associated
to each vertex pi of Mh we have the representation

uh(x) =
X
pi∈Mh

uh(pi)ϕi(p), p ∈Mh.
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The gradient of the Dirichlet energy can be transformed using the
linearity of uh

d

dui
ED(uh) =

1

2

X
j∈n(i)

¡
cotαij + cotβij

¢
(uh(pi)− uh(pj))

= uh(
1

2

X
j∈n(i)

¡
cotαij + cotβij

¢
(pi − pj))

= uh(
d

dpi
ED(idhMh)).

Therefore, uh is a critical value of the Dirichlet energy if and only if
the identity map of Mh is discrete harmonic. The harmonicity of the
identity map of a discrete minimal surface is shown in Corollary 92.
¤

Mean Value Property and Maximum Principle

Among the two most important properties of smooth harmonic maps
are the mean value property and the maximum principle.
Mean Value Property : Let p ∈ M and Uε(p) be a disk with radius
ε around p. Then the value of a smooth harmonic function u at the
center p is the average of the values along the boundary of the disk

u(p) =
1

2πε

Z
|q−p|=ε

u(q).

We obtain a discrete version for polyhedral maps if we replace the
disk with a regular polygon.

Lemma 62 Let uh be a discrete harmonic map deÞned on a sim-
plicial surface Mh. If the star of a vertex p consists of congruent
isosceles triangles centered at p then

uh(p) =
1

# link p

X
qj∈link p

uh(qj)

is the center of mass of the function values {uh(qj)} on the link of p.

Proof. All vertex angles appearing in Equation (3.8) are the same.
¤
Maximum Principle: Since smooth harmonic maps solve an elliptic
differential equation they satisfy a maximum principle. This means, in
any open domain U ⊂M the maximum and minimum of u is attained
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at the boundary ∂U . In the discrete case, a similar statement for the
star of a vertex does not hold in general, for example, it may fail if
the spatial domain contains angles larger than 90 degrees.

Lemma 63 Let uh be a discrete harmonic map deÞned on a spatial
domain of a simplicial surface Mh formed by the points {qj} around
a vertex p. If the triangles around p are all acute, then uh(p) is con-
tained in the convex hull of the points {uh(qj)}.

Proof. From the local harmonicity condition (3.8) we see that uh(p)
can be represented as a linear combination of the points {uh(qj}.
Since all relevant angles are acute the weights of the uh(qj) are in the
interval (0, 1), and uh(p) is a convex combination. ¤
The two previous lemmas do not hold if we allow more general do-
mains. For example, if the domain contains obtuse triangles as in the
Example 4.4 then neither the mean value nor the convex hull property
may be valid.
The non-convexity of discrete harmonic maps will lead to interesting
counterexamples of the maximum principle of minimal surfaces in
Chapter 4. In practical applications, for example, when smoothing
meshes with a Laplace Þltering or mapping surfaces onto a planar
domain, then one would often like to ensure convexity. In these case
the mesh parametrization by Floater [44] might be a useful strategy
since it ensures convexity.

3.3 Non-Conforming Harmonic Maps

Non-conforming maps on simplicial surfaces were introduced in Sec-
tion 1.6.1 as another natural set of discrete maps. Let Mh be a sim-
plicial surface then we state the Dirichlet energy in the space S∗h as
in the previous section.

DeÞnition 64 LetMh be a simplicial surface in Rm. Then the Dirich-
let energy of a function vh ∈ S∗h with vh :Mh → Rd is given by

ED(vh) :=
1

2

X
T∈Mh

Z
T

|∇vh|2 dx.

That is, the Dirichlet energy of vh is the sum of the Dirichlet energies
of the smooth atomic maps vh|T on each triangle T .
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Now we consider critical points of the Dirichlet energy, and again, for
simplicity, we restrict to interior variations which keep the boundary
values Þxed.

DeÞnition 65 A variation Ψ(t) ∈ S∗h, t ∈ [0, ε), is a family of func-
tions differentiable in t such that each map vh ∈ S∗h rise to a family
of maps vh(t) ∈ S∗h with

vh(t) = vh +Ψ(t)

Basically, a variation of a function vh ∈ S∗h is a modiÞcation of its
values at each edge midpoint mi of the simplicial surfaceMh given by
vh(t)(mi) = vh(mi)+Ψ(t)(mi). For simplicity, we restrict to Dirichlet
boundary conditions, that is, the variationsΨ(t) are zero at midpoints
of boundary edges of Mh.

DeÞnition 66 A critical point vh in S∗h of the Dirichlet energy (3.3)
in S∗h with respect to Dirichlet boundary conditions is called a (non-
conforming) discrete harmonic map.

Using the identities in an Euclidean triangle T with vertices {p1, p2, p3}
and oriented edges {c1, c2, c3} with ci = pi−1 − pi+1, we obtain on
T the following representation of the basis functions ψi ∈ S∗h corre-
sponding to edge ci :

∇ψi = −2∇ϕi =
−1
areaT

Jci, (3.9)

where ϕi ∈ Sh is the conforming basis function corresponding to the
triangle vertex pi opposite to the edge ci, and J is the rotation of an
edge by π

2 such that Jc points in the opposite direction of the outer
normal of the triangle.

Theorem 67 Let v ∈ S∗h be a non-conforming function on a sim-
plicial surface Mh. Then the Dirichlet energy of vh has the explicit
representation

ED(v) =
X

al l edges ci

cotαi
¯̄
vi−2 − vi−1

¯̄2
+ cotβi |vi1 − vi2 |2 . (3.10)

where {i−2, i−1, i1, i2, } denote indices of adjacent edge midpoints as
shown in Figure 3.2, and vij denotes the value v(mij ). The angles
are measured on Mh.
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FIGURE 3.2. A non-conforming map is given by its values on edge mid-
points.

The unique minimizer of the Dirichlet functional on Mh solves a
system of equations such that at each edge midpoint mi we have

d

dvi
ED(v) = 2(cotαi−2(vi − vi−1) + cotαi−1(vi − vi−2)(3.11)

+cotαi1(vi − vi2) + cotαi2(vi − vi1))
= 0.

Proof. Since ∇ψi = −2∇ϕi, the representation of the Dirichlet
energy is a consequence of the explicit representation for conforming
elements (3.7). On a single triangle T,

ED(v|T ) =
1

2

Z
T

−
3X
j=1

|vj+1 − vj−1|2
­∇ψj−1,∇ψj+1®

=
3X
j=1

cotαj |vj+1 − vj−1|2 .

The support of a component of the gradient of the Dirichlet energy
consists of those two triangles adjacent to the edge corresponding to
this variable. Equation (3.11) follows directly from the representation
on a single triangle T with edges {c1, c2, c3} and c1 + c2 + c3 = 0

d

dvi
ED(v|T ) =

Z
T

­∇v|T ,∇ψi® = 1

areaT

3X
j=1

vj hcj , cii

= 2 cotαi−1(vi − vi+1) + 2 cotαi+1(vi − vi−1)

by combining the expression for the two triangles in the support of
ψi. ¤
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3.4 Conjugate Harmonic Maps

Discrete harmonic maps have been well studied as a basic model
problem in Þnite element theory, while the deÞnition of the conjugate
of a discrete harmonic map was not completely settled. In this section
we are interested in pairs of discrete harmonic maps on a Riemann
surface M which are both minimizers of the Dirichlet energy

E(u) =
1

2

Z
M

|∇u|2 dx,

and are conjugate, i.e. solutions of the Cauchy Riemann equations

dv = ∗du.

We note that generically such pairs do not exist in the space of piece-
wise linear conforming Lagrange Þnite elements S.h but the prob-
lem naturally leads to the space of piecewise linear non-conforming
Crouzeix-Raviart elements S∗h. Sh alone is too rigid to contain the
conjugate of a generic discrete harmonic function.
We deÞne the conjugate harmonic maps of discrete harmonic maps
in Sh and in S∗h. A smooth harmonic map u :M → R on an oriented
Riemannian surface M and its conjugate harmonic map u∗ :M → R
solve the Cauchy-Riemann equations

du∗ = ∗du

where ∗ is the Hodge star operator with respect to the metric in M .
In the discrete version, we denote by J the rotation through π

2 in
the oriented tangent space of M , and start with a locally equivalent
deÞnition as Ansatz:

DeÞnition 68 Let u ∈ Sh, respectively S∗h, be a discrete harmonic
map on a simplicial surface Mh with respect to the Dirichlet energies
in Sh, respectively S∗h. Then its conjugate harmonic map u

∗ is deÞned
by the requirement that it locally fulÞlls

∇u∗|T = J∇u|T ∀ triangles T ∈Mh. (3.12)

The remainder of the section is devoted to prove that the discrete
conjugate map is well-deÞned by showing the closedness of the dif-
ferential ∗du, and to prove the harmonicity properties of its integral
u∗.
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To avoid case distinctions we represent each function with respect to
the basis functions ψi of S

∗
h such that on each triangle

u|T =
3X
i=1

uiψi,

where ui is the function value of u at the midpoint of edge ci. We use
the same notation for u∗|T , and obtain by DeÞnition 3.12

3X
i=1

u∗i∇ψi =
3X
i=1

uiJ∇ψi. (3.13)

Lemma 69 Let T be a triangle with oriented edges {c1, c2, c3}, c1 +
c2 + c3 = 0. A pair of linear functions u and u∗ related by Equation
(3.13), has values at edge midpoints related byµ

u∗3 − u∗1
u∗3 − u∗2

¶
=

µ
cotα3(u2 − u1) + cotα1(u2 − u3)
cotα3(u2 − u1) + cotα2(u3 − u1)

¶
(3.14)

Proof. The representation (3.9) of ∇ψi converts Equation (3.13) to
3X
i=1

u∗i Jci =
3X
i=1

uici.

Using −c3 = c1 + c2, we express the left side of the above equation
as a vector in the span of {Jc1, Jc2}

(u∗3 − u∗1)Jc1 + (u∗3 − u∗2)Jc2 =
3X
i=1

uici.

If the triangle T is nondegenerate, then the matrix (Jc1, Jc2) has
rank 2, and scalar multiplication with c1 and c2 yieldsµ

u∗3 − u∗1
u∗3 − u∗2

¶
=

2

area(T )

3X
i=1

ui

µ hc2, cii
− hc1, cii

¶
,

which easily transforms to Equation (3.14). ¤
Now we consider a discrete harmonic map u ∈ Sh and prove local
exactness of its discrete conjugate differential.

Proposition 70 LetMh be a simply connected simplicial surface and
u ∈ Sh with u : Mh −→ Rd an edge continuous discrete harmonic
function. Then the discrete Cauchy-Riemann equations (3.12) have a
globally deÞned solution u∗ :Mh −→ Rd with u∗ ∈ S∗h. Two solutions
u∗1 and u

∗
2 differ by an additive integration constant.
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Proof. We deÞne the discrete differential du∗ of u∗ such that on
each triangle T

du∗|T := ∗du|T .
Since u|T is a linear map, the conjugate differential du∗|T is well deÞned
and there exists a unique smooth solution u∗|T of the smooth Cauchy-
Riemann equations on T, up to an additive constant. By Lemma 69,
u∗|T is explicitly given in terms of u|T and T .
If u ∈ Sh is a discrete harmonic map then it turns out that du∗

is closed along closed paths on Mh that cross edges only at their
midpoints. Since du∗ is closed inside each triangle, it is sufficient to
prove closedness for a path γ in the vertex star of a vertex p ∈ Mh

such that γ|T linearly connects the midpoints of the two edges of T
having p in common, see Figure 3.3. Let {m1, ..,mk} be the sequence

FIGURE 3.3. Dual edge graph γ around a vertex.

of edge midpoints determining γ. The edges dj := mj+1−mj of γ are
parallel to cj with cj = 2dj . We use Equation (3.14) in each triangle
to deriveZ

γ

du∗ =
kX
j=1

Z
γ|Tj

∗du|Tj =
kX
j=1

< J∇u|Tj , dj >

= −1
2

kX
j=1

< ∇u|Tj , Jcj >= 0,

since u is harmonic in Sh, see Equation (3.8). Therefore, du∗ is closed
along the dual edge graph through the edge midpoints of Mh, and
u∗ ∈ S∗h is globally deÞned on simply connected regions of Mh. ¤
For a harmonic map u ∈ Sh, the following proposition proves har-
monicity of the conjugate map u∗ ∈ S∗h.
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Proposition 71 Let u ∈ Sh be a discrete harmonic map on a simpli-
cial surface Mh and let u∗ ∈ S∗h be a solution of the discrete Cauchy-
Riemann equations (3.12) given by Proposition 70. Then u∗ has the
same Dirichlet energy as u, and u∗ is discrete harmonic in S∗h.

Proof. Let u∗ be the solution of the discrete Cauchy-Riemann equa-
tions (3.12) for a discrete harmonic map u ∈ Sh. Then we show that
u∗ is a critical point of the non-conforming Dirichlet energy in S∗h by
rewriting the Dirichlet gradient (3.11) of u∗ in terms of values of u.
On a single triangle T with midpoint mi on edge ci, we note that­
J∇u|T ,∇ψi

®
=

2

areaT
(u(mi−1)− u(mi+1)) ∀i ∈ {1, 2, 3} , (3.15)

which follows directly from ∇u =P3
j=1 u(mj)∇ψj and

­
J∇ψj ,∇ψi

®
=


0 j = i
2

area(T ) j = i− 1
−2

area(T ) j = i+ 1
.

Let T1 ∪ T2 denote the two triangles forming the support of ψi as
shown in Figure 3.4. Using Equation (3.15) we obtain

d

du∗i
ED(u

∗) =

Z
T1∪T2

h∇u∗,∇ψii
= 2(u(mi−2)− u(mi−1)) + 2(u(mi1)− u(mi2)).

Since u is linear we can rewrite the differences at edge midpoints as
differences of u at vertices on the common edge of T1 and T2, and
obtain

d

du∗i
ED(u

∗) = u(Vj−1)− u(Vj−2) + u(Vj2)− u(Vj1). (3.16)

This equation relates the energy gradient of u∗ to the function values
at vertices of u. We emphasize the fact that the derivation of the
equation does not use edge continuity of u, which will allow us to
use 3.16 in the proof of Theorem 72. The right hand side of (3.16)
vanishes if and only if

u|ei in T1 = u|ei in T2 + constant.

Therefore, the harmonicity of u∗ follows from, and is equal to, the
edge continuity of u ∈ Sh. ¤
The following main theorem states the complete relationship between
harmonic maps in Sh and S∗h, and includes the previous propositions
as special cases.
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FIGURE 3.4. Notation of edge midpoints in pair of triangles.

Theorem 72 Let Mh be a simplicial surface in Rm and Sh respec-
tively S∗h the space of conforming respectively non-conforming maps
from Mh into Rd. Then we have the following duality of Laplace-
Beltrami harmonic maps on Mh:

1. Let u ∈ Sh be a minimizer of the Dirichlet energy in Sh. Then
its conjugate map u∗ is in S∗h and is discrete harmonic.

2. Let v ∈ S∗h be a minimizer of the Dirichlet energy in S∗h. Then
its conjugate map u is in Sh and discrete harmonic.

3. Let u ∈ Sh, respectively S∗h, be discrete harmonic in Sh, respec-
tively. S∗h. Then u

∗∗ = −u.

Proof. 1. The Þrst statement was proved in Propositions 70 and 71.
2. Let v ∈ S∗h given by v =

P
viψi be discrete harmonic. Along the

lines of the proof for the corresponding Proposition 70 concerning
Sh, we deÞne v∗|T (up to an additive integration constant) as the
well-deÞned integral of

dv∗|T := ∗dv|T ∀ T ∈Mh,

which uniquely exists since v|T is linear. Using the same arguments as
in the proof of Proposition 71 and ∇v∗ = J∇v, we derive an equation
for v that is identical to Equation (3.16) for u :

d

dvi
ED(v) = v

∗(Vj−1)− v∗(Vj−2) + v∗(Vj2)− v∗(Vj1),

where Vjk are vertices as denoted in Figure 3.4. Since v is harmonic,
we can choose the integration constants of v∗ such that v∗ becomes
edge continuous and lies in Sh.
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The harmonicity property of v∗ follows from the closedness of v. Let
v∗ =

P
v∗i ϕi ∈ Sh, and then splitting ∇ψi = −∇ψij − ∇ψij+1 in

each triangle, we obtain

d

dv∗i
ED(v

∗) =

Z
Mh

¿
∇v∗, d

dv∗i
∇v∗

À
=

Z
star(pi)

hJ∇v,∇ϕii

=
X
j

Z
Tij

¿
J∇v,−1

2
(∇ψij +∇ψij+1)

À
=

X
j

Z
Tij

1

areaTij
((vij+1 − vij−1) + (vij−1 − vij ))

=
X
j

vij+1 − vij = 0

since v ∈ S∗h is closed on the path around each vertex pi. Therefore
v∗ is critical for the Dirichlet energy in Sh.
3. The third statement is a direct consequence of applying the ∗
operator twice, which rotates the gradient in each triangle by π in
the plane of the gradient. ¤

Corollary 73 Conjugation is a bijection between discrete Laplace-
Beltrami harmonic maps in Sh and S∗h, where each pair (u, v) fulÞlls
the discrete Cauchy Riemann equations. Further, corresponding maps
have the same Dirichlet energy.

Proof. The proof of Theorem 72 and the previous propositions show
that, for a pair (u, v) of harmonic conjugate functions u ∈ Sh and v ∈
S∗h, the harmonicity condition of u is equal to the closedness condition
of v, and the closedness condition of u is equal to the harmonicity
condition of v.
The equality of the Dirichlet energies follows directly from the Cauchy-
Riemann equations. ¤
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Discrete harmonic map
u ∈ Sh interpolating Re z2

Conjugate harmonic u∗ ∈ S∗h
is a non-conforming map

Holomorphic pair (u, u∗) and
exact solution as full grid

u∗ applied to center
quarter of each triangle.

3.5 Minimizing with Conjugate Gradients

For completeness we will mention some of the numerical methods to
practically solve the variational problems which we discussed so far.
These methods apply to both the conforming and non-conforming
meshes.
Let uh be a map from a simplicial surface Mh satisfying a Dirichlet
boundary value problem

uh : Mh → R3

uh|∂M = Γ.

With respect to the Lagrange basis functions, uh is given

uh(x) =
nX
i=1

uiϕi(x).
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Assume, we ordered the set vertices of Mh by interior and boundary
vertices {p1, .., pI , pI+1., pI+B}. Then the harmonicity condition at
each interior vertex pj is

d

duj
ED(uh) =

nX
i=1

ui

Z
Mh

­∇ϕi,∇ϕj®
=

IX
i=1

ui

Z
Mh

­∇ϕi,∇ϕj®+ I+BX
i=I+1

ui

Z
Mh

­∇ϕi,∇ϕj®
= 0 ∀ j ∈ {1, .., I} .

This system of equations is equivalent to a single matrix equation

Au = B

where A = (aji) is an IxI matrix, the so-called stiffness matrix , and
u = (ui) and B = (bj) are I dimensional vectors with

aji =

Z
Mh

­∇ϕi,∇ϕj®
bj =

I+BX
i=I+1

ui

Z
Mh

­∇ϕi,∇ϕj® .
In praxis it is usually more efficient not solve the matrix system but
employ a conjugate gradient method which is an iterative method
with a fast convergence especially during the Þrst iteration steps. See
the comments of Brakke [17] who compared our method with other
minimization algorithms built into the surface evolver.
The method of steepest descent is an iterative algorithm which in-
crementally reduces the energy by modifying the function uh a small
distance ε in the direction of the negative of the energy gradient

u0 : = uh

ui+1 : = ui − ε∇Ep(ui).

The conjugate gradient method is a more efficient method where the
direction vector is modiÞed such that previous optimizations are not
spoiled. It uses a sequence of line minimizations: given p ∈ Rn, di-
rection n ∈ Rn and an energy functional E : Rn → R. Find a scalar
λ that minimizes

E(p+ λn)→ min,

and then replace p by p+λn. If the energy functional is differentiable
then an obvious choice for a direction is the gradient of E. Such a
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gradient method can be more efficient by incorporating second order
information which avoids spoiling of previous results.
The Taylor expansion around p gives

E(x) = E(p) +∇Ep(x) + 1
2
∇2Ep(x, x) + . . .

≈ c− bx+ 1
2
xtAx

For a quadratic function E the gradient can be written as

∇E(x) = Ax− b.

How does the gradient change along some direction ν?

∂v∇E = A · ∂vx = Av
The idea of the conjugate gradient method can be summarized as
follows: assume we have moved along some direction u to a minimum
and now want to move along a new direction v. Then v shall not
spoil our previous minimization, i.e. the change of the gradient shall
be perpendicular to u:

0 = hu, ∂v (∇E)i = uAv

The vectors u and v are called conjugate directions which can be
constructed using the following Gram-Schmidt bi-orthogonalization
procedure employed in the methods of Fletcher-Reeves and Polak-
Ribiere [89][102].
Let A be a positive-deÞnite, symmetric n × n matrix. Let g0 be an
arbitrary vector, and h0 = g0. For i = 0, 1, 2, . . . deÞne the two
sequences of vectors

gi+1 = gi − λiAhi (3.17)

hi+1 = gi+1 + γihi,

where λi respectively γi are chosen to obtain mutually orthogonal vec-
tors gi+1·gi = 0 respectively mutually conjugate directions hi+1Ahi =
0, that is:

λi =
gi · gi
giAhi

γi = −
gi+1Ahi
hiAhi

.

If denominators are zero take λi = 0 resp. γi = 0. Then

71



3.6. Discrete Laplace Operators 3. Conjugation of Discrete Harmonic Maps

gi · gi+1 = 0 hiAhj = 0 ∀i 6= j
and the bi-orthogonalization procedure has produced a sequence gi
where each gi is orthogonal and each hi is conjugate to its set of
predecessors.
Generally, the Hessian matrix A is not known. In this case the follow-
ing observation provides the essential hints. Assume E is a quadratic
functional and we take

gi := −∇E|pi for some point pi.

Then we proceed from pi along the direction hi to the local minimum
of E which is located at some point pi+1. If we set again gi+1 :=
−∇E|pi+1 then this vector gi+1 is exactly the vector which would
have been obtained by the above Equations 3.17 but without the
knowledge of the Hessian A. More precisely, the matrix A never needs
to be computed.
Summarizing, the conjugate gradient method computes a set of direc-
tions hi using only line minimizations, the evaluations of the energy
gradient, and an auxiliary vector to store the recent vectors gi. In
practice, further optimizations are obtained through pre-conditioning.

3.6 Discrete Laplace Operators

The discretization of the second order Laplace operator for smooth
functions to simplicial meshes may be pursued in different ways.
Depending on the structure of and information about the underly-
ing mesh the Laplace operator may include more combinatorial or
more geometric information. Here we review some basic combina-
torial Laplacians and then relate them with the Laplace-Beltrami
operator in the context of the functions spaces used in this chapter.

Combinatorial Laplacian

The purely combinatorial point of view ignores metric information
like edge length or vertex angles of a mesh. All information about a
combinatorial mesh is contained in its connectivity. For theoretical
purposes it is convenient to express the connectivity in the form of
the adjacency matrix.

DeÞnition 74 Let {p1, ..., pn} be the vertices of a mesh. Then the
adjacency matrix A of the mesh connectivity is an n×n matrix given
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by

Aij =

½
1 if pipj is an edge
0 else

The matrix A is sparse, and the sum of the i−th row respectively
column is equal to the valence di of the vertex i. Note, in practical
applications one would never explicitly store the full matrix.

DeÞnition 75 Let D be an n×n diagonal matrix with entries dii :=
1
di
where di is the valence of the vertex pi, then the matrix

L : = id−DA

Lij =


1 i = j
− 1
di

if pipj is an edge
0 else

is the combinatorial Laplacian of the mesh, or short, the mesh Lapla-
cian.

Let ei be the vector (0, ..0, 1, 0, .., 0) with 1 at the i−th position which
is associated to pi. Then

Lei = ei − 1

di

X
j∈n(i)

ej

where n(i) denotes the set of vertices adjacent to pi excluding pi.
Karni and Gotsmann [68] extend the mesh Laplacian in the frame-
work of mesh compression to include distance information

GL(pi) = pi −
P
j∈n(i)

1
|pi−pj |pjP

j∈n(i)
1

|pi−pj |
.

Five-Point Laplacian

The Þve-point Laplacian is the 2d−extension of the Þnite difference
Laplacian on the real axis. Consider a real-valued function f : R→ R
on an interval of the real axis. Then the smooth Laplacian ∆f is
deÞned as second derivative of f . In the discrete case, let {ui} be a
uniform knot vector on the axis, for example, ui := i, then fh�(xi)
can be approximated using Þnite differences

fh�(xi) =
1

2
(f 0h(xi)− f 0h(xi))

=
1

2
((f(xi+1)− f(xi))− (f(xi)− f(xi−1)))

=
1

2
(f(xi+1)− 2f(xi) + f(xi−1))
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This can be written in matrix representation

∆fh = −Afh
with f = (f(x0), f(x1), ..) and the matrix

A =
1

2


0
−1 2 −1

−1 2 −1
..

.. −1 2 1
0

 .

A smoothing operation of f can be performed by a so-called Gaussian
Þltering method

f j+1h := f jh + λ∆f
j
h

with a scalar factor 0 < λ < 1. Other values of λ will enhance the
variation of f . In matrix form we have

f j+1h = f jh − λAf jh

Discrete Laplace-Beltrami Operator on Surfaces

Let Mh be a simplicial surface in Rm. We now deÞne the Laplace
operator for piecewise linear functions in Sh respectively S∗h similar
to the derivation of the discrete Dirichlet energy. Since second deriv-
atives are involved the discrete Laplace-Beltrami operator will be a
function on the vertices respectively edge midpoints, and it will not
extend as a piecewise linear function over the whole triangulation.

DeÞnition 76 Let u ∈ Sh be a map u : Mh → Rd on a simplicial
surfaceMh with set of vertices Vh. Then the (total) discrete Laplacian
∆hu(p) ∈ Rd at each vertex p ∈ Vh is deÞned as

∆hu(p) := −
Z
star p

­∇u,∇ϕp® . (3.18)

Similarly, let u ∈ S∗h be a non-conforming map then ∆∗h : S∗h → V ∗h
at an edge midpoint m is given by

∆∗hu(m) := −
Z
starm

h∇u,∇ψmi (3.19)

with basis functions ϕp ∈ Sh and ψm ∈ S∗h.
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In explicit notation we have at an interior vertex p and an interior
edge midpoint m

∆hu(p) = −1
2

X
qi∈n(p)

(cotαi + cotβi)(u(p)− u(qi))

∆∗hu(m) = −2(cotα−2(u(m)− u(m−1)) + cotα−1(u(m)− u(m−2))

+ cotα1(u(m)− u(m2)) + cotα2(u(m)− u(m1)))

where {qi} is the set of vertices on the link of p, and {mi} the set of
vertices on the link of m in counter-clockwise order and vertex angles
αi opposite to mi in each triangle.
In Chapter 7 we will see the relationship between the discrete Laplace-
Beltrami operators and the divergence operators on vector Þelds.

3.7 Extension to Bezier Polyomials

Among the important concepts in CAD is the control polygon of
piecewise polynomial curves and surfaces which provides an intuitive
representation of the shape. For completeness we show how easily
the previous concepts extend to a characterization of harmonicity in
terms of the control polygon of Bezier triangles. Here we give the
notion of the Dirichlet energy of polynomial maps of order n in terms
of their Bezier control polygon.
Any polynomial bn : T → Rd is determined by a triangular Bezier
control grid given by vertices {bI} ⊂ Rd. Using Bernstein basis func-
tions and barycentric coordinates q on T the polynomial bn has the
representation

bn(q) =
X
I=|n|

bIB
n
I (q) (3.20)

using the multi-index I = (i, j, k) with i + j + k = n. A good intro-
duction is the book by Farin [41].
For the derivation of the Dirichlet energy we denote the difference
vector between two adjacent control points by

∆bI+ej := bI+ej+1 − bI+ej−1 .
Similarly we introduce a shortcut for difference of Bernstein polyno-
mials

∆Bn−1I−ej := B
n−1
I−ej+1 −Bn−1I−ej−1 .

Then we have
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Lemma 77 The Dirichlet energy of a Bezier polynomial bn : T → R
be a Bezier polynom given by Equation 3.20 on a triangle T ∈ Rm is
given by

1

2

Z
T

|∇bn|2 =
3X
j=1

cotαj
X
|I|=|J|
=n−1

­
∆bI+ej ,∆bJ+ej

®
BnIJ (3.21)

where αj are the vertex angles of the domain triangle T , {bI} the
Bezier control points of the image, and coefficients

BnIJ :=

Z
∆n

Bn−1I Bn−1J dx,

integrated over a triangle ∆n of area n2

2 , which depend on the chosen
Bernstein basis BnI only, and not on b

n and T .

Proof. We deÞne shortcuts

dj :=
d

duj

X
|I|=n

bIB
n
I (u(x)) = n

X
|I|=n

bjB
n−1
I−ej (u(x)).

such that

∇bn(u(x)) =
3X
j=1

dj∇uj

and

|∇bn(u(x))|2 =
3X
j=1

³
d2j |∇uj |2 + 2dj−1dj+1 h∇uj−1,∇uj+1i

´
.

(3.22)
Since

3X
j=1

∇uj = 0

we have

|∇uj |2 = |∇uj−1|2 + 2 h∇uj−1,∇uj+1i+ |∇uj+1|2
= − h∇uj−1,∇uji− h∇uj ,∇uj+1i .

Inserting this into above Equation 3.22 leads to

|∇bn(u(x))|2 = −
3X
j=1

(dj+1 − dj−1)2 h∇uj+1,∇uj−1i . (3.23)
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Using

h∇uj−1,∇uj+1i = − cotαj
2 areaT

.

and Z
T

(dj+1 − dj−1)2dx (3.24)

= n2
Z
T

 X
|I|=n−1

∆bI+ejB
n−1
i (u(x))

2

dx

= n2
X
|I|=|J|
=n−1

­
∆bI+ej ,∆bJ+ej

® Z
T

Bn−1I Bn−1J dx

We replace the integration domain T with a triangle ∆n of area n2

2

such that 2 areaT
n2 is factored out and obtain the proposed equation.

¤
For each j the double sum contains pairwise scalar products for all
parallel edges of the Bezier control net. The independent coefficients
BnIJ and the right-hand integral can be precomputed and stored in
a lookup table. They are totally symmetric with respect to any per-
mutation inside I and J .
The Dirichlet energy is quadratic in the control points of the Bezier
net. Let b := (b1, .., bm) be a linear enumeration of all Bezier control
points then one can setup a stiffness matrix S such that

ED(b
n) =t B · S ·B.

The same matrix can be used for the Dirichlet gradient:

Lemma 78 Let ED(bn) be the Dirichlet energy of a Bezier polynom
over a triangle T . By variation of a Bezier control point bJ we obtain
the J-th component of the Dirichlet gradient

d

dbJ

Z
T

|∇bn|2 dx = 4
3X
j=1

cotαj
X

|I|=n−1
∆bI+ej

Z
∆n

Bn−1I ∆Bn−1J−ejdx.

Proof. Using a different numbering in Equation 3.24 we obtainZ
T

(dj+1 − dj−1)2dx = n2
Z
T

X
|I|=n

bI∆B
n−1
I−ej

2

dx

= n2
X

|I|=|J|=n
bIbJ

Z
T

∆Bn−1I−ej∆B
n−1
J−ejdx
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which leads to

1

2

Z
T

|∇bn(u(x))|2 dx

=
3X
j=1

cotαj ·
X

|I|=|J|=n
bIbJ

Z
∆n

∆Bn−1I−ej∆B
n−1
J−ejdx

= 4
3X
j=1

cotαj
X
|I|=n

bI

Z
∆n

∆Bn−1I−ej∆B
n−1
J−ejdx.

The proposed equation follows by inserting the Bezier representation
of ∆Bn−1I−ej . ¤
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Discrete Minimal Surfaces

Minimal surfaces are characterized by having least area compared to
nearby surfaces with the same boundary. This variational property,
which was the original interest in minimal surfaces, was soon relaxed
to include unstable critical points as well. Equivalently, these sur-
faces can be geometrically characterized by having vanishing mean
curvature.
Examples have played a central part in the development of the min-
imal surface theory and fruitfully complemented the theoretical re-
search. In recent years many new examples were studied experimen-
tally using elaborate calculations for the analytic continuation of com-
plex functions and the integration of the Weierstraß representation
formulas. Although these methods allow one to compute any surface
given by its Weierstraß representation, this analytic approach has the
drawback that the Weierstraß formulas must be known in advance.
Since the existence of many unstable minimal surfaces was mathe-
matically proved indirectly via the so-called conjugate surface con-
struction there was a strong need to develop a numerical scheme and
actually compute the conjugate surface of a minimal surface [65][67].
The numerical method developed in [87] jointly with Pinkall was the
Þrst scheme to compute the conjugate of a numerically computed
minimal surface. The key insight came from a new understanding of
the geometric and variational properties of triangle nets. The method



4.1. Review of the Smooth Variation of Area 4. Discrete Minimal Surfaces

FIGURE 4.1. Asymptotic growth of two complete discrete catenoids de-
pends on the dihedral symmetry.

was later extended in [85] jointly with Oberknapp to the computation
of constant mean curvature surfaces via a conjugation of minimal
surfaces in S3, compare Chapter 5.
The main theoretical result in this section is a new precise under-
standing of the variational properties of pairs of discrete conjugate
minimal surfaces, which was not known in the original works, by
working in the function space of non-conforming triangle meshes.
This chapter also introduces discrete minimal surfaces and derives
their variational properties, we deÞne the mean curvature normal as
an operator on the discrete mesh.
Another important result is an explicit description of some complete
discrete minimal surfaces which were jointly discovered with Rossman
[97]. For example, these descriptions allow one to construct unstable
discrete surfaces whose shape is given by exact coordinates, a fact
which is particularly useful for the study of higher order properties
like the index of minimal surfaces, see Chapter 6.

4.1 Review of the Smooth Variation of Area

Let F : Ω→M ⊂ R3 be a parameterized surface of a domain Ω ⊂ R2.
A variation of M is a family of surfaces given by a differentiable map

G : Ω× (−ε, ε) → R3

G(x, 0) = F (x) x ∈ Ω.
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The induced vector Þeld on M

Y : Ω→ TM

Y (x) =
d

dε
G(x, ε)|ε=0

is called the Þrst variation of G.

Lemma 79 For a given surface M and a variation vector Þeld Y
the Þrst variation of the area functional at M in the direction of Y
is deÞned by

δ area(M,Y ) :=
d

dε
area(Mε)|ε=0 ∈ R

and given by

−δ area(M,Y ) =
Z
∂M

hY, νi ds+ 2
Z
M

hY,NiHdA ,

where ν is the outer normal along ∂M .
Proof. see Hildebrandt et al. [31] or Lawson [72]. ¤

If Y = λN is a normal variation then the boundary component van-
ishes and we have

δ area(M,Y ) = −2
Z
M

λHdA.

Further, if λ ≡ 1 and H is constant we obtain

H = −δ area(M,N)
area(M)

.

4.2 First Variation of the Discrete Area and
Volume

A variation of a polyhedral surface is determined by a variation of its
vertices with the same mesh connectivity. For simplicity we require a
C2 variation but often a differentiability of lower order is sufficient.

DeÞnition 80 Let P = {p1, ..., pm} be the set of vertices of a discrete
surface Mh. A variation Mh(t) of Mh is deÞned as a C2 variation of
the vertices pi

pi(t) : [0, i)→ Rd so that pi(0) = pi ∀i = 1, ..,m.
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The straightness of the edges and the ßatness of the triangles are
preserved as the vertices move.
Formally, we have for each t that pi(t) ∈ Sh and pi(0) = id(Mh) is
the identity map of Mh.

Up to Þrst order a variation is given by a set of vectors V = {v1, ..., vm},
vi ∈ Rd deÞned on the vertices P = {p1, ..., pm} of Mh. Often we re-
strict a variation to interior vertices by assuming vi = 0 ∈ Rd along
the boundary, or add special constraints on the boundary ofMh. The
vectors vpj are the variation vector Þeld such that the variation has
the form

pj(t) = pj + t · vpj +O(t2), (4.1)

that is, p0j(0) = vpj . We deÞne the vector jv ∈ Rdm by

jvt = (vt1, ..., v
t
m). (4.2)

In the following we will restrict to d = 3 which allows the use of
a well-deÞned normal vector although many results hold in higher
codimension too.
In the smooth situation, the variation at interior points is typically
restricted to normal variation since the tangential part of the varia-
tion only performs a reparametrization of the surface. However, on
discrete surfaces there is an ambiguity in the choice of normal vec-
tors at the vertices, so we allow arbitrary variations. But we will
later see in Chapter 6 (Section 6.5) that our experimental results can
accurately estimate normal variations of a smooth surface when the
discrete surface is a close approximation to the smooth surface.
In the following we derive the evolution equations for some basic
discrete operators under variation Mh(t) of a discrete surface Mh.
Recalling, that the area of a discrete surface is

areaMh :=
X
T∈T

areaT,

where areaMh denotes the Euclidean area of the triangle T as a
subset of R3.
At each vertex p of Mh, the gradient of area is

∇p areaMh =
1

2

X
T=(p,q,r)∈star p

J(r − q), (4.3)

where J is rotation of angle π
2 in the plane of each oriented triangle

T . The Þrst derivative of the surface area is then given by the chain
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rule
d

dt
areaMh =

X
p∈V

hp0,∇p areaMhi. (4.4)

The volume of an oriented surfaceMh is the oriented volume enclosed
by the cone of the surface over the origin in R3

volMh :=
1

6

X
T=(p,q,r)∈Mh

hp, q × ri = 1

3

X
T=(p,q,r)∈Mh

h jN, pi · areaT,

where p is any of the three vertices of the triangle T and jN = (q −
p)× (r− p)/|(q − p)× (r− p)| is the oriented normal of T . It follows
that

∇p volMh =
X

T=(p,q,r)∈star p
q × r/6 (4.5)

and
d

dt
volMh =

X
p∈P

hp0,∇p volMhi. (4.6)

Remark 81 Note also that ∇p volMh =
P

T=(p,q,r)∈star p(2 · areaT ·
jN + p× (r − q))/6. Furthermore, if p is an interior vertex, then the
boundary of star p is closed and

P
T∈star p p× (r − q) = 0. Hence the

q × r in Equation 4.5 can be replaced with 2 · areaT · jN whenever p
is an interior vertex.

4.3 Discrete Mean Curvature

The mean curvature vector on smooth surfaces provides a measure
how much the surface area changes compared to near-by surfaces,
that means, if a surface is moved at constant speed along the surface
normal. In the polyhedral case we will use a similar approach to
obtain a discrete version of the mean curvature vector. Similar to the
deÞnition of a discrete Gauß curvature the polyhedral mean curvature
will measure the curvature of a small region. Later it will turn out that
the mean curvature vector can be interpreted as the discrete Laplace-
Beltrami operator on surfaces which was introduced in Chapter 3.
The area of a polyhedral surface is deÞned as the sum of the area
of all elements. Let T be a triangle spanned by two edges v and
w emanating from a vertex then its area is given by the relation
4 area2 T = |v|2 |w|2−hv, wi2. In the following we prefer an expression
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of the area in terms of vertices and vertex angles of the surface. Let
T be a triangle with vertices qi and vertex angles αi. Then

areaT =
1

4

3X
j=1

cotαj |qj−1 − qj+1|2 . (4.7)

For practical applications we derive a simple formula of the area gra-
dient in intrinsic terms of the polyhedral mesh, see [87].

Lemma 82 Let p be an interior vertex of a simplicial surface Mh.
Then the gradient of the area with respect to variation of vertices can
be expressed in the following cotangent formula

∇p areaMh =
1

2

X
j

(cotαj + cotβj)(p− qj). (4.8)

Proof. The area gradient is the sum of the individual area gradients
of all triangles containing p. In each triangle the area gradient of p
is parallel to the height vector point toward p with length |c|. If c
is the oriented edge opposite to p and J the rotation in the oriented
plane of the triangle by π

2 then the gradient can be expressed by
1
2Jc.

Summing over all triangles containing p we obtain

∇p areaMh =
1

2

X
j

Jci.

Using the explicit representation of Jc on a single triangle with edges
c = a− b and vertex angles α and β at the end points of c,

Jc = a cotα+ b cotβ,

one obtains the proposed equation. ¤
This formula easily generalizes to non-manifold surfaces where, for
example, three triangles join at a common edge.
IfMh(t) is a variation of simplicial surfaces such that each vertex p(t)
is a differentiable function for t ∈ (−ε, ε) then

d

dt
areaMh(t) =

X
p∈P

hp0,∇p areaMhi .

The mean curvature of a smooth surface measures the variation of
area when changing to parallel surfaces in normal direction. In the
discrete case there exists no unique normal vector, but, as Þrst derived
in [87], if we choose as normal vector the direction of the area gradient,
then the following deÞnition leads to a discrete mean curvature vector
which has similar properties as the smooth mean curvature vector.
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DeÞnition 83 The discrete mean curvature at the vertex p of a sim-
plicial surface Mh is a vector-valued quantity

−→
H (p) := ∇p areaMh. (4.9)

Note that this mean curvature operator is an integrated operator
and measures the total mean curvature in the vicinity of a vertex.
Therefore, when computing the total mean curvature of a surface one
simply needs to sum up the mean curvature of all vertices instead of
integrating over the surface. In this sense, the mean curvature is a
measure at vertices similar to the (total) Gauss curvature introduced
in DeÞnition 19. Compare the deÞnition of discrete mean curvature by
Hsu, Kusner and Sullivan [62] in the experimental study of minimizers
of the Willmore integral.
Another idea, which we just mention for completeness, is to deÞne
the mean curvature at edges instead of vertices based on the heuristic
that the bending of a surface happens at edges. Here we will compare
these two approaches.

Lemma 84 Let e be an edge common to two triangles T1 and T2,
and let m be an arbitrary point in the interior of e. If we bisect both
triangles with edges from m and to the vertex opposite to e in each
triangle then m becomes a vertex with four adjacent triangles. Then
the area gradient at m

∇m area(starm) = |e| cos θ
2
·Ne

does not depend on the position of m within the edge but depends only
on the dihedral angle θ of the edge, the length of the edge e and the
angle bisecting unit normal vector Ne.

Proof. Denote the edges of the triangle Ti with {ai, bi, e}. Then
starm consists of four triangles, and we calculate the mean curvature
normal at m:

∇m area(starm) =
1

2
(J1a1 + J1b1 + J2a2 + J2b2)

=
1

2
(J1e+ J2e) = |e| cos θ

2
·Ne

where θ is the edge angle and Ne is the angle bisecting unit normal
along e. ¤
Since the area gradient is independent of the position of the point
m on the edge we use the result of the previous lemma to deÞne the
mean curvature of an edge:
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DeÞnition 85 Let e be an edge of a simplicial surface Mh. Then the
mean curvature vector of the edge is deÞned by

−→
H (e) = |e| cos θ

2
·Ne

where θ is the dihedral angle between the two triangles adjacent to e
and Ne is the angle bisecting unit normal vector. If e is a boundary
edge, we set θ := 0 and Ne := Je.

Note, the sign of the mean curvature is hidden in the deÞnition of
the normal vector Ne. If the surface is orientable then one could use
a normal vector Þeld and obtain a scalar H(e) whose sign is the sign
of < Ne, N >.

Lemma 86 Let Mh be a simplicial surface possibly with boundary,
and let us denote all edges as interior which are not part of the bound-
ary. Then we have

1

2

X
e∈∂Mh

Je =
X
e∈ ûMh

−→
H (e).

Proof. The contribution of each triangle, which does not contain a
boundary edge, to the total mean curvature term is zero. The contri-
bution of each boundary triangle to the total mean curvature term is
equal to the contribution of the left hand side. ¤
The following lemma compares the vertex and edge based mean cur-
vature notions.

Lemma 87 Let Ω ⊂ Mh be a simply connected domain on a sim-
plicial surface which is a subcomplex and whose boundary ∂Ω is an
embedded circle. Then the total mean curvature of all interior vertices
of Ω is equal to the force along the boundary, i.e.X

p∈ûΩ

−→
H (p) =

1

2

X
e∈∂Ω

Je+ contribution from vertices.

where the right summation is taken over all edges e of the boundary.

Total mean curvature.

Proof. The margin Þgure shows the contribution to the total in-
terior mean curvature and the force along the boundary. The black
arrows and zeros are the contribution of the edges to the total mean
curvature of all interior vertices. The grey arrows and zeros is the
contribution to the total mean curvature of all edges. ¤
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Surface Tension as Force

An equivalent characterization of discrete minimal surfaces is possible
by looking at the force which acts on the boundary of a soap Þlm. As
in the smooth case we assume at each vertex a tension respectively
force. Here the force is assumed to be orthonormal to the edge of the
link of a vertex and pointing in outward direction of the triangle.

DeÞnition 88 Let Mh be simplicial surface possibly with boundary.
For each vertex p ∈ Mh we deÞne the force F (p) as the sum of the
area gradients of each triangle in star p

F (p) := −
X

T∈star p
∇p areaT.

Similar to the smooth case the total mean curvature of all interior
vertices of a domain on a simplicial surface can be expressed as a
boundary term.

Lemma 89 Let Mh be a connected region on a simplicial surface.
Then the total mean curvature of all interior points of Mh is equal to
the total force along the boundary, i.e.X

p∈ ûMh

−→
H (p) =

X
p∈∂Mh

F (p).

Proof. The margin Þgure shows the contribution of vertex gradients
of the different types of triangles to the total interior mean curvature
and to the total force along the boundary.

Contribution to force.

First, the contribution of triangles with only interior or only boundary
triangles is zero for mean curvature and for force. A triangle with one
interior vertex contributes the same to the interior vertex as to the
two boundary vertices, and a triangle with two interior vertices also
has identical contributions. This proves the statement. ¤
Therefore, the deÞnition of a discrete minimal surface is equivalent
to the vanishing of the total force of the star of each interior vertex,
or more general.

Corollary 90 Let Mh be a simplicial surfaces. Then Mh is a dis-
crete minimal surface if and only if the total force vanishes along the
boundary of any connected region Ω ⊂Mh vanishes.

Proof. If Mh is minimal then the total interior mean curvature of
any region Ω in Mh is zero and by Lemma 89 the total force of ∂Ω
vanishes. The minimality of Mh follows from the vanishing of the
force of the link of each vertex star. ¤
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4.4 Properties of Discrete Minimal Surfaces

In the previous section we have introduced the notion of mean cur-
vature vector as the gradient of the discrete area functional. Here we
will study the critical values of the area functional in more detail,
that is, surfaces with H ≡ 0.
DeÞnition 91 A simplicial surfaceMh is a discrete minimal surface
iff the discrete area functional of Mh is critical w.r.t. variations of
any set of interior vertices. To include symmetry properties into this
deÞnition we sometimes allow a constrained variation of boundary
points:

� if a boundary arc is a straight line, then its interior points may
vary along the straight line

� if a boundary arc is a planar curve, then its interior points may
vary within the plane

� in all other cases the boundary points always remain Þxed.

Note that the above deÞnition is equivalent to saying that the area
of Mh is critical with respect to variations of any interior vertex.
The relaxed boundary constraints allow us to simulate free boundary
value problems, and to extend minimal surfaces by reßection.

Corollary 92 A simplicial surface Mh is minimal if and only if at
each interior vertex p

∇p areaMh =
1

2

X
j

(cotαj + cotβj)(p− qj) = 0 (4.10)

where {qj} denotes the set of vertices of link p and αj,βj denote the
two angles opposite to the edge pqj. At boundary vertices on symmetry
arcs the area gradient is constraint to be tangential to the straight line
or to the plane.

Proof. This equation follows directly from the representation of the
area gradient as the discrete mean curvature vector. ¤
The following properties of discrete minimal surfaces derived in [87]
are similar to equivalent properties of harmonic maps.

Lemma 93 Let Mh be a discrete minimal surface. If the star of an
interior vertex p consists of congruent isosceles triangles then p lies
in the center of mass of the vertices of its link.
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Proof. The weights in Equation 4.10 are all equal, therefore, p is
the mean of its adjacent vertices {qi}. ¤
The convex hull property for discrete minimal surfaces holds as long
as the surface consists only of acute triangles.

Lemma 94 Let Mh be a discrete minimal surface. If the star of an
interior vertex p consists of acute triangles then p lies in the convex
hull of its star.

Proof. The weights in Equation 4.10 are all positive, therefore, p is
a convex combination of its adjacent vertices {qi}

p =

P
j(cotαj + cotβj)qjP
j(cotαj + cotβj)

and lies within the convex hull of its link spanned by {qi}. ¤
The previous lemma does not hold in a more general case. The follow-
ing conÞguration is a counterexample to the maximum principle and
the convex hull property of discrete minimal surfaces. Its construc-
tion in [94] jointly with Rossman is based on the existence of obtuse
triangles. See also the model at [95] which contains an interactive
applet to analyze the dependence on the boundary conÞguration.
The counterexample is a special conÞguration of the 1−parameter
family of discrete minimal surfaces:

Counterexample to the max-
imum principle of discrete
minimal surfaces. The center
vertex lies outside the convex
hull of its link.

<points>
<p>-u 0 -u </p>
<p> u 0 -u </p>
<p>-1 1 0 </p>
<p> 1 1 0 </p>
<p>-1 -1 0 </p>
<p> 1 -1 0 </p>
<p> 0 0 h(u)</p>

</points>
<faces>

<f>0 6 2</f>
<f>6 3 2</f>
<f>6 1 3</f>
<f>0 4 6</f>
<f>4 5 6</f>
<f>5 1 6</f>
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</faces>
The parameter u varies in (0,∞) and the function h(u) determines the
vertical height of the center vertex. For u ∈ [0, 2] the central vertex
lies within the convex hull of the boundary after minimization. The
remarkable fact is that this property does not hold for u > 2 when
the minimum position of the central vertex is outside the convex hull
of the boundary. The model in the margin Þgure corresponds to the
parameter value u = 5.
Note that since the identity map of a discrete minimal surface is a
discrete harmonic map, this example also demonstrates that the mean
value property and convex hull property of discrete harmonic maps do
not hold. Further note that both properties hold in special situations
where all triangles have all vertex angles in [−π

2 ,
π
2 ]. In this example,

the center vertex lies on the convex hull exactly at u = 2 which is the
situation when the Þrst vertex angle becomes π2 . Increasing u further
leads to an increasing angle.
Note that the discrete maximum principle does hold for the Þve-
vertex Laplacian deÞned over the special rectangular Z× Z grid [20].

4.5 Computing Discrete Minimal Surfaces

A direct minimization of the area functional is a non-linear problem
because of the angle terms in Equation 4.10. Another effect, which
may spoil numerical convergence, is the invariance of the area func-
tional with respect to reparametrizations of the image surface. This
may lead to tangential motions in an area minimization procedure.
The following observation leads to an effective method for area mini-
mization which in fact minimizes the Dirichlet energy in an iteration
process. This method was Þrst employed by Dziuk [35] for the mean
curvature ßow and later used in the context of discrete minimal sur-
faces by Pinkall and Polthier [87]. For a smooth map F : M → R3
from a Riemann surface M we have the estimate

areaF (M) ≤ 1

2

Z
M

|∇F |2 dx =: ED(F )

with equality iff F is a conformal map. Following a proposal of Hutchin-
son [64] we call the difference

EC(F ) := ED(F )− areaF (M)
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the conformal energy of the map F since for a Euclidean (x, y)-
domain Ω one has

EC(F ) =
1

2

Z
Ω

|JFx − Fy|2 , (4.11)

where J is the rotation by π
2 in the oriented tangent plane. EC is a

natural measure of failure for a map to be conformal. In the following
we will introduce a discrete analogue of these relationships.

Lemma 95 The gradient of the Dirichlet energy of the identity map
id of a simplicial surface Mh is equal to the area gradient, that is, at
any interior vertex p ∈M we have

∇p areaMh = ∇pED(id).

Proof. The statement follows directly by applying the theorem 55
to the id map and comparing its Dirichlet gradient with the area
gradient of Mh. ¤

Corollary 96 A simplicial surface Mh is minimal if and only if the
identity map idh :Mh →Mh is discrete harmonic.

As a consequence, we have a simplicial equivalent for the conformal
energy of smooth maps given in Equation 4.11.

DeÞnition 97 Let Fh : Mh → Nh be a map between two simplicial
surfaces, then its discrete conformal energy is given by

EC(Fh) := ED(Fh)− areaFh(Mh). (4.12)

Corollary 98 Let Fh : Mh → Nh be a map between two simplicial
surfaces, then the discrete conformal energy and its gradient are

EC(Fh) =
1

4

X
pipj is edges

(∆αij +∆βij) |Fh(pi)− Fh(pj)|2

∇Fh(pi)EC(Fh) =
1

2

X
pj∈link pi

(∆αij +∆βij)(Fh(pi)− Fh(pj)) (4.13)

with the shortcuts

∆αij : = cotαij − cotαij
∆βij : = cotβij − cotβij

where α, β denote vertex angles on Mh and α, β denote vertex angles
on Nh in triangles opposite to the edge pipj.
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Proof. The relations follow immediately from the expressions of the
discrete area in equation 4.7

∇Fh(pi) areaFh(Mh) =
1

2

X
pipj is edges

¡
cotαij + cotβij

¢
(Fh(pi)− Fh(pj))

and the Dirichlet energy in Theorem 55

∇Fh(pi)EDFh(Mh) =
1

2

X
pipj is edges

¡
cotαij + cotβij

¢
(Fh(pi)− Fh(pj)) .

¤
Note, a map has vanishing conformal energy if and only if angles of
domain and image triangles are equal. But critical values of the con-
formal energy are much less constrained. For example, Hutchinson
[64] noticed that minimizing the conformal energy leads to nice tri-
angulations since it avoids decreasing the surface area which occurs
when minimizing the Dirichlet energy.
The following algorithm uses a sequence of discrete harmonic maps.
In short, let M0 be an initial simplicial surface and let a sequence of
simplicial surfaces {Mi} be deÞned as images of a sequence of maps

Fi : Mi →Mi+1

∆hFi = 0

∂Fi(Mi) = Γ

which are discrete harmonic on Mi. If the limit surface M := limMi

exists then the limit function F :M →M is harmonic and conformal,
therefore, F (M) is minimal.
The algorithm makes essential use of the fact that minimizing the
Dirichlet energy also minimizes the surface area in Þrst order. The
major advantages of minimizing the Dirichlet energy compared to
minimizing surface are, Þrst, that the minimization process has a
unique solution, and, second, that tangential motions can be ignored
during the Þrst iterations. Compare the comments of Brakke on this
issue [17].

Algorithm 99 Solve the boundary value problem for discrete mini-
mal surfaces (either Dirichlet or Neumann conditions):

1. Choose an arbitrary initial surface M0 with boundary ∂M0 = Γ
as the Þrst approximation of M , set i to 0.
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2. Let Mi be a surface with boundary Γ, then compute the surface
Mi+1 as minimizer of the Dirichlet energyZ
Mi

|∇(Fi :Mi →Mi+1)|2 = min
M,∂M=Γ

Z
Mi

|∇(F :Mi →M)|2 .

This uniquely deÞnes a Laplace-Beltrami harmonic function Fi
whose image Fi(Mi) =Mi+1 will be taken as the domain surface
in the next iteration.

3. Set i to i + 1 and continue with step 2, for example, until
|areaMi − areaMi+1| < i.

In practice, this algorithm converges very quickly during the Þrst
iteration steps. It slows down if the surface is close to a critical point
of the area functional probably because then the area gradient no
longer approximates a �good� surface normal. In any case, if the
algorithm converges to a non-degenerated surface then the limit is
discrete minimal. The next convergence statement shown in [87] is
merely a theoretical observation, rather than having use in practical
applications since the degeneracy assumption can hardly be ensured
in advance.

Proposition 100 The algorithm converges to a solution of the prob-
lem, if no triangles degenerate.

Proof. The condition �no triangles degenerate� means that we as-
sume all triangle angles for all surfaces of the sequence to be uniformly
bounded away from 0 and π. From the construction the sequences
{areaMi} and{ED(Fi :Mi →Mi+1)} are monotone decreasing:

areaMi = ED(id|Mi
) ≥ ED(Fi :Mi →Mi+1)
= areaMi+1 +EC(Fi)
≥ ED(id|Mi+1

) = areaMi+1.

If no triangles degenerate we minimize in a compact set of surfaces.
Therefore, a subsequence of {Mi} converges uniformly to a limit sur-
face M with respect to the norm assumed in the space of surfaces.
Since the identity map of the limit surface M is discrete harmonic
the area gradient of M vanishes everywhere, and that means M is
discrete minimal. ¤

Other Methods for Solving the Plateau Problem

The Plateau problem looks for a minimal surface M spanned by a
given boundary curve Γ ⊂ R3. As an overview we mentioned three
popular methods to compute a numerical solution.
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Minimal graph: If the surface is known to be a graph over a plane,
then there exists a scalar valued function z over a planar domain
Ω ⊂ R2 with boundary ∂Ω

z : Ω→ R
z|∂Ω = g1 or

∂vz|∂Ω = g2

where g1 are prescribed Dirichlet boundary values, or g2 are Neu-
mann boundary conditions which prescribe the directional derivative
of z in direction of the outer normal along ∂Ω. Such a graph is area
minimizing w.r.t. to variations with compact support if it fulÞlls a
nonlinear elliptic partial differential equation, the minimal surface
equation [31]

(1 + z2y)zxx − 2zxzyzxy + (1 + z2x)zyy = 0

Mean curvature ßow allows us to gradually decrease surface area. Let
M(t) with ∂M(t) = Γ be a 1-parameter family of C2 surfaces which
is differentiable in t. Then M(t) ßows by mean curvature if it fulÞlls
the following parabolic partial differential equation

∂

∂t
M(t) = H(t) ·N(t) = ∆gM

where H(t) is the mean curvature and N(t) the surface normal of
M(t). If the ßow does not run into a singularity and if it stops, then
this limit surface is minimal.

4.6 Conjugate Pairs of Discrete Minimal
Surfaces

Here we combine the results on non-conforming meshes of Chapter 3
and on simplicial minimal surfaces to derive the variational properties
of pairs of conjugate discrete minimal surfaces.

Review of Smooth Minimal Surfaces

Among the fundamental observations in the theory of smooth mini-
mal surfaces was the fact that each minimal surface comes in a family
of minimal surfaces, the so-called associate family or Bonnet family.
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FIGURE 4.2. Free-boundary value problem of Schwarz P-surface in a cube
solved via discrete conjugate surface construction. Even the very coarse
resolution of the non-conforming mesh gives qualitatively good results.

The simplest and most known example is the associate family which
transforms the catenoid C into the helicoid H, both are given by

C(u, v) =

 cos v coshu
sin v coshu

u

 , H(u, v) =

 sin v sinhu
− cos v sinhu

v

 .
Their associate family Fϕ(u, v) consists of all minimal surfaces given
by

Fϕ(u, v) = cosϕ · C(u, v) + sinϕ ·H(u, v).
The surface F

π
2 is called the conjugate surface of F 0, and more gen-

eral, all pairs Fϕ and Fϕ+
π
2 are conjugate to each other. Applying

the conjugate twice leads to Fπ = −F which is obtained from F 0 by
reßection in the origin.
A more appropriate notation of the associate family follows from the
representation of minimal surfaces as complex curves in C3. Recall
the basic fact in minimal surface theory that the three coordinate
functions F = (f1, f2, f3) of a minimal surface F : Ω ⊂ R2 → R3
are harmonic maps if F is a conformal parameterization. Therefore,
there exist three conjugate harmonic maps f∗i which describe another
minimal immersion F ∗ = (f∗1 , f

∗
2 , f

∗
3 ) : Ω ⊂ R2 → R3. If we introduce

complex coordinates z = u+ iv in Ω then combination of both maps
to a holomorphic curve F + iF ∗ : Ω→ C3 with holomorphic coordi-
nate functions gives a family of immersions.Fϕ = Re(e−iϕ · (F + iF ∗)
called the associate family of F or of F ∗. In the above example the
introduction of complex coordinates leads to the following represen-
tation of the associate family of catenoid and helicoid given by

Fϕ(z) = Re(e−iϕ · (C(z) + i ·H(z))) = Re(e−iϕ ·
 cosh z
−i sinh z

z

).
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The following theorem summarizes the most important properties of
the associate family of smooth minimal surfaces without proof.

Theorem 101 Let C,H : Ω → R3 be a pair of conformally para-
metrized conjugate minimal surfaces. Then the associate family Fϕ :
Ω→ R3 has the following properties:

1. All surfaces Fϕ of the associate family are minimal and iso-
metric.

2. The surface normal at each point Fϕ(u, v) is independent of ϕ.

3. The partial derivatives fulÞll the following correspondence:

Fϕu (u, v) = cosϕ · Cu(u, v)− sinϕ · Cv(u, v)
Fϕv (u, v) = sinϕ · Cu(u, v) + cosϕ · Cv(u, v) ,

in particular, the partials of a conjugate pair C and H satisfy
the Cauchy-Riemann equations:

Cu(u, v) = Hv(u, v)
Cv(u, v) = −Hu(u, v) .

This relation can be written in a compact form dH = ∗dC using
the Hodge ∗ operator.

4. If a minimal patch is bounded by a straight line, then its conju-
gate patch is bounded by a planar symmetry line and vice versa.
This can be seen in the catenoid-helicoid examples, where pla-
nar meridians of the catenoid correspond to the straight lines
of the helicoid.

5. Since at every point the length and the angle between the par-
tial derivatives are identical for the surface and its conjugate
(i.e. both surfaces are isometric) we have as a result, that the
angles at corresponding boundary vertices of surface and conju-
gate surface are identical.

The last two properties are most important for the later conjugate
surface method.

Review of the Conjugate Surface Construction

Over the last decade the conjugate surface method has been estab-
lished as one of the most powerful techniques to construct new mini-
mal surfaces with a proposed shape in mind. One of the major draw-
backs of the method is the so-called period problem which often pre-
vents a rigorous existence proof of the examples. In these situation

96



4. Discrete Minimal Surfaces 4.6. Conjugate Pairs of Discrete Minimal Surfaces

where theoretical techniques fail up to now, a numerical approach is
required to allow experiments.
The major obstacle for a numerical simulation of the conjugate sur-
face method is the fact, that the minimal surfaces are usually un-
stable. Currently, the conjugation method based on discrete minimal
surfaces is the only numerical method to compute the conjugate of a
polyhedral minimal surface with satisfactory results.

4.6.1 Discrete Conjugate Minimal Surface

In this section we develop the notion of the conjugate and the asso-
ciate family of a discrete minimal surface. In [87] the discrete con-
jugation algorithm is based the concept of discrete harmonic maps,
but the method did not unveil the variational properties of the con-
jugate surface. In the following we Þrst show the area minimality of
the conjugate discrete minimal surface, and second, describe a prac-
tical algorithm by reformulating the conjugation method of [87] in
terms of the conjugation of harmonic maps using conforming and
non-conforming functions derived in Chapter 3.
Currently, the method [87] seems to be the only method to allow the
conjugation of a numerically computed discrete minimal surface with
reasonable results. The main difficulties are to provide accurate C1

information, which is required for the conjugation, from numerically
obtained minimal surfaces.
The remaining part of this section shows that the conjugate minimal
surface is well-deÞned, and derives some important properties. Most
results follow from properties of the conjugate harmonic coordinate
functions.
Let us review some properties of the differential of a polyhedral map
F :Mh → Rd where either F ∈ Sh or F ∈ S∗h. At each point p ∈Mh

the differential ∇pF : TpMh → TF (p)F (Mh) is given by

∇pF (v) =
 h∇pf1, vi

..
h∇pfd, vi

 ∀ v ∈ TpMh

if F = (f1, .., fd) are the coordinate functions. A map F is said to
be harmonic if all coordinate functions are harmonic with respect to
the metric of Mh. Recalling the deÞnition of the Hodge ∗ operator
directly leads to the following deÞnition by applying the operator on
the component functions. We say that a simplicial surface Mh is in
Sh respectively S∗h if the triangulation is edge continuous respectively
edge-midpoint continuous.
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DeÞnition 102 Let F = (f1, .., fd) : Mh → Rd be a simplicial map
in Sh or S∗h. The Hodge star operator is deÞned by

∗dF|p(v) :=
 ∗df1|p(v)

..
∗dfd|p(v)

 =

 hJ∇pf1, vi
..

hJ∇pfd, vi

 ∀ v ∈ TpMh

where J is the rotation by π
2 in the oriented tangent space of each

triangle of Mh with respect to the metric in Mh.

For example, if F = id :Mh →Mh is the identity map of a simplicial
surface, then we obtain on each triangle

∗d id|p(v) := −Jv ∀ v ∈ TpMh. (4.14)

Now we are ready to extend the results on discrete harmonic maps
of the previous section to the conjugation of simplicial minimal sur-
faces. In the following theorem we show that the differential ∗d id is
closed on simplicial minimal surfaces, and that its integral gives the
conjugate minimal surface:

DeÞnition 103 Let Mh be a simplicial minimal surface in Sh (or in
S∗h). Then a discrete conjugate minimal surface M

∗
h is a solution of

Equation 4.14.

Non-conforming Catenoid. Conforming Helicoid.

Conforming Catenoid. Non-conforming Helicoid.
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The following theorem justiÞes this deÞnition and states the general
relation between conjugate pairs of discrete minimal surfaces.

Theorem 104 1. Let Mh ⊂ Rd be a discrete minimal surface in Sh.
Then there exists a conjugate surface M∗

h ⊂ Rd in S∗h which is critical
for the area functional in S∗h.
2. Let Mh ⊂ Rd be a discrete minimal surface in S∗h. Then there
exists a conjugate surface M∗

h ⊂ Rd in Sh which is critical for the
area functional in Sh.
3. M∗

h is uniquely determined by Mh up to translation.
4. Mh and M∗

h are isometric and have the same Gauss map in the
sense that corresponding triangles are congruent and parallel.
5. Applying the conjugation twice leads to

M∗∗
h = −Mh

for a suitably chosen origin.

Proof. Since Mh is a critical for the area functional the identity
map

id :Mh →Mh

is a discrete harmonic map by Corollary 96. Therefore, Theorem 72
in Chapter 3 proves that there exist conjugate harmonic component
functions which give rise to a map on Mh

id∗ :Mh → Rd.

with M∗
h := id

∗Mh.
It remains to show that M∗

h is a discrete minimal surface. Here we
assume that Mh is in Sh - the case Mh in S∗h would work with the
same words.
We show thatM∗

h fulÞlls the balancing condition. Let p
∗ ∈M∗

h be an
interior vertex, then by harmonicity of id∗ ∈ S∗h we have

d

dm∗ED(id
∗) = 2(cotα−2(m

∗ −m∗
−1) + cotα−1(m

∗ −m∗
−2)(4.15)

+cotα1(m
∗ −m∗

2) + cotα2(m
∗ −m∗

1))

= 0

where m∗ and m∗
i are the images of id

∗ of edge midpoints in Mh.
Since on each triangle id∗ is a rotation by π

2 , corresponding triangles
of Mh and M∗

h are isometric and have the same angles. Therefore,
Equation 4.15 also is the criticality condition of the Dirichlet energy
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of the identity map of M∗
h which lies in S

∗
h. Thus M

∗
h is a discrete

minimal surface in S∗h.
The uniqueness follows from the uniqueness of the conjugate har-
monic map and its integration constants. ¤
Summarizing, the theorem shows that a conjugate pair of discrete
minimal surfaces does not exist in the space of piecewise linear con-
forming elements S.h but naturally leads to the space of piecewise
linear non-conforming Crouzeix-Raviart elements S∗h. Sh alone is too
rigid to contain the conjugate of a minimal surface too.
In other words, if Mh is be a simplicial minimal surface in Sh respec-
tively in S∗h then its discrete conjugate minimal surface M

∗
h is the

image of the conjugate harmonic id∗ :Mh → Rd map of the identity
map of id :Mh →Mh, that is, id and id

∗ fulÞll

d id∗ = ∗d id .
The usage of the same domain Mh for both identity maps seems
to distinguish Mh from M∗

h but only the conformal structure of the
domain surface is relevant for the minimality condition. Therefore,
we may instead use M∗

h or, more appropriate, use id :Mh →Mh and
id∗ :M∗

h →M∗
h .

4.6.2 Numerical Conjugation

In practical applications the conjugation of a simplicial minimal sur-
face by rotating each triangle and reassembling the rotated copies
requires that the simplicial minimal surface has been computed very
exact. Often, minimal surfaces are computed by solving a variational
problem where the numerical method stops before reaching the ab-
solute zero of the gradient. A much more stable procedure has been
suggested in [87] to circumvent this difficulty: in a minimization pro-
cedure based on the Dirichlet energy there exists an accurately com-
puted harmonic map Fi between the last two compute surfaces Mi

and Mi−1. Instead of by applying the conjugation to the approxima-
tionMi of the limit minimal surface, it is more stable to compute the
harmonic conjugate map

F ∗i :Mi−1 →M∗
i .

The following algorithm summarizes the procedure:

Algorithm 105 To compute the conjugate M∗
h of the Plateau prob-

lem Mh with Dirichlet boundary condition Γ:
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1. Follow the minimization algorithm above to compute a sequence
of discrete harmonic maps Fi :Mi →Mi+1.

2. Compute the harmonic conjugate F ∗i of Fi :Mi →Mi+1.

3. Set Mh := Mi+1 as numerical approximation of the Plateau
solution, and set M∗

h := F
∗
i (Mi) as approximation of the con-

jugate minimal surface.

This algorithm generates a sequence of discrete surfaces {Mi} and
vector-valued harmonic maps {Fi :Mi →Mi+1} which converges to
a minimal surface if no degeneration occurs. In order to extend the
conjugation technique of the previous sections to the computation of
the conjugate of a minimal surface we allow the surfaces Mi to be
either all conforming or all non-conforming triangulations. In this case
the coordinate functions of each Fi are discrete harmonic functions
either in Sh or S∗h, and the image F

∗
i (Mi) of the conjugate harmonic

of Fi is a good approximation of the conjugate minimal surface. The
two approximations Mh and M∗

h are either a conforming and a non-
conforming triangulation, or vice-versa.

FIGURE 4.3. Transformation of a free-boundary value problem into a fam-
ily of Dirichlet boundary value problems with a Þxed contour.

4.7 Discrete Minimal Catenoid

Examples are important building blocks in the development of a
mathematical theory. The Þrst smooth minimal surfaces were found
already in the 18th century when Lagrange formulated the variational
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pq1

q2

q3

q4

y
x 0

z

FIGURE 4.4. Discrete catenoid with essential stencil, see Lemma 106

characterization of minimal surfaces. The French geometer and en-
gineer Jean Baptiste Meusnier (1754-1793) recognized the Þrst non-
trivial examples of minimal surfaces: the catenoid found by Euler in
1744, also called the chain surface, because it is the surface swept
out when one rotates the catenary curve that corresponds to a freely
hanging chain about a suitable horizontal line, and the helicoid, or
screw surface. Already the discovery of the next examples in 1835
was regarded as so sensational that its discoverer Heinrich Ferdinand
Scherk (1798-1885), Professor at Kiel and Bremen, won a prize at the
Jablonowski Society at Leipzig in 1831.
The discovery of this discrete minimal catenoid by Polthier and Ross-
man [94] was driven by a very practical need, namely the provision of
an unstable discrete minimal surface for investigations on the index
of minimal surfaces. The numerical eigenvalue computations require
a very accurate unstable surface as input which is hardly produced by
means of minimization methods. Here the explicit formulae allows us
to create unstable catenoids of arbitrary resolution. The model [93]
at the EG-Models journal includes an interactive applet to study the
whole family of discrete catenoids.
The strategy for the construction of an explicit formula for embed-
ded complete discrete minimal catenoids is to assume that the vertices
lie on congruent planar polygonal meridians and that the meridians
placed so that the traces of the surfaces will have dihedral symme-
try. Under these assumptions we Þnd that the vertices of a discrete
meridian lie equally spaced on a smooth hyperbolic cosine curve. Fur-
thermore, these discrete catenoids will converge uniformly in compact
regions to the smooth catenoid as the mesh is made Þner.
We begin with a lemma that prepares the construction of the vertical
meridian of the discrete minimal catenoid, by successively adding one
horizontal ring after another starting from an initial ring. Since our
construction will lead to pairwise coplanar triangles, the star of each
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individual vertex can be made to consist of four triangles (see Remark
147). We now derive an explicit representation of the position of a
vertex surrounded by four such triangles in terms of the other four
vertex positions. The center vertex is assumed to be coplanar with
each of the two pairs of two opposite vertices, with those two planes
becoming the plane of the vertical meridian and the horizontal plane
containing a dihedrally symmetric polygonal ring (consisting of edges
of the surface). See Figure 4.4.

Lemma 106 Let a, b, d, e be given real numbers with b 6= e and
let θ be a dihedral angle which determine four vertices p = (d, 0, e),
q1 = (d cos θ,−d sin θ, e), q2 = (a, 0, b), and q3 = (d cos θ, d sin θ, e).
Then there exists a choice of other real numbers x and y and a Þfth
vertex q4 = (x, 0, y) so that the discrete surface formed by the four
triangles (p, q1, q2), (p, q2, q3), (p, q3, q4), and (p, q4, q1) is minimal,
i.e.

∇p area(star p) = 0 ,
if and only if

2ad >
(e− b)2
1 + cos θ

.

Furthermore, x and y are unique and of the form

x =
2(1 + cos θ)d3 + (a+ 2d)(e− b)2

2ad(1 + cos θ)− (e− b)2 ,

y = 2e− b.
Proof. First we note that the assumption b 6= e is necessary. If b = e,
then one may choose y = b, and then there is a free 1-parameter
family of choices of x, leading to a trivial planar surface.
For simplicity we apply a vertical translation and a homothety about
the origin of R3 to normalize d = 1, e = 0, and by doing a reßection
if necessary, we may assume b < 0. Let c = cos θ and s = sin θ.
We derive conditions for the coordinate components of ∇p area to
vanish. The second component vanishes by symmetry of star p. Using
the deÞnitions

c1 :=
(a− 1)s2 − b2(1− c)p
2b2(1− c) + (a− 1)2s2 , c2 :=

ab+ bp
2b2(1− c) + (a− 1)2s2 ,

the Þrst (resp. third) component of ∇p area vanishes if

c1 =
y2(1− c)− (x− 1)s2p
2y2(1− c) + (x− 1)2s2 , resp. c2 =

−(x− 1)y − 2yp
2y2(1− c) + (x− 1)2s2 .

(4.16)
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Dividing one of these equations by the other we obtain

x− 1 = c2y(1− c) + 2c1
c2s2 − c1y y , (4.17)

so x is determined by y. It now remains to determine if one can Þnd
y so that c2s2 − c1y 6= 0. If x− 1 is chosen as in Equation 4.17, then
the Þrst minimality condition of Equation 4.16 holds if and only if
the second one holds as well. So we only need to insert this value for
x − 1 into the Þrst minimality condition and check for solutions y.
When c1 6= 0, we Þnd that the condition becomes

1 =
c2s

2 − c1y
|c2s2 − c1y|

y

|y|
−(1− c)y2 − 2s2p

2(1− c)c22s4 + 4c21s2 + (2(1− c)c21 + s2(1− c)2c22)y2
.

Since −(1− c)y2 − 2s2 < 0, note that this equation can hold only if
c2s

2 − c1y and y have opposite signs, so the equation becomes

1 =
(1− c)y2 + 2s2p

2(1− c)c22s4 + 4c21s2 + (2(1− c)c21 + s2(1− c)2c22)y2
,

which simpliÞes to

1 =

p
(1− c)y2 + 2s2p
(1− c)c22s2 + 2c21

.

This implies y2 is uniquely determined. Inserting the value

y = ±b,
one Þnds that the above equation holds. When y = b < 0, we Þnd
that c2s2 − c1y < 0, which is impossible. When y = −b > 0, we Þnd
that c2s2 − c1y < 0 if and only if 2a(1 + c) > b2. And when y = −b
and 2a(1 + c) > b2, we have the minimality condition when

x =
2 + 2c+ ab2 + 2b2

2a+ 2ac− b2 .

Inverting the transformation we did at the beginning of this proof
brings us back to the general case where d and e are not necessarily 1
and 0, and the equations for x and y become as stated in the lemma.
When c1 = 0, we have (a−1)(1+c) = b2 and (x−1)(1+c) = y2, so, in
particular, we have a > 1 and therefore 2a(1+c) > b2. The right-hand
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side of Equation (4.16) implies y = −b and x = a. Again, inverting
the transformation from the beginning of this proof, we have that x
and y must be of the form in the lemma for the case c1 = 0 as well.
¤
The next lemma provides a necessary and sufficient condition for
when two points lie on a scaled cosh curve, a condition that is identical
to that of the previous lemma. That these conditions are the same is
crucial to the proof of the upcoming theorem.

Lemma 107 Given two points (a, b) and (d, e) in R2 with b 6= e, and
an angle θ with |θ| < π, there exists an r so that these two points lie
on some vertical translate of the modiÞed cosh curve

γ(t) =

µ
r cosh

·
t

e− b arccosh
µ
1 +

1

r2
(e− b)2
1 + cos θ

¶¸
, t

¶
, t ∈ R ,

if and only if 2ad > (e−b)2
1+cos θ .

Proof. DeÞne �δ = e−b√
1+cos θ

. Without loss of generality, we may
assume 0 < a ≤ d and e > 0, and hence −e ≤ b < e. If the points
(a, b) and (d, e) both lie on the curve γ(t), then

arccosh

Ã
1 +

�δ
2

r2

!
= arccosh

µ
d

r

¶
− sign(b) · arccosh

³a
r

´
,

where sign(b) = 1 if b ≥ 0 and sign(b) = −1 if b < 0. Note that if
b = 0, then a must equal r (and so (ar ) = 0). This equation is solvable
(for either value of sign(b)) if and only ifÃ

d

r
+

r
d2

r2
− 1
!Ã

a

r
+

r
a2

r2
− 1
!
= 1 +

�δ
2

r2
+
�δ

r

s
2 +

�δ
2

r2

when b ≤ 0, or

d
r +

q
d2

r2 − 1
a
r +

q
a2

r2 − 1
= 1 +

�δ
2

r2
+
�δ

r

s
2 +

�δ
2

r2

when b ≥ 0, for some r ∈ (0, a]. The right-hand side of these two
equations has the following properties:

1. It is a nonincreasing function of r ∈ (0, a].
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2. It attains some Þnite positive value at r = a.

3. It is greater than the function 2�δ
2
/r2.

4. It approaches 2�δ
2
/r2 asymptotically as r→ 0.

The left-hand sides of these two equations have the following proper-
ties:

1. They attain the same Þnite positive value at r = a.

2. The Þrst one is a nonincreasing function of r ∈ (0, a].
3. The second one is a nondecreasing function of r ∈ (0, a].
4. The second one attains the value d

a at r = 0.

5. The Þrst one is less than the function 4ad/r2.

6. The Þrst one approaches 4ad/r2 asymptotically as r→ 0.

It follows from these properties that one of the two equations above

has a solution for some r if and only if 2ad > �δ
2
. This completes the

proof. ¤
We now derive an explicit formula for discrete minimal catenoids, by
specifying the vertices along a planar polygonal meridian. Then the
traces of the surfaces will have dihedral symmetry of order k ≥ 3. The
surfaces are tessellated by planar isosceles trapezoids like a Z2 grid,
and each trapezoid can be triangulated into two triangles by choosing
a diagonal of the trapezoid as the interior edge. Either diagonal can
be chosen, as this does not affect the minimality of the catenoid, by
Remark 147.
The discrete catenoid has two surprising features. First, the vertices
of a meridian lie on a scaled smooth cosh curve (just as the proÞle
curve of smooth catenoids lies on the cosh curve), and there is no
apriori reason to have expected this. Secondly, the vertical spacing of
the vertices along the meridians is constant.

Theorem 108 There exists a four-parameter family of embedded and
complete discrete minimal catenoids C = C(θ, δ, r, z0) with dihedral
rotational symmetry and planar meridians. If we assume that the di-
hedral symmetry axis is the z-axis and that a meridian lies in the
xz-plane, then, up to vertical translation, the catenoid is completely
described by the following properties:
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1. The dihedral angle is θ = 2π
k , k ∈ N, k ≥ 3.

2. The vertices of the meridian in the xz-plane interpolate the
smooth cosh curve

x(z) = r cosh

µ
1

r
az

¶
,

with

a =
r

δ
arccosh

µ
1 +

1

r2
δ2

1 + cos θ

¶
,

where the parameter r > 0 is the waist radius of the interpolated
cosh curve, and δ > 0 is the constant vertical distance between
adjacent vertices of the meridian.

3. For any given arbitrary initial value z0 ∈ R, the proÞle curve
has vertices of the form (xj , 0, zj) with

zj = z0 + jδ

xj = x(zj)

where x(z) is the meridian in item 2 above.

4. The planar trapezoids of the catenoid may be triangulated inde-
pendently of each other (by Remark 147).

Proof. By Lemma 106, if we have three consecutive vertices (xn−1, zn−1),
(xn, zn), and (xn+1, zn+1) along the meridian in the xz-plane which
satisfy the recursion formula

xn+1 =
(xn−1 + 2xn)�δ

2
+ 2x3n

2xnxn−1 − �δ2
, zn+1 = zn + δ, (4.18)

where δ = zn − zn−1 and �δ = δ/
√
1 + cos θ. As seen in Lemma 106,

the vertical distance between (xn−1, zn−1) and (xn, zn) is the same
as the vertical distance between (xn, zn) and (xn+1, zn+1), so we may
consider δ and �δ to be constants independent of n.
In order for the surface to exist, Lemma 106 requires that

2xnxn−1 > �δ
2
.

This implies that all xn have the same sign, and we may assume
xn > 0 for all n. Therefore the surface is embedded. Also, as the

condition 2xnxn−1 > �δ
2
implies

2xn+1xn =
2xn(xn−1 + 2xn)�δ

2
+ 4x4n

2xnxn−1 − �δ2
>

2xnxn−1�δ
2

2xnxn−1 − �δ2
> �δ

2
,
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we see, inductively, that xj is deÞned for all j ∈ Z. Hence the surface
is complete.
One can easily check that the function x(z) in the theorem also satis-
Þes the recursion formula (4.18), in the sense that if xj := x(zj), then
these xj satisfy this recursion formula. It only remains to note that,
given two initial points (xn−1, zn−1) and (xn, zn) with zn > zn−1,
there exists an r so that these two points lie on the curve x(z) with our

given δ and θ (up to vertical translation) if and only if 2xnxn−1 > �δ
2
,

as shown in Lemma 107. ¤

Remark 109 If we consider the symmetric example with normalized
waist radius r = 1, that is if we choose (x1, z1) = (1, 0) and (x2, z2) =

(1 + �δ
2
, δ), then the recursion formula in Equation 4.18 implies that

(xn, zn) = (1 +
n−1X
j=1

2j−1an−1,j�δ
2j
, (n− 1)δ), for n ≥ 3,

where an−1,j is deÞned recursively by an,m = 0 if m < 0 or n < 0 or
m > n, a0,0 = 1, an,0 = 2 if n > 0, and an,m = 2an−1,m − an−2,m +
an−1,m−1 if n ≥ m ≥ 1. Thus

an,m =

µ
n+m
2m

¶
+

µ
n+m− 1

2m

¶
.

These an,m are closely related to the recently solved reÞned alternating
sign matrix conjecture [21].

Corollary 110 There exists a two-parameter family of discrete catenoids
C1(θ, z0) whose vertices interpolate the smooth minimal catenoid with
meridian x = cosh z.

Proof. The waist radius of the scaled cosh curve must be r = 1.
Further, we must choose the parameter a = 1 which is fulÞlled if θ
and δ are related by 1 + cos θ + δ2 = (1 + cos θ) cosh δ. The offset
parameter z0 may be chosen arbitrarily leading to a vertical shift of
the vertices along the smooth catenoid. Note that if z0 = 0, we obtain
a discrete catenoid that is symmetric with respect to a horizontal
reßection. ¤

Corollary 111 For each Þxed r and z0, the proÞle curves of the
discrete catenoids C(θ, δ, r, z0) approach the proÞle curve x = r cosh zr
of a smooth catenoid uniformly in compact sets of R3 as δ, θ → 0.
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Proof. This is a direct consequence of the explicit representation of
the meridian. Since

lim
δ→0

1

δ
arccosh(1 +

1

r2
δ2

1 + cos θ
) =

√
2

r
√
1 + cos θ

,

it follows that the proÞle curve of the discrete catenoid converges
uniformly to the curve

x = r cosh

√
2z

r
√
1 + cos θ

as δ → 0. Then, as θ→ 0 we approach the proÞle curve x = r cosh zr .
¤

4.8 Discrete Minimal Helicoid

We continue with the derivation of explicit discrete helicoids which
are a natural second example of a complete, embedded discrete min-
imal surface. Here we follow the construction of the surface given
in [94]. An interactive data set of the model is available at the EG-
Models site at [96].
In the smooth setting, there exists an isometric deformation through
conjugate surfaces from the catenoid to the helicoid (see, for example,
[86]). So, one might Þrst try to make a similar deformation from
the discrete catenoids in Theorem 108 to discrete minimal helicoids.
But such a deformation is impossible in the space of edge-continuous
triangulations. In fact, in order to make an associate family of discrete
minimal surfaces, one must allow non-continuous triangle nets having
greater ßexibility.
Therefore, we adopt a different approach for Þnding discrete minimal
helicoids. The helicoids will be comprised of planar quadrilaterals,
each triangulated by four coplanar triangles, see Figures 4.4 and 4.5.
Each quadrilateral is the star of a unique vertex, and none of its four
boundary edges are vertical or horizontal, and one pair of opposite
vertices in its boundary have the same z-coordinate, and the four
boundary edges consist of two pairs of adjacent edges so that within
each pair the adjacent edges are of equal length.
First we derive an explicit representation for a particular vertex star
to be minimal, as this will help us describe helicoids:

Lemma 112 Let p be a point with a vertex star consisting of four
vertices q1, q2, q3, q4 and four triangles4i = (p, qi, qi+1), i ∈ {1, 2, 3, 4}
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FIGURE 4.5. Essential stencil of the discrete helicoid. star(p) is the portion
considered in Lemma 112, and star(p0) is a planar quadrilateral, like the
ones comprising the helicoid in Figure 4.4. Note that the vertex p0 can
be moved freely inside the planar quadrilateral star(p0) without affecting
minimality, by Remark 147. The helicoid on the right uses x0 = 0.

(mod 4). We assume that p = (u, 0, 0), q1 = (b cos θ, b sin θ, 1), q2 =
(b cos θ,−b sin θ,−1), q3 = (t cos θ,−t sin θ,−1), q4 = (t cos θ, t sin θ, 1)
with real numbers b < u < t and θ ∈ (0, π2 ). If either

t = −b(1 + 2u2 sin2 θ) + 2u
p
1 + b2 sin2 θ

p
1 + u2 sin2 θ or

b = −t(1 + 2u2 sin2 θ) + 2u
p
1 + t2 sin2 θ

p
1 + u2 sin2 θ ,

then ∇p area vanishes.
Proof. Consider the conormals J1 = J(q2 − q1), J2 = J(q3 − q2),
J3 = J(q4−q3), J4 = J(q1−q4), where J denotes oriented rotation by
angle π

2 in the triangle 4j containing the edge being rotated. Then

J1 = (2
p
1 + b2 sin2 θ, 0, 0) and J3 = (−2

p
1 + t2 sin2 θ, 0, 0) .

Since

hJ4, (cos θ, sin θ, 0)i = 0

det(J4, (cos θ, sin θ, 0), (u− b cos θ,−b sin θ,−1)) = 0

|J4|2 = (t− b)2

we have that the Þrst component of J4 (and also of J2) is

u(t− b) sin2 θp
1 + u2 sin2 θ

.

By symmetry, the second and third components of J2 and J4 are
equal but opposite in sign, hence the second and third components
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of J1+ J2+ J3+ J4 are zero. So for the minimality condition to hold
at p, we need that the Þrst component of J1 + J2 + J3 + J4 is also
zero, that is, we need

u(t− b) sin2 θp
1 + u2 sin2 θ

+
p
1 + b2 sin2 θ −

p
1 + t2 sin2 θ = 0 ,

and the solution of this with respect to b or t is as in the lemma. So,
for this solution ∇p area vanishes. ¤
Theorem 113 There exists a family of complete embedded discrete
minimal helicoids, with the connectivity as shown in Figure 4.4. The
vertices, indexed by i, j ∈ Z, are the points

r sinh(x0 + jδ)

sin θ
(cos(iθ), sin(iθ), 0) + (0, 0, ir) ,

for any given real numbers θ ∈ (0, π2 ) and r, δ ∈ R.
Note that these surfaces are invariant under the screw motion that
combines vertical upward translation of distance 2r with rotation
about the x3−axis by an angle of 2θ. The term x0 determines the
offset of the vertices from the z−axis (if x0 = 0, then the z-axis is
included in the edge set), and δ determines the horizontal spacing
of the vertices. The homothety factor is r, which equals the vertical
distance between consecutive horizontal lines of edges.
Proof. Without loss of generality, we may assume r = 1. So for a
given i, the vertices are points on the line {s(cos(iθ), sin(iθ), i) | s ∈
R}, for certain values of s. We choose x0 and δ so that the (j−2)−th
vertex has s-value sj−2 = sinh(x0+(j−2)δ)/ sin θ and the (j−1)−th
vertex has s−value sj−1 = sinh(x0 + (j − 1)δ)/ sin θ. Lemma 112
implies that the j−th vertex has s−value

sj = −sj−2(1 + 2s2j−1 sin2 θ) +
2sj−1

q
1 + s2j−2 sin

2 θ
q
1 + s2j−1 sin

2 θ,

a recursion formula that is satisÞed by

sj = sinh(x0 + jδ)/ sin θ .

Lemma 112 implies a similar formula for determining sj−3 in terms
of sj−2 and sj−1, with the same solution. Finally, noting that those
vertices whose star is a planar quadrilateral can be freely moved in-
side that planar quadrilateral without disturbing minimality of the
surface, the theorem is proved. ¤
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